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h2-NORM OPTIMAL MODEL REDUCTION FOR LARGE-SCALE

DISCRETE DYNAMICAL MIMO SYSTEMS

A. BUNSE-GERSTNER, D. KUBALIŃSKA, G. VOSSEN, AND D. WILCZEK

Abstract. Modeling strategies often result in dynamical systems of very high
dimension. It is then desirable to find systems of the same form but of lower
complexity, whose input-output behavior approximates the behavior of the
original system. Here we consider linear time invariant (LTI) discrete time dy-
namical systems. The cornerstone of this paper is a relation betweeen optimal
model reduction in the h2-norm and (tangential) rational Hermite interpola-
tion. First order necessary conditions for h2-optimal model reduction are pre-
sented for discrete Multiple-Input-Multiple-Output (MIMO) systems. These
conditions lead to an optimal choice of interpolation data and a new efficient
algorithm for h2-optimal model reduction for MIMO systems. It is also shown
that the conditions are equivalent to two known Lyapunov based first order
necessary conditions. Numerical experiments demonstrate the approximation
quality of the method.

1. Introduction

The purpose of model order reduction is to replace a large model by a smaller
one, which preserves the essential behavior of the original model. For the systems
considered in this paper, it can be stated as follows:

Problem: Given the Linear Time Invariant (LTI), discrete time dynamical system
in state-space representation:

Σ :
xk+1 = Axk + Buk,
yk = Cxk

(1.1)

or equivalently, in the frequency domain, represented by its transfer function

H(s) := C(sIN − A)−1B(1.2)

where A ∈ CN×N , B ∈ CN×m and C ∈ Cp×N . The vectors xk ∈ CN , yk ∈ Cp and
uk ∈ Cm are the state, output and the input of the system at time tk, respectively
and N is very large. It will be assumed throughout the paper that the system
is stable, that is, all eigenvalues of A lie inside the unit circle, observable and
reachable.

Construct a reduced-order system

Σ̂ :
x̂k+1 = Âx̂k + B̂uk,

ŷk = Ĉx̂k
(1.3)

with transfer function

Ĥ(s) = Ĉ(sIn − Â)−1B̂(1.4)

Key words and phrases. Model Reduction, Rational Interpolation, Tangential Interpolation,
discrete Sylvester Equation, h2 Approximation.
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where Â ∈ Cn×n, B̂ ∈ Cn×m, Ĉ ∈ Cp×n and n � N, whose input-output behavior
approximates the input-output behavior of the large system. The quality of this
approximation could be measured by the closeness of the transfer functions, i.e.

‖H(s) − Ĥ(s)‖ < ε

for a given accuracy ε and a suitable norm.
Discrete single-input-single-output (SISO) and multiple-input-multiple-output

(MIMO) dynamical systems arise quite frequently in varius fields of applications
in which the physical or technical systems are modelled by suitable systems of
differential or difference equations. For a simple example, consider the discretization
of the 1-D heat equation yt = yxx. It is well-known that a semi-discretization using
the method of lines can lead to stability problems if the discretization in space
is too fine. Hence, one often prefers a full discretization via a Crank-Nicolson
scheme which provides a discrete system. One could imagine a boundary time
dependent control which in our context would lead to single or double input, or
a distributed control which implies as many controls as states. Furthermore, the
measured state (or output) can be on one or both sides of the space domain but also
the temperature distribution on the whole domain can be interesting in the model.
For more challenging examples we refer for instance to Verlaan [19] or Lawless et
al. [12]. In all cases, modeling leads to systems with a very high–dimensional state
which makes model reduction an important and essential task.

Existing reduction methods can be divided into two groups. On the one hand,
there are truncation methods, using singular value decompositions to select the
important part of the system and neglecting the rest. A well-known method in
this group is balanced truncation (see e.g. Mullis/Roberts [16] or Moore [15]).
The advantage of this technique is that it preserves stability and that global error
bounds can be derived. The complexity of the computation however is of order
N3. Therefore the method is by far too expensive for very large systems. New
approaches try to approximately compute the transformation matrix with lower
costs (see for example [5], [4], [17] and references therein), but then the global error
bounds are lost. On the other hand, we have Krylov-interpolation based methods
which can handle large dimensions in the computation of the reduced system, but
often cannot guarantee the preservation of stability and do not have computable
global error bounds. There are also methods, which are a combination of these two
approximation methods. A recent and rather complete study of model reduction
techniques with an emphasis on Krylov and SVD-Krylov methods can be found in
[1] and references therein.

In this paper we will focus on the question ”Which reduced order system mini-
mizes the approximation error H − Ĥ in an appropriate measure?” Here we inves-
tigate this problem taking the h2-norm of the system as the measure. This norm
is defined as

||Σ||2h2
= ||H ||h2

=



 1

2π

2π∫

0

trace
(
H(eiw)∗H(eiw)

)
dw




1/2

(1.5)

(cf. [1]). We will show that a local minimizer for this problem satisfies certain
Hermite interpolation conditions. Hence, this method is an interpolation based
model reduction. We stress that although such methods are widely considered as
providing reduced systems with only a good local approximation around the a priori
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chosen interpolation points, here we are aiming for an optimal approximation in
the h2-norm. The crucial point here is the correct choice of the interpolation data.
Similar ideas have been developed also for SISO continuous (see [10]) and MIMO
continuous systems (see [20], [2]).

The paper is organized as follows. In Section 2 we will give a simple proof for a
useful alternative expression of the h2-norm which was also presented (and proven
differently) in [1]. This formula will be used in Section 3 to formulate interpo-
lation based necessary optimality conditions for the minimization problem stated
above. Furthermore, other necessary conditions will be discussed in this section.
Initially, we will prove the so-called Wilson conditions which are due to Wilson
[22] who stated (and proved) them only for continuous systems. We will show the
equivalence of Wilson’s conditions to our new interpolation based ones as well as to
the conditions of Hyland and Bernstein [11]. Similar equivalence proofs for SISO
continuous systems have been given by Gugercin, Antoulas and Beattie [10]. In
Section 4 we will briefly review some ideas of interpolation and tangential interpo-
lation for fixed interpolation data. Based on these ideas, a numerical algorithm,
MIRIAm (MIMO Iterative Rational Interpolation Algorithm), will be presented.
We illustrate its efficiency on two numerical examples.

2. h2-norm for discrete systems

Throughout the paper we will assume for ease of presentation that the system
matrix A has N pairwise distinct eigenvalues λ1, . . . , λN which will be referred to
as (simple) poles of the system. The results presented can be extended to multiple
poles (similar to those for continuous systems, cf. [20]) but the formulas become
rather complex.

2.1. Properties of transfer functions. Without loss of generality we assume
that A is in diagonal form A = diag(λ1, . . . , λN ) where λi 6= λj for i 6= j. Otherwise,
a state space transformation x = Sx̃ where the columns of S are the eigenvectors
of A yield an equivalent system with Ã = S−1AS, B̃ = S−1B and C̃ = CS where
Ã is diagonal. We denote

B = (bij)i,j = [b∗1 . . . b∗N ]∗, C = (cij)i,j = [c1 . . . cN ],(2.1)

with row vectors bk = [bk1 . . . bkm] and column vectors ck = [c1k . . . cpk]T for
k = 1, . . . , n. Note that column vector Bel ∈ CN represents the l-th input for
l = 1, . . . , m and row vector eT

q C ∈ CN represents the q-th output for q = 1, . . . , p
of the system, where el denotes the l-th unit vector. The transfer function H is
a (p × m)-dimensional matrix-valued function with components Hql, l = 1, . . . , m,
q = 1, . . . , p:

H(s) =




H11(s) . . . H1m(s)

. . .
. . . . . .

Hp1(s) . . . Hpm(s)



 , Hql(s) = eT
q C(sIN − A)−1Bel,(2.2)

and each Hql can be interpreted as a SISO transfer function with input Bel and out-
put eT

q C. The numbers λk, k = 1, . . . , N , are called poles of the transfer function.
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By a partial fraction expansion of each Hql, we obtain

Hql(s) =
n∑

k=1

φql
k

s − λk
.(2.3)

Comparison of coefficients in (2.2) with those in (2.3) yields

φql
k = cqkbkl, l = 1, . . . , m, q = 1, . . . , p, k = 1, . . . , N.(2.4)

Remark 2.1. We note that for MIMO systems with p > 1 or m > 1 some φql
k can be

zero in each component Hql whereas for SISO systems all φk := φ11
k , k = 1, . . . , N ,

are nonzero. In this case, φk is the residue of H in the pole λk denoted by
Res(H, λk). It is well-known that a SISO system can be written in a canonical
form such that A = diag(λ1, . . . , λN ) is diagonal and B = (1, . . . , 1)∗ ∈ CN . In this
canonical form, we have Ck = φk.

2.2. h2-norm. Before stating the main result, we will give some auxiliary results
which will be used later in the proof. By substituting exp(iw) 7→ z in (1.5), the
h2-norm can be written as a complex line integral as follows

||Σ||2h2
=

1

2πi

∫

γ

1

z
trace

(
H
( 1

z∗

)∗
H(z)

)
dz(2.5)

where γ(t) := exp(it), t ∈ [0, 2π], is a parameterization of the unit cycle. This
integral will be calculated via the well-known residue theorem using the following
auxiliary result (cf, e.g. [7]) for calculating residues at simples poles.

Proposition 2.2. Let H be a meromorphic complex function and λ be a simple
pole of H with residue φ. Let furthermore G be a complex function which is
holomorphic in λ. Then, we have Res(H · G, λ) = Res(H, λ)G(λ) = φG(λ).

The following reformulation of ||Σ||h2
is obvious.

Lemma 2.3.

||Σ||2h2
= ||H ||2h2

=

m∑

l=1

p∑

q=1

||Hql||2h2
.(2.6)

We are now ready to state the main result of this section.

Lemma 2.4. Given a stable system Σ where A is diagonal with pairwise distinct
eigenvalues λ1, . . . , λN . Let B and C be partitioned as in (2.1). Then the h2-norm
of Σ is given by

||Σ||2h2
=

N∑

k=1

1

λ∗
k

trace

(
H

(
1

λ∗
k

)
b∗kc∗k

)
(2.7)

Proof. Consider first the SISO case. Then (2.5) simplifies to

||Σ||2h2
=

1

2πi

∫

γ

1

z
H
( 1

z∗

)∗
H(z)dz
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We will first show that G(z) := H(1/z∗)∗/z is well-defined and even holomorphic
for all z ∈ D := {z ∈ C : |z| < 1}. For z ∈ D we have

G(z) =
1

z
H
( 1

z∗

)∗
=

1

z

N∑

k=1

φ∗
k

1
1
z − λ∗

k

=

N∑

j=k

φ∗
k

1

1 − zλ∗
k

with 1 − zλ∗
k 6= 0 for all z ∈ D due to λ∗

k ∈ D. Hence, G is holomorphic for |z| < 1
and the poles of F (z) := G(z)H(z) in D are the poles of H (which, due to stability,
are all in D). Finally, from the residue theorem and Proposition 2.2 we conclude

||Σ||2h2
=

∑

λ pole of F in D

Res(F, λ) =

N∑

k=1

Res(F, λk)

=
N∑

k=1

Res(H, λk)G(λk) =
N∑

k=1

φk
1

λk
H
( 1

λ∗
k

)∗

=

N∑

k=1

φ∗
k

1

λ∗
k

H
( 1

λ∗
k

)

(2.8)

The last equality follows from the fact that the norm is a real number and hence we
have || · || = || · ||∗. This proves the SISO case in view of (2.4). For MIMO systems,
we will use this formula for each Hql which can be interpreted as a SISO transfer

function. It is important to note that although some φql
k can be zero, the h2-norm

formula remains correct for each component Hql. The corresponding summands in
the last expression in (2.8) vanish. Hence, (2.6) and (2.8) yield

||Σ||2h2
=

m∑

l=1

p∑

q=1

||Hql||2h2
=

m∑

l=1

p∑

q=1

N∑

k=1

(
φql

k

)∗ 1

λ∗
k

Hql

( 1

λ∗
k

)

which, together with (2.4), can be written as (2.7). �

The quantities 1
λ∗

k

are called mirror images of the poles of the system. They play

an important role in h2-optimal model reduction. The new expression (2.7) for the
h2-norm was first obtained by Antoulas [1]. We presented a new proof based on the
residue theorem. As mentioned above, this result can be generalized to multiple
poles (see [20] for continuous systems). Using Lemma 2.4 we can now easily prove
the following result on the h2-norm of the error system.

Lemma 2.5. Let Σ = (A, B, C) and Σ̂ = (Â, B̂, Ĉ) be state space representations
of the original and reduced systems, respectively. Assume without loss of generality

that the state matrices A and Â are diagonal. Let H and Ĥ be the corresponding
transfer functions. Then the h2-norm of the error system, denoted by J can be
represented by

J = ‖H − Ĥ‖2
h2

=
N∑

j=1

(
1

λ∗
j

trace
([

H
(

1
λ∗

j

)
− Ĥ

(
1

λ∗
j

)]
b∗jc

∗
j

))

+
n∑

j=1

(
1

λ̂∗
j

trace

([
Ĥ

(
1

λ̂∗
j

)
− H

(
1

λ̂∗
j

)]
b̂∗j ĉ

∗
j

))(2.9)

where 1
λ∗

k

, 1
λ̂∗

k

are the mirror images of the poles of Σ and Σ̂, respectively.



6 A. BUNSE-GERSTNER, D. KUBALIŃSKA, G. VOSSEN, AND D. WILCZEK

Proof. The system matrices of the error system Σe are given by

Ae =

(
A 0

0 Â

)
Be =

(
B

B̂

)
Ce =

(
C − Ĉ

)
(2.10)

with transfer function He = H − Ĥ . As Ae is also diagonal, the poles of Σe are

λ1, . . . , λN ,−λ̂1, . . . ,−λ̂n. Hence, using formula (2.7) directly yields (2.9). �

3. h2 optimal model reduction for MIMO systems

Searching for the global minimum is too hard a task even for SISO systems;
therefore here the aim is to find reduced order systems, which satisfy first order
necessary optimality conditions. For notational convenience, we just use the hat
superscript for such candidates.

After formulating the minimization problem, we will give three different types
of necessary conditions in this section. Initially, we will present and prove new
interpolation based conditions for discrete h2-optimal model reduction. Then we
will prove Wilson’s conditions (cf. [22]) which has not yet been proven for discrete
systems. For the sake of completeness, we will finally cite the conditions of Hyland
and Bernstein. In the last paragraph we will then prove the equivalence of all three
conditions. For continuous SISO systems the equivalence of the corresponding con-
ditions is proven in [10].

3.1. Problem statement. Given a large order system (1.1) of dimension N . Con-
struct a reduced order system (1.3) of a fixed dimension n which minimizes the
h2-norm of the error system. Using (2.9), this means that we consider the following
minimization problem:

(3.1) Minimize J (ṽ) = ‖H − Ĥ‖2
h2

with optimization variable ṽ = (<vT ,=vT )T ∈ R
2(n+nm+pn), where

v = (λ̂1, . . . , λ̂n, b̂1, . . . , b̂n, ĉT
1 , . . . , ĉT

n )T ,

with row vectors b̂k = [b̂k1 . . . b̂km] and column vectors ĉk = [ĉ1k . . . ĉpk] for k =
1, . . . , n. Here < and = denote the real and imaginary part, respectively. This is
an unconstrained, smooth optimization problem with respect to ṽ.

3.2. First order necessary optimality conditions.

3.2.1. Interpolation conditions. We obtain the following results on the interpolation
data satisfying first order necessary conditions:

Theorem 3.1. Given the original large order system of the form (1.1) with trans-

fer function H(s). Let Ĥ(s) be the transfer function of the reduced order system

(1.3) given in an eigenvector basis Â = diag
(
λ̂1, . . . , λ̂n

)
, B̂ =

[
b̂∗1, . . . , b̂

∗
n

]∗
and

ĉ = [ĉ1, . . . , ĉn]. If Ĥ(s) solves the optimal h2-problem (3.1) then the following



h2-NORM OPTIMAL MODEL REDUCTION FOR LARGE-SCALE SYSTEMS 7

conditions are satisfied

ĉ∗jH

(
1

λ̂∗
j

)
= ĉ∗j Ĥ

(
1

λ̂∗
j

)
,

H

(
1

λ̂∗
j

)
b̂∗j = Ĥ

(
1

λ̂∗
j

)
b̂∗j ,

ĉ∗jH
′

(
1

λ̂∗
j

)
b̂∗j = ĉ∗j Ĥ

′

(
1

λ̂∗
j

)
b̂∗j ,






for j = 1, . . . , n,(3.2)

where 1

λ̂j∗
are the mirror images of the poles of Σ̂, b̂j is the jth row of B̂ and ĉj is

the jth column of Ĉ

For the proof of this theorem the following lemma will be helpful. It can be
proven by direct calculations.

Lemma 3.2. (i) For q = 1, . . . , n and l = 1, . . . , m we have

∂H
(

1
λ∗

j

)

∂<(b̂ql)
=

∂H
(

1

λ̂∗
j

)

∂<(b̂ql)
=

∂H
(

1
λ∗

j

)

∂=(b̂ql)
=

∂H
(

1

λ̂∗
j

)

∂=(b̂ql)
= 0 ,(3.3)

∂Ĥ
(

1
λ∗

j

)

∂<(b̂ql)
= −i

∂Ĥ
(

1
λ∗

j

)

∂=(b̂ql)
=

ĉqe
∗
l λ

∗
j

1 − λ∗
j λ̂q

and(3.4)

∂Ĥ
(

1
λ̂∗

j

)

∂<(b̂ql)
= −i

∂Ĥ
(

1
λ̂∗

j

)

∂=(b̂ql)
=

ĉqe
∗
l λ̂

∗
j

1 − λ̂∗
j λ̂q

.(3.5)

(ii) For q = 1, . . . , n and l = 1, . . . , p we have

∂H
(

1
λ∗

j

)

∂<(ĉlq)
=

∂H
(

1
λ̂∗

j

)

∂<(ĉlq)
=

∂H
(

1
λ∗

j

)

∂=(ĉlq)
=

∂H
(

1
λ̂∗

j

)

∂=(ĉlq)
= 0 ,(3.6)

∂Ĥ
(

1
λ∗

j

)

∂<(ĉlq)
= −i

∂Ĥ
(

1
λ∗

j

)

∂=(ĉlq)
=

elb̂qλ
∗
j

1 − λ∗
j λ̂q

and(3.7)

∂Ĥ
(

1

λ̂∗
j

)

∂<(ĉlq)
= −i

∂Ĥ
(

1

λ̂∗
j

)

∂=(ĉlq)
=

elb̂qλ̂
∗
j

1 − λ̂∗
j λ̂q

.(3.8)

(iii) For q = 1, . . . , n we have

∂H
(

1
λ∗

j

)

∂<(λ̂q)
=

∂H
(

1
λ∗

j

)

∂=(λ̂q)
= 0 ,(3.9)

∂Ĥ
(

1
λ∗

j

)

∂<(λ̂q)
= −i

∂Ĥ
(

1
λ∗

j

)

∂=(λ̂q)
=

ĉq b̂q

(
λ∗

j

)2
(
1 − λ̂qλ∗

j

)2 ,(3.10)
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∂Ĥ
(

1

λ̂∗
j

)

∂<(λ̂q)
= −i

∂Ĥ
(

1

λ̂∗
j

)

∂=(λ̂q)
=






ĉq b̂q(λ̂∗
j )

2

(1−λ̂qλ̂∗
j )

2 for j 6= q

−1

(λ̂∗
q)

2 Ĥ ′

(
1

λ̂∗
q

)
+

ĉq b̂q(λ̂∗
q)

2

(1−λ̂q λ̂∗
q)

2 for j = q
(3.11)

∂H
(

1
λ̂∗

j

)

∂<(λ̂q)
= −i

∂H
(

1
λ̂∗

j

)

∂=(λ̂q)
=






0 for j 6= q

−1

(λ̂∗
q)

2 H ′

(
1

λ̂∗
q

)
for j = q

(3.12)

Proof. (Theorem 3.1): In view of Lemma 3.2 and Equations (3.3)-(3.5), differenti-

ating J with respect to <(b̂ql) yields

∂J

∂<(b̂ql)
=trace

{
N∑

j=1

−ĉqe∗
l

1−λ∗
j
λ̂q

b∗jc
∗
j +

n∑
j=1

ĉqe∗
l

1−λ̂∗
j
λ̂q

b̂∗j ĉ
∗
j + 1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

}

=trace

{[(
N∑

j=1

−cjbj

1−λj λ̂∗
q

+
n∑

j=1

ĉj b̂j

1−λ̂j λ̂∗
q

)
elĉ

∗
q

]∗
+ 1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

}

=trace

{[
1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

]∗
+ 1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

}

=2<
(

trace

{
1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

})

Analogously, we obtain that

∂J
∂=(b̂ql)

=−2=
(

trace

{
1

λ̂∗
q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
elĉ

∗
q

})

Thus, due to stability of the reduced order system we have

∂J

∂<(b̂ql)
= 0 and ∂J

∂=(b̂ql)
= 0⇔ trace

{[
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

)]
elĉ

∗
q

}
= 0(3.13)

The first condition of Equation (3.2) follows directly from the right hand side of
Equivalence (3.13) by substituting q 7→ j.

Using Equations (3.6)-(3.8), we show that the following holds:

∂J
∂<(ĉlq) = trace

{
N∑

j=1

−e∗
l b̂q

1−λ∗
j
λ̂q

b∗jc
∗
j +

n∑
j=1

e∗
l b̂q

1−λ̂∗
j
λ̂q

b̂∗j ĉ
∗
j + 1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

}

= trace

{[
N∑

j=1

−cjbj

1−λj λ̂∗
q

b̂∗qe
∗
l +

n∑
j=1

ĉj b̂j

1−λ̂j λ̂∗
q

b̂∗qe
∗
l

]∗
+ 1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

}

= trace

{[
1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

]∗
+ 1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

}

= 2<
(

trace

{
1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

})

In a similar way, we prove that

∂J
∂=(ĉlq) =−2=

(
trace

{
1

λ̂q

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗qe

∗
l

})

Therefore as for (3.13) we get

∂J
∂<(ĉlq)

= 0 and
∂J

∂=(ĉlq)
= 0 ⇔ trace

{[
H(−λ̂∗

q) − Ĥ(−λ̂∗
q)
]
b̂∗qel

}
= 0(3.14)
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The right hand side of Equivalence (3.14) directly leads to the second part of Con-
ditions (3.2).

For the third part, we first note that the following equalities hold

N∑
j=1

−cjbjλj(λ̂∗
q)

2

(1−λ̂∗
qλj)

2 = 1
λ̂∗

q

H ′

(
1

λ̂∗
q

)
+ H

(
1

λ̂∗
q

)

n∑
j=1

−ĉj b̂jλj(λ̂∗
q)

2

(1−λ̂∗
q λ̂j)

2 = 1

λ̂∗
q

Ĥ ′

(
1

λ̂∗
q

)
+ Ĥ

(
1

λ̂∗
q

)(3.15)

Equations (3.9)-(3.12) lead to

∂J

∂<(λ̂q)
= trace

{
N∑

j=1

−1
λ∗

j

ĉq b̂q(λ∗
j )

2

(1−λ̂∗
q λ∗

j )
2 b∗jc

∗
j +

n∑
j=1

1

λ̂∗
j

ĉq b̂q(λ̂∗
j )

2

(1−λ̂qλ̂∗
j )

2 b̂∗j ĉ
∗
j

+ 1

λ̂∗
q

(
−1

(λ̂∗
q)

2 Ĥ ′

(
1

λ̂∗
q

)
+ 1

(λ̂∗
q)

2 H ′

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

− 1

(λ̂∗
q)

2

(
Ĥ

(
1

λ̂∗
q

)
− H

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

}

Thus, from (3.15) we obtain

∂J

∂<(λ̂q)
=trace

{[
1

(λ̂∗
q)

2

(
1

λ̂∗
q

H ′

(
1

λ̂∗
q

)
+ H

(
1

λ̂∗
q

)
− 1

λ̂∗
q

Ĥ ′

(
1

λ̂∗
q

)
− Ĥ

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

]∗

+ 1

(λ̂∗
q)

2

(
− 1

λ̂∗
q

Ĥ ′

(
1

λ̂∗
q

)
+ 1

λ̂∗
q

H ′

(
1

λ̂∗
q

)
− Ĥ

(
1

λ̂∗
q

)
+ H

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

}

=2<
(

trace

{
1

(λ̂∗
q)

3

(
H ′

(
1

λ̂∗
q

)
− Ĥ ′

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

})

+2<
(

trace

{
1

(λ̂∗
q)

2

(
H

(
1

λ̂∗
q

)
− Ĥ

(
1

λ̂∗
q

))
b̂∗q

︸ ︷︷ ︸
=0

ĉ∗q

})

where the second summand vanishes due to the already proven first part of Condi-
tions (3.2). Analogously we obtain that

∂J

∂=(λ̂q)
=−2=

(
trace

{
1

(λ̂∗
q)

3

(
H ′

(
1

λ̂∗
q

)
− Ĥ ′

(
1

λ̂∗
q

))
b̂∗q ĉ

∗
q

})
(3.16)

From the considerations above it is easy to see that

∂J

∂<(λ̂q)
= 0 and ∂J

∂=(λ̂q)
= 0 ⇔ trace

{[
H

′

(−λ̂∗
q) − Ĥ

′

(−λ̂∗
q)
]
b̂∗q ĉ

∗
q

}
= 0

(3.17)

Conditions (3.2) directly follow from the right hand sides of Equivalences (3.17).
�

Expression (2.9) for the h2-norm of the error system together with Conditions
(3.2) directly implies the following result for the h2-error of an optimal reduced
system.

Remark 3.3. Suppose the system matrices Â, B̂ and Ĉ solve the h2-norm optimal
model reduction problem (3.1). Then the h2-norm of the error system is given by

‖H − Ĥ‖2
h2

=

N∑

j=1

(
1

λ∗
j

trace
([

H
(

1
λ∗

j

)
− Ĥ

(
1

λ∗
j

)]
b∗jc

∗
j

))
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3.2.2. Wilson conditions. The Wilson optimality conditions for discrete systems
involve the gramians of the error system which can be defined via discrete Sylvester
equations also called Stein equations. Therefore it is necessary to introduce some
notations and relations. Consider the two Stein equations of the discrete error
system (2.10)

AePeA
∗
e + B̃e = Pe with B̃e := BeB

∗
e(3.18)

A∗
eQeAe + C̃e = Qe with C̃e := C∗

e Ce(3.19)

where the symmetric matrices Pe and Qe are the reachability and observability
gramians of the error system, respectively. Partition Pe and Qe as

Pe =

[
P11 P12

P21 P22

]
Qe =

[
Q11 Q12

Q21 Q22

]
,

where P11,Q11 ∈ CN,N ;P12,P∗
21,Q12,Q∗

21 ∈ CN,n and P22,Q22 ∈ Cn,n. The full-
rank submatrices P11,Q11,P22 and Q22 solve the Stein equations

AP11A
∗ + BB∗ = P11

A∗Q11A + C∗C = Q11

ÂP22Â
∗ + B̂B̂∗ = P22(3.20)

Â∗Q22Â + Ĉ∗Ĉ = Q22 .(3.21)

Hence, they are the gramians of the original and the reduced system

P11 = P Q11 = Q P22 = P̂ Q22 = Q̂ .

As gramians are symmetric we obtain P12 = P∗
21 and Q12 = Q∗

21 and both matrices
are solutions of the following Stein equations

AP12Â
∗ + BB̂∗ = P12(3.22)

A∗Q12Â − C∗Ĉ = Q12 .(3.23)

Finding an h2-norm optimal reduced model for a real system Σ requires to determine
the first derivatives of the error functional J (Â, B̂, Ĉ). In [1] it has been shown
that

J (Σ̂) = ||Σe||2h2
= trace [CePeC

∗
e ] = trace

[
PeC̃e

]
(3.24)

The derivatives of J with respect to the elements of Â, B̂ and Ĉ namely â, b̂ and
ĉ result in the following necessary conditions in [22] given for continuous systems.

Theorem 3.4 (Wilson Conditions for discrete systems). Let Σ̂ minimize (3.24).
Then the following holds

Q∗
12AP12 + Q22ÂP22 = 0(3.25)

Q∗
12B + Q22B̂ = 0(3.26)

ĈP22 − CP12 = 0 .(3.27)
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Proof. The first part of the following proof follows partly the ideas in Wilsons proof
for continuous systems. Differentiate Equation (3.18) with respect to the elements

of Â and B̂. Let β be any parameter appearing in the elements of these matrices

∂

∂β

(
AePeA

∗
e + B̃e − Pe

)
= 0 .

It follows that

∂Ae

∂β
PeA

∗
e + Ae

∂Pe

∂β
A∗

e + AePe
∂A∗

e

∂β
+

∂B̃e

∂β
− ∂Pe

∂β
= 0 .

Postmultiplying by Qe and taking the trace we get

trace

(
∂Ae

∂β
PeA

∗
eQe

)
+ trace

(
∂A∗

e

∂β
QeAePe

)
+ trace

(
∂B̃e

∂β
Qe

)
=

trace

(
∂Pe

∂β
Qe

)
− trace

(
∂Pe

∂β
A∗

eQeAe

)
.(3.28)

Differentiating the error functional (3.24) with respect to the elements of Â, B̂ and

Ĉ yields

∂

∂β
J (Σ̂) =

∂

∂β
trace

(
PeC̃e

)
= trace

(
∂Pe

∂β
C̃e

)
+ trace

(
Pe

∂C̃e

∂β

)
.

Together with Equation (3.19) and (3.28) it follows that

∂

∂β
J (Σ̂) = trace

(
∂Pe

∂β
Qe

)
− trace

(
∂Pe

∂β
A∗

eQeAe

)
+ trace

(
Pe

∂C̃e

∂β

)

= trace

(
∂Ae

∂β
PeA

∗
eQe

)
+ trace

(
∂A∗

e

∂β
QeAePe

)
+

+ trace

(
∂B̃e

∂β
Qe

)
+ trace

(
∂C̃e

∂β
Pe

)
.

The first two summands of the last equation are equal if the system is real. Because
of the derivatives of A∗

e, B̃e and C̃e with respect to β the functional J is not complex
differentiable. Thus we have to devide the variable β into its real and imaginary
part. For the (i, j)-th element âij of Â we get

∂Â

∂<{âij}
=

∂Â∗

∂<{âij}
=

{
1 in the (i, j)-th element
0 elsewhere

∂Â

∂={âij}
= − ∂Â∗

∂={âij}
=

{
i in the (i, j)-th element
0 elsewhere.
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Hence, we have the following equations

∂J
∂<{âij}

= trace

([
0 0

0 ∂Â
∂<{âij}

] [
P11 P12

P∗
12 P22

] [
A∗ 0

0 Â∗

] [
Q11 Q12

Q∗
12 Q22

])

+ trace

([
0 0

0 ∂Â
∂<{âij}

][
Q11 Q12

Q∗
12 Q22

] [
A 0

0 Â

] [
P11 P12

P∗
12 P22

])

= 2 trace

(
∂Â

∂<{âij}
<{Q∗

12AP12 + Q22ÂP22}
)

∂J
∂={âij}

= 2 trace

(
i

∂Â

∂={âij}
={Q∗

12AP12 + Q22ÂP22}
)

,

which gives (3.25) by considering ∂J
∂âij

= 0 for all elements âij of Â. The other

two necessary conditions (3.26) and (3.27) can be proven in a similar manner by

computing the derivatives with respect to the elements of B̃e and C̃e. �

Remark 3.5. Generally reduced order models are constructed by an oblique pro-
jection Π = V Z∗ with V, Z ∈ CN,n and Z∗V = In, where In is the n × n identity
matrix.

Σ̂ =

(
Â B̂

Ĉ 0

)
=

(
Z∗AV Z∗B
CV 0

)
.(3.29)

The projection Π could be deduced directly from the Wilson conditions (3.25)-

(3.27). For instance (3.25) yields Â = −Q−1
22 Q∗

12AP12P−1
22 and we get Z :=

−Q12Q−1
22 and V := P12P−1

22 .

3.2.3. Hyland-Bernstein conditions. Similar to the Wilson conditions we provide
the Hyland-Bernstein conditions [11] by means of the gramians and the Stein equa-
tions. The reduced order model could in principle be constructed by an oblique
projection Π = V Z∗ as demonstrated in (3.29).

Theorem 3.6 (Hyland-Bernstein Conditions). Suppose the system matrices Â,

B̂ and Ĉ solve the h2-norm optimal model reduction problem (3.1). Then there
exist two nonnegative-definite matrices P ,Q ∈ CN,N and a positive-definite matrix
M ∈ Cn,n such that

PQ = V MZ∗(3.30)

rank(P) = rank(Q) = rank(PQ) .(3.31)

The reduced model is constructed equivalently to (3.29) and furthermore the follow-
ing two conditions are satisfied

Π [APA∗ + BB∗ − P ] = 0

[A∗QA + C∗C −Q] Π = 0

with the projection matrix Π = V Z∗.



h2-NORM OPTIMAL MODEL REDUCTION FOR LARGE-SCALE SYSTEMS 13

3.3. Equivalence of first order necessary conditions. For SISO continuous
systems with simple poles it has been shown [10] that the Lyapunov based first
order necessary conditions of Hyland-Bernstein [11] and Wilson [22] are equivalent
to some interpolation conditions [14] which are similar to the first order necessary
Conditions (3.2). We proved [21] that the equivalences are also true for continu-
ous MIMO systems and multiple poles. This leads to similar but more complex
interpolation conditions.

We point out that although the first order necessary conditions are equivalent
computing systems satisfying these conditions is to costly for large systems. The
computational costs are much smaller in case of interpolation based techniques.
Methods presented in [11] and [23] locate solutions that satisfy first order necessary
conditions, however they require solving a series of large Lyapunov equations and
therefore are not applicable for high dimensional systems. In Section 4 we present
an effective numerical algorithm which produces a reduced order model that satis-
fies the tangential interpolation based first order necessary Conditions (3.2) and is
suitable for very large systems.

3.3.1. Equivalence between Interpolation and Wilson conditions. The equivalence
between the interpolation based and Wilson conditions will be verified by a proper
analysis of the projection Π = V Z∗. The following two lemmas reveal the structur
of the coloumnspan of the projection matrices V and Z. The intermediate result
leads to two further lemmas which finally yield the interpolation condition.

Lemma 3.7. The following statements are equivalent.

(i) V = P12P−1
22

(ii) RanV = colspan{(−A + 1

λ̂∗
1

I)−1Bb̂∗1, . . . , (−A + 1

λ̂∗
n

I)−1Bb̂∗n}

Proof. Without loss of generality we assume that Â = diag[λ̂1, . . . , λ̂n]. We refor-
mulate Equation (3.22)



a11 . . . a1N

...
. . .

...
aN1 . . . aNN








p11 . . . p1n

...
. . .

...
pN1 . . . pNn








λ̂∗

1

. . .

λ̂∗
n



+




b1

...
bN




[
b̂∗1 . . . b̂∗n

]

=




p11 . . . p1n

...
. . .

...
pN1 . . . pNn



 .

where bk is the k-th row of B with k = 1, . . . , N ; b̂l is the l-th row of B̂ with
l = 1, . . . , n and pkl is the k, l-th component of P12. Splitting this into single
equations yields the following structure of n blocks each with N equations






(a11p11 + a12p21 + . . . + a1NpN1) λ̂∗
1 + b1b̂

∗
1 = p11

(a21p11 + a22p21 + . . . + a2NpN1) λ̂∗
1 + b2b̂

∗
1 = p21

...
...

...

(aN1p11 + aN2p21 + . . . + aNNpN1) λ̂∗
1 + bN b̂∗1 = pN1





. . .
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. . .






(a11p1n + a12p2n + . . . + a1NpNn) λ̂∗
n + b1b̂

∗
n = p1n

(a21p1n + a22p2n + . . . + a2NpNn) λ̂∗
n + b2b̂

∗
r = p2r

...
...

...

(aN1p1n + aN2p2n + . . . + aNNpNn) λ̂∗
n + bN b̂∗n = pNn





.

Stating this in matrix form and under the assumption that (A − 1

λ̂∗
j

I) is invertible

for j = 1, . . . , n we can easily dissolve each equation with respect to the columns
pk of P12 (k = 1, . . . , n).

(A − 1

λ̂∗
1

I)λ̂∗
1p1 + Bb̂∗1 = 0

...

(A − 1
λ̂∗

n

I)λ̂∗
npn + Bb̂∗n = 0





=⇒






p1 = 1

λ̂∗
1

(−A + 1

λ̂∗
1

)−1Bb̂∗1
...

pn = 1
λ̂∗

n

(−A + 1
λ̂∗

n

)−1Bb̂∗n

Up to this point we just did simple algebraic reformulations. For the proof of
the implication (i) =⇒ (ii) the Wilson condition (3.27) is used. Recall that V :=
P12P−1

22 and P−1
22 has full-rank. Hence, it holds that the image of P12 ist a subset of

the image of P−1
22 and therefore is equal to the image of V which is an intersection

of both

RanV = RanP12 ∩ RanP−1
22 =

Ran P12⊆Ran P
−1

22

RanP12

= colspan{p1, . . . , pn}
= colspan{(−A + 1

λ̂∗
1

I)−1Bb̂∗1, . . . , (−A + 1
λ̂∗

n

I)−1Bb̂∗n} .

For the proof of the reverse implication (ii) =⇒ (i) we have to show that

Ran V = colspan{p1, . . . , pn} =⇒ V = P12P−1
22 .

If RanV = colspan{p1, . . . , pn}, then V = P12 ∗K where K ∈ Cn,n is a nonsingular
matrix. Premultiply Equation (3.22) by Z∗ yields

Z∗AP12Â
∗ + Z∗BB̂∗ = Z∗P12 .

Because V and Z describe an oblique projection we get the following results

Z∗V = In =⇒ Z∗P12 = K−1

Z∗AV = Â =⇒ Z∗AP12 = ÂK−1

Thus we obtain

ÂK−1Â∗ + B̂B̂∗ = K−1

which is indeed the Stein equation (3.20) for the reachability gramian of the reduced
system. Consequently K−1 = P22 which completes the proof. �

Equivalently the projection matrix Z could be determined with the following lemma.

Lemma 3.8. The following statements are equivalent.

(i) Z = −Q12Q−1
22

(ii) Ran Z∗ = rowspan{ĉ∗1C(−A + 1
λ̂∗
1

I)−1, . . . , ĉ∗nC(−A + 1
λ̂∗
n

I)−1}
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Proof. Analogues to the preceeding proof using (3.19) instead of (3.18) we get
similar expression for the columns of Q12 and therefore

RanZ = colspan{(−A∗ + 1
λ̂1

I)−1C∗ĉ1, . . . , (−A∗ + 1
λ̂n

I)−1C∗ĉn} .

On the other hand the equations above lead to Z = Q12L, where L ∈ Cn,n is a
nonsingular matrix. A similar discussion yields −L−1 = Q22. �

On basis of these results we could now infer the connection to the interpolation
condition. The following result was proven in [18]. We cite it here, as it will be a
crucial ingredient of our algorithm in the numerical section.

Lemma 3.9. Let V ∈ CN,n and Z ∈ CN,n be matrices of full rank n such that
Z∗V = In. Let σj ∈ C, `j ∈ C1×p and rl ∈ Cm×1 be given points and vectors,
respectively. If (σjI − A)−1Brj ∈ colspan(V ) and (σ∗

j I − A∗)−1C∗`j ∈ colspan(Z)
holds for j ∈ 1, . . . , n the following tangential Hermite interpolation conditions are
satisfied

H(σ∗
j )rj = Ĥ(σ∗

j )rj

`jH(σ∗
j ) = `jĤ(σ∗

j ) k = 1, 2, . . . , n

`jH
′(σ∗

j )rj = `jĤ
′(σ∗

j )rj

(3.32)

Hence, choosing σj = 1/λ̂∗
j , rj = b̂∗j and lj = ĉ∗j leads to the following result.

Lemma 3.10. Let V ∈ CN,n and Z ∈ CN,n be matrices of full rank n such that
Z∗V = In. If for all j ∈ 1, . . . , n

vj := (−A + 1

λ̂∗
j

I)−1Bb̂∗j ∈ colspan(V ) and

zj := (−A∗ + 1

λ̂j

I)−1C∗ĉj ∈ colspan(Z)

then the interpolation conditions (3.2) are satisfied.

The reverse direction of the preceeding lemma completes the equivalence proof
between the Wilson and the Interpolation conditions.

Lemma 3.11. Let Σ̂ be a reduced system which satisfies the interpolation con-
ditions (3.2). Σ̂ can always be derived from Σ by a projection Π = V Z∗ with
RanV =colspan{ṽ1, . . . , ṽn} and Ran Z =colspan{z̃1, . . . , z̃n} and

ṽj = (−A + 1

λ̂∗
j

I)−1Bb̂∗j

z̃j = (−A∗ + 1

λ̂j

I)−1C∗ĉj for j = 1, . . . , n .

Proof. The system Σ̂ is completely described by its matrix valued transfer function
Ĥ(s) = Ĉ(sIn− Â)−1B̂ and hence, under assumption that Â is diagonal, comprises
n(m + p + 1) specific elements, namely the entries of its system matrices. Thus the
interpolation conditions (3.2) supply n(m + p + 1) constraints which can be met
by the same number of restrictions imposed on the columnspaces of the projection
matrices V and Z. See also [13]. �

Summarize all previous results yields the following theorem.

Theorem 3.12. The necessary interpolation based Conditions (3.2) for simple
poles given in Theorem 3.1 are equivalent to the Wilson conditions (3.25) - (3.27)
presented in Theorem 3.4.
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3.3.2. Equivalence between Hyland-Bernstein and Wilson conditions. The idea for
the proof of the following theorem can be found in [10] for continuous systems.

Theorem 3.13. Let P, Q and M be symmetric positive-definit matrices. P22,
Q22, P12 and Q12 are solutions of the Equations (3.20) - (3.23), respectively. Then
the following necessary conditions of Wilson (Theorem 3.4) and Hyland-Bernstein
(Theorem 3.6) are equivalent.

(i) V = P12P−1
22 Z = −Q12Q−1

22

(ii)
Π [APA∗ + BB∗ − P ] = 0 PQ = V MZ∗

[A∗QA + C∗C −Q] Π = 0 rank(P) = rank(Q) = rank(PQ)

Proof. First we will proof the direction (ii) =⇒ (i). In [11] it was already shown
that P = ΠP for Π and P as in the Hyland-Bernstein conditions. It follows

Π [AΠPA∗ + BB∗ − ΠP ] = V [Z∗AV Z∗PA∗ + Z∗BB∗ − Z∗P ] = 0 .

Because V is a full-rank matrix the equation above leads to

ÂZ∗PA∗ + B̂B∗ − Z∗P = 0 .

Transposing this equation yields to equation (3.22)

APZÂ∗ + BB̂∗ − PZ = 0 .

Therefore PZ = P12. Together with P = V Z∗P and a premultiplication by Z∗ we
get

Z∗AV Z∗PZÂ∗ + Z∗BB̂∗ − Z∗PZ = 0

ÂZ∗PZÂ∗ + B̂B̂∗ − Z∗PZ = 0

which is identical to the Lyapunov Equation (3.20). Since Z∗PZ = Z∗P12 = P22 we
get Z∗P12P−1

22 = In = Z∗V and finally V = P12P−1
22 . Similar arguments together

with Q = QΠ yields Z = −Q12Q−1
22 .

For the proof of the reverse implication (i) =⇒ (ii) we insert P12 = V P22 in
Equation (3.22).

AV P22V
∗A∗Z + BB∗Z − V P22 = 0

We transpose this equation and premultiply with V

V Z∗ [AV P22V
∗A∗ + BB∗ − V P22V

∗] = 0 .

Now we could define P := V P22V
∗ and obtain

Π [APA∗ + BB∗ − P ] = 0 .

Analogically for Q12 = −ZQ−1
22 we define Q := ZQ22Z

∗ and therefore

[A∗QA + CC∗ −Q] Π = 0 .

As long as V , Z and the gramians are full-rank matrices condition (3.31) holds by
construction. Moreover it is still left to proof condition (3.30)

PQ = V P22V
∗ZQ22Z

∗ = V P22Q22Z
∗ .

The gramians P and Q are positive definite and consequently also M is a positive
definite matrix. �
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It is worth to note that Theorem 3.12 and Theorem 3.13 directly imply the
following result.

Remark 3.14. All three necessary conditions given in this section are equivalent.

4. Algorithm and numerical examples

4.1. MIRIAm, an efficient numerical algorithm. As seen in (3.2), the reduced
system is characterized by satisfying certain tangential interpolation condition. Up
to a constant these conditions involve the moments of H and Ĥ at the mirror
images 1/λ̂∗

j . It is well known that computing these moments explicitly leads to
numerical instabilities, especially for large dimensions. The remedy for this problem
are Krylov subspace based techniques that impose tangential moment matching
conditions without computing the moments explicitly (cf., [9], [24],[25] for SISO
systems and [8], [18] for MIMO systems). However, the interpolation data, i.e.,
the interpolation points and the directions of the tangential interpolation, are a
priori unknown. Hence, we will now describe an iterative algorithm which in each
iteration step derives a reduced system for a fixed set of interpolation data.

Let σ = {σ1, . . . , σn} be a set of interpolation points and let ` = {`1, . . . , `n} and
r = {r1, . . . , rn} be sets of left and right tangential directions, respectively. Let the

columns of V = [v1, . . . , vn] and Z̃ = [z̃1, . . . , z̃n] be

vj = (−A + σ∗
j I)−1Br∗j(4.1)

z̃j = (−A∗ + σjI)−1C∗`j .(4.2)

for j = 1, . . . , n and choose Z := Z̃(Z̃∗V )−∗. Then, due to Lemma 3.9 the projec-

tion Π = V Z∗ leads to a reduced order system Σ̂ with Â = Z∗AV , B̂ = Z∗B
and Ĉ = CV satisfying the tangential interpolation conditions (3.32) for the fixed
interpolation data σ, l and r. For the next iteration step, let us take the mirror
images of the poles of Â as new interpolation points (i.e. σnext = eig(Â)−∗ ),

the rows of Ĉ∗ as left tangential directions (i.e. `next
j = Ĉ∗

j ) and the columns of

B̂∗ as right tangential directions (i.e. rnext
j = B̂∗

j ), where Â, B̂ and Ĉ are the

system matrices of Σ̂ represented in the eigenvector basis. Now let f(Π) denote
the projection for this new set of interpolation points σnext and new tangential
directions `next and rnext. Note that a search for a reduced order system satisfying
the first order necessary h2-optimality Conditions (3.2) can be formulated as the
search for a fix point of the function f(Π) = Π. A MIMO Iterative Rational
Interpolation Algorithm (MIRIAm) presented below, if it converges, solves this
problem. The algorithm is a generalization of Iterative Rational Krylov Algorithm
[10], applicable only for SISO systems, to the MIMO case.

A MIMO Iterative Rational Interpolation Algorithm (MIRIAm)

(1) Select an initial set of shifts σ = {σ1, . . . , σn}
(2) Select an initial set of directions ` = {`1, . . . , `n} and rj = {r1, . . . , rn}
(3) while (not converged)

a) Compute V via (4.1)
b) Compute Z via (4.2)
c) Z = Z(Z∗V )−∗ to guarantee Z∗V = In

d) Â = Z∗AV, B̂ = Z∗B, Ĉ = CV



18 A. BUNSE-GERSTNER, D. KUBALIŃSKA, G. VOSSEN, AND D. WILCZEK

e) Compute the eigenvalue decomposition of Â = XΩX−1, where Ω =
diag(ω1, . . . , ωn)

f) Assign σj = 1/ω∗
j , `j = jth column of (ĈX)∗, rj = jth row of (X−1B̂)∗

4.2. Numerical examples. We demonstrate the performance of our algorithm,
MIRIAm, on two examples. For both examples we compute reduced order models
by our method and for comparison also by balanced truncation. We compare the
errors in each the h2-norm as well as in the h∞-norm., which is the norm used for
the error bound in balanced truncation.

For MIRIAm we use here the following four sets of interpolation data as starting
data:

(1) BTbased We first computed the reduced order models using balanced trun-
cation and then transforme the resulting system such that A is diagonal.
We then choose as starting interpolation points the mirror images of the

poles of this reduced system and its columns of B̂∗ and rows of Ĉ∗ as right
and left tangential directions, respectively.

(2) Ordered EV - We transform the original system such that A is diagonal
and its eigenvalues appear in descending order of magnitude. Let n be the
dimension of the reduced order system. We choose as starting interpolation
points the mirror images of the first n eigenvalues of A i.e. poles of the
system. We use the conjugate transposes of the first n rows of B and the
first n columns of C as right and left tangential directions, respectively.

(3) Rand-Complex - Interpolation points are randomly chosen complex points
lying outside the unit circle. Complex random vectors were chosen as left
and right tangential directions

(4) Rand-Real - Interpolation points are randomly chosen real points lying out-
side the interval [-1, 1], tangential directions are purely real and generated
randomly with values varying between -1 and 1.

The first set of interpolation data was chosen in order to investigate the possible
h2- improvement of results obtained by balanced truncation and the corresponding
changes of the h∞-error. From our extensive earlier experiments we learned that
eigenvalues of reduced systems received by balanced truncation or satisfying the first
order necessary h2-norm optimality conditions are often very good approximation
of eigenvalues of the original system lying closest to the unit circle. Therefore it
may seem possible to get a good approximation of the original system by computing
approximations to such eigenvalues and just do one interpolation with their mirror
images. We demontrate on the first example below that there are cases for which
choosing these specific mirror images, i.e. ”Ordered EV”, not necessarily leads to
good approximations nor does it improves the convergence of our method in such
cases.

Example 4.1. ISS (International Space Station)
This is a model of component 1r (Russian service module) of the International
Space Station. It has 270 states, 3 inputs and 3 outputs, i.e. N=270, m=p=3 (for
details see e.g. [3],[6] and references therein). The discrete system was obtained by
bilinear transformation of the continuous time system. The bilinear transformation
is defined by z = 1+s

1−s , and maps the open left-half of the complex plane onto the
inside of the unit disc, and the imaginary axis onto the unit circle.
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In this example the system is of the form

Σ :
xk+1 = Axk + Buk,
yk = Cxk + Duk,

where we have an additional direct feedthrough term Duk, which does not affect the
performance of model reduction techniques. The system matrices A, B, C and D
stem from matrices Ac, Bc, Cc, Dc of the original continuous system as follows:

A = (I + Ac)(I − Ac)
−1

B =
√

2(I − Ac)
−1Bc

C =
√

2Cc(I − Ac)
−1

D = Dc + C(I − Ac)
−1Bc

(4.3)

For the bilinear transformation and other transformations between continuous and
discrete systems, see [1] and references therein.
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Figure 1. The relative h2-norm of the error system vs the dimen-
sion of the reduced system (CD player)

In Figure 1 we present a comparison of relative h2- and h∞-norms of the error
systems, i.e. the quotient of the norm of the error system over the norm of the
original one, obtained by balanced truncation and MIRIAm for dimensions of the
reduced order varying from 20 to 3. The figure clearly ilustrates that the quality
of our method strongly depends on the choice of starting data. In general we
get results very close to the ones obtained by balanced truncation, although with
inappropriate selection of starting data we run into local minima, which do not
give a good approximation. The best results, usually after very few iterations,
were obtained when ”BTbased” interpolation data were taken. We observe in this
case that the improvement of h2-norm does not cause big changes in the h∞-norm.
Taking random, real or complex, choices of data usually leads to results close, in the
h2-norm sense, to the ones obtained by balanced truncation. We also observe that
often the h∞-norm of the reduced system is significantly worse. We can easily see
that for this example the worst results in both norms were obtained when ”Ordered
EV” were chosen. A closer look at the eigenvalue distribution of the original system
explains this behaviour. In Figure 2 it is seen on the left that the eigenvalues of
the original system are all close to the unit circle, the largest in magnitude being
close to −1. In such a situation we cannot hope to find the suitable ones by just
taking the largest in magnitude. The right hand side graphic shows the selected
”Ordered EV”, which are all very close to −1 and the eigenvalues of the balanced



20 A. BUNSE-GERSTNER, D. KUBALIŃSKA, G. VOSSEN, AND D. WILCZEK

truncation reduced system.They also mainly cluster close to −1, but spread out
more and there are a few of them far away but still close to the circle.
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Figure 2. Eigenvalues(left) and starting data
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Figure 3. The relative h2-norm of the error system vs. the num-
ber of iterations for the reduced systems of order 10(left) and
20(right) (ISS)

In order to examine the convergence of the proposed algorithm we reduce the
order of the system and in each step of the iteration we compute the relative h2-
norm of the error system. Figure 3 shows the relative h2-norm of the error system
versus the number of iterations for size n, n ∈ {10, 20} of the reduced systems. We
see that the algorithm converges after a small number of iterations. If the size of
the reduced system is odd, e.g. n ∈ {5, 15}, as presented in Figure 4, convergence
is attained only after quite a large number of iterations. Therefore we advice to
choose as orders of the reduced systems an even number.

Example 4.2. This is a randomly generated discrete time dynamical system. It
has 400 states, 4 inputs and 4 outputs, i.e. N=400, m=p=4. The poles and Hankel
Singular Values of the system are presented in the Figure 5.

In Table 1 we present a comparison of the relative h2- and h∞-norm of the error
systems obtained by balanced truncation and MIRIAm for even dimensions of the
reduced system varying from 30 to 4. BT-based starting initial data were used.
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Figure 4. The relative h2-norm of the error system vs. the
number of iterations for the reduced systems of order 5(left) and
15(right) (ISS)
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Figure 5. Eigenvalues(left) and Hankel Singular Values (right) of
the random example

We observe that, in most cases, after very few iterations with MIRIAm we obtain
results, which are better approximations in the h2-norm than balanced truncation.
Table 1 illustrates also that the h∞-norms of reduced order models obtained with
MIRIAm is slightly worse than ones obtained by balanced truncation, as expected.

For MIMO systems we have local minima more often than for SISO systems.
In Figure 6 the dimension of the reduced system is plotted versus the relative h2-
norm of the error systems obtained by balanced truncation and by MIRIAm. In
the latter case we chose our four different starting interpolation sets as before. Fig-
ure 6 reveals that all selection strategies work quite well. Indeed, MIRIAm with
complex random starting data gives better results than balanced truncation for
almost all sizes of the reduced systems n, except n ∈ {14, 16, 18}. the reduced sys-
tems n, except n ∈ {14, 16, 18}. For real random starting data results are obtained
only for {n = 12, 16, 20, 24}. Starting with balanced truncation based interpolation
data, we end up with a reduced system whose h2-norm is either equal or smaller
than the norm of analogous system obtained by balanced truncation. The last few
of this selection of initial interpolation data also leads to reduced order systems
approximating the original one better than balanced truncation.
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n BT MIRIAm
30 2.052 × 10−1 1.843 × 10−1

28 2.513 × 10−1 2.102 × 10−1

26 3.105 × 10−1 2.369 × 10−1

24 3.364 × 10−1 2.655 × 10−1

22 3.691 × 10−1 3.011 × 10−1

20 4.021 × 10−1 3.407 × 10−1

18 4.696 × 10−1 3.659 × 10−1

16 4.852 × 10−1 4.002 × 10−1

14 5.473 × 10−1 4.378 × 10−1

12 5.987 × 10−1 5.102 × 10−1

10 6.850 × 10−1 5.651 × 10−1

8 7.548 × 10−1 6.217 × 10−1

6 8.031 × 10−1 7.338 × 10−1

4 8.582 × 10−1 7.652 × 10−1

ns BT MIRIAm
30 2.591 × 10−2 5.181 × 10−2

28 3.643 × 10−2 7.080 × 10−2

26 3.743 × 10−2 6.837 × 10−2

24 4.371 × 10−2 6.575 × 10−2

22 5.434 × 10−2 7.508 × 10−2

20 6.003 × 10−2 7.619 × 10−2

18 6.722 × 10−2 7.935 × 10−2

16 7.552 × 10−2 8.329 × 10−2

14 8.983 × 10−2 1.966 × 10−1

12 9.159 × 10−2 1.881 × 10−1

10 1.327 × 10−1 1.969 × 10−1

8 1.689 × 10−1 2.096 × 10−1

6 2.139 × 10−1 2.269 × 10−1

4 2.635 × 10−1 2.647 × 10−1

Table 1. A comparison of the relative h2- (left) and h∞- norm
(right) of the error systems obtained by balanced truncation and
MIRIAm
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Figure 6. The relative h2-norm of the error system vs the dimen-
sion of the reduced system (Random)

We also observe that ”BTbased” behaves always better than balanced trunca-
tion on this example. We tried several different examples and taking the data
coming from balanced truncation as initial selection always leads, if the algorithm
converges, to a reduced order system whose relative h2-norm of error system was
smaller or equal to the one obtained by balanced truncation. For this example, also
”Ordered EV” gives very good results.
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Figure 7. The relative h2-norm of the error system vs. the num-
ber of iterations for reduced order systems of dimesion n=4(left)
and n=24 (right) (Random)

As before we examine the convergence of our algorithm for this example by
checking in each step of the iteration the relative h2-norm of the error system.
Figure 7 shows the relative h2-norm of the error system versus the number of
iterations for the reduced systems of size n = 4 and n = 24. We see that MIRIAm
converges fast for all chosen sets of initial data. Figure 8 illustrates that some
choices of initial data lead to situations, were we need to run many iterations until
the algorithm converges.
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Figure 8. The relative h2-norm of the error system vs. the num-
ber of iterations for reduced order systems of dimension n=12(left)
and n=16 (right) (Random)

5. Conclusions

In this paper, several topics in h2-optimal model reduction for large-scale discrete
linear dynamical MIMO systems have been discussed. For the problem of finding a
reduced system such that the h2-norm of the error system is minimized, i.e. the h2-
optimal model reduction problem, we presented three different types of first order
necessary conditions. The first condition involves certain tangential interpolation
conditions for the transfer function of the original and the reduced system.The
proof for these conditions uses a reformulation of the h2-norm involving the poles
and residues of the system which was received by basic results from the theory
of complex functions. The conditions also implied an h2-error expression for an
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optimal reduced system. The second necessary condition was proven via another
well-known representation of the h2-norm involving the state-space matrices and
turned out to be identical to the Wilson condition which has only been proven
so far for continuous systems. The third condition was already presented and
proven by Hyland and Bernstein. As for Wilson’s condition (and in contrast the
interpolation condition) it is identical for continuous and discrete systems. We
proved equivalence for these three necessary conditions. As mentioned already,
the interpolation conditions in this paper are only valid for simple poles but an
adaptation to multiple poles (similar as for continuous systems, cf. [20]) is possible.
In this case the conditions involve higher derivatives of the transfer functions.

In the numerical section we presented MIRIAm, an alogrithm which, if it con-
verges, provides a reduced system that satisfies the interpolation based first order
necessary conditions for the h2-problem. As these conditions involve interpolation
data which stem from the unknown optimal reduced system, our algorithm works
iteratively by constructing a reduced system which satisfies interpolation condi-
tions for fixed interpolation data in each step. On the one hand, this algorithm is
numerically efficient also for large-scale systems as it comprises only solutions of
some large linear systems. No solutions of any large-scale Sylvester or Lyapunov
equation (like in many SVD-based model reduction methods) is required. On the
other hand, we demonstrated that our algorithm can indeed provide reduced sys-
tems where the h2-error is up to 20 % lower than for balanced truncation which
means that systems obtained by balanced truncation can be “further away” from
being h2-optimal.

The h2-error formula presented in this paper (Remark 3.3) can not be efficiently
computed as it involves the calculation of all eigenvalues of the original system.
Hence, future work should involve the search for a computable error bound for the
h2-problem similar to the h∞-error bound for balanced truncation as well as the
development of the convergence results. Furthermore, convergence results for our
algorithm are still missing.

References

[1] A.C. Antoulas, Approximation of large-scale dynamical systems, Advances in Design and
Control 6, SIAM, Philadelphia, 2005.

[2] A.C. Antoulas, private communication.
[3] A.C. Antoulas, D.C. Sorensen and S. Gugercin, A survey of model reduction methods for

large-scale systems, Contemporary Mathematics 280 (2001) 193-219.
[4] U. Baur and P. Benner, Factorized Solution of Lyapunov Equations Based on Hierarchical

Matrix Arithmetic, Computing 78:3 (2006) 211-234.
[5] P. Benner, V. Mehrmann and D.C. Sorensen, Dimension reduction of large-scale systems,

Proceedings of a workshop held in Oberwolfach, Germany, 19-25.10.2003 Berlin, Springer,
2005 (Lecture notes in Computational Science and Engineering 45) J86-BEN-460.

[6] Y. Chahlaoui and P. van Dooren, A collection of Benchmark examples for model reduction

of linear time invariant dynamical systems, SLICOT Working Note 2002-2, February 2002.
[7] J.B. Conway, Functions of one complex variable, Springer, 1978.
[8] K.A. Gallivan, A. Vandendorpe and P. van Dooren, Model Reduction of MIMO Systems via

Tangential Interpolation, SIAM J. Matrix Anal. Appl. 26:2 (2004) 328-349.
[9] E.J. Grimme, Krylov projection methods for model reduction, PhD Thesis, ECE Department,

University of Illinois, Urbana-Champaign , 1997.
[10] S. Gugercin, C. Beattie and A.C. Antoulas, Rational Krylov Methods for Optimal H2 Model

Reduction, ICAM Technical Report, Virginia Tech, 2006 and submitted to SIAM Journal on
Matrix Analysis and Applications.



h2-NORM OPTIMAL MODEL REDUCTION FOR LARGE-SCALE SYSTEMS 25

[11] D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and

the relationship among the methods of Wilson, Skelton and Moore, IEEE Trans. Automatic
Control. 30 (1985) 1201-1211.

[12] A.S. Lawless, N.K. Nichols, C. Boess, A. Bunse-Gerstner, Using model reduction meth-

ods within incremental four-dimensional variational data assimilation, to appear in onthly
Weather Review.

[13] A.J. Mayo and A.C. Antoulas, A framework for the solution of the generalized realization

problem, Linear Algebra Appl. (2007), doi:10.1016/j.laa.2007.03.008
[14] L. Meier and D.G. Luenberger, Approximation of Linear Constant Systems, IEEE Trans.

Automatic Control. 12 (1967) 585-588.
[15] B.C. Moore, Principal component analysis in linear systems: controllability, observability

and model reduction, IEEE Trans. Automatic Control 26:1 (1981) 17-31.
[16] C.T. Mullis and R.A. Roberts, Synthesis of minimum roundoff noise fixed point digital filters,

IEEE Trans. Circuits Syst. 23 (1976) 551-562.
[17] Q. Su, V. Balakrishnan and C.K. Koh, Efficient Approximate Balanced Truncation of General

Large-Scale RLC Systems via Krylov Methods, Proc. 15th International Conference on VLSI
Design and 7th Asia and South Pacific Design Automation Conference, January 2002, pp.
311-316.

[18] A. Vandendorpe, Model reduction of linear systems, an interpolation point of view, PhD

Thesis, Universite Catholique De Louvain, December 2004.
[19] M. Verlaan, Efficient Kalman Filtering Algorithms for Hydrodynamic Models, TU Delft, The

Netherlands, 1998.
[20] G. Vossen, A. Bunse-Gerstner, D. Kubalinska and D. Wilczek, Necessary optimality condi-

tions for H2-optimal model reduction, ZeTeM Technical Report, University of Bremen, to
appear.

[21] D. Wilczek, A. Bunse-Gerstner, D. Kubalinska and G. Vossen, Equivalences of necessary

optimality conditions for H2-optimal model reduction, ZeTeM Technical Report, University
of Bremen, to appear.

[22] D.A. Wilson, Optimum Solution of Model Reduction Problem, Proc. Inst. Elec. Eng. 117:6
(1970) 1161-1165.

[23] D.A. Wilson, Model reduction for multivariable systems, Int. J. Control 20:1 (1974), 57-64.
[24] A. Youssuff and R.E. Skelton, Covariance equivalent realizations with applications to model

reduction of large-scale systems, Control and Dynamic Systems 22, C.T. Leondes, ed., Aca-
demic Press, 273-348, 1985.

[25] A. Youssuff, D.A. Wagie and R.E. Skelton, Linear system approximation via covariance

equivalent realizations, Journal of Math. Anal. and App. 196 (1985) 91-115.

Center for Industrial Mathematics, University of Bremen, Bremen, Germany

E-mail address: Bunse-Gerstner@math.uni-bremen.de

Center for Industrial Mathematics, University of Bremen, Bremen, Germany

E-mail address: dorota@math.uni-bremen.de

Center for Industrial Mathematics, University of Bremen, Bremen, Germany

E-mail address: vosseng@math.uni-bremen.de

Center for Industrial Mathematics, University of Bremen, Bremen, Germany

E-mail address: wilczek@math.uni-bremen.de





Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html

— Vertrieb durch den Autor —

Reports Stand: 21.August 2007

98–01. Peter Benner, Heike Faßbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem,
Juli 1998.

98–02. Heike Faßbender:
Sliding Window Schemes for Discrete Least-Squares Approximation by Trigonometric Poly-
nomials, Juli 1998.

98–03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ort́ı:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98–04. Peter Benner:
Computational Methods for Linear–Quadratic Optimization, August 1998.

98–05. Peter Benner, Ralph Byers, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Exact Line Search, August 1998.
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Length scales in the concrete carbonation process and water barrier effect: a matched asymp-
totics approach,
September 2006.

06–08. Werner Wosniok, Hakan Aycil, Jens-J. Lau, Ronald Stöver:
Mathematische Modelle zur Realisierung repräsentativer Bauschuttprobennahmen und ihre
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