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Abstrect

Galethin approximations to sclutions of a cos-pha= ope-ditmensional
meoviog-boundary sysbem describing the penetration of the carbonation of
conctete ate consideted. The seimi-disctetization in space with piecewise
lineat finite elements i= examined in otdet to cbtain o priors and 2 pos-
feriori ettor estimates for the =mi- discrete Felds of active concenttations
and for the position of the moving-reaction ioketface. The main feature
of the protlem i= that the non-linsar coupling of the sysbem oocurs due to
the pressoce of the moving boundary and noo-linearity of the producticns
by teaction.
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1 Introduction

In many real-world applications we frequently need to determine both the a
priori enknown domain, where the problem is stated, as well as the solukion
iteelf. Such problems are typically named moving or free boundary problems.
A particalarly important problem of this kind refers to the determinabion of
the depth at which meolecules of gasecus carbon dicxide succeed to penetrate
concrete-bazed structures. The phencmenon is of particular importance if we
thinl of the concrete structures durability. The main feature of the process is:
Gaseous carbon dioxide from the ambient air penetrates throogh the porous
fabric of the unsaturated concrete, dissolves in pore waber and reacts with cal-
cim hydroxide, which is available by dissolution from the solid matrix. Caleinm
carbonate and water are therefore formed via the reaction mechanizm

Ca{OH)z(s — ag) + COa(g —+ agq) — CaCls(ag — =) + H:0O. (1)
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The plhysicochemical process associabed with (1) is called concrete carbonabion.
Although this chemical reaction seemns to be harmless (i.e not corrosive), it
may produce unwanbed microstructural changes, and hence, it represents one of
the most important reaction-diffusion scenarios which can essentially affect the
service life of concrete-based structures. Mobe thak, in combination with ingress
of aggressive lonic species (like chloride or sulfabe), the carbonation typically
facilibates corrosion, and hence, spalling of the concrete may occur. We refer to
[Chad?d] and references therein for details on concrete carbonation.

The present worl represents a pre-study in what the investigabion of semi-
discrete variants for two-phase moving sharp-inberface’ carbonation modds is
concerned. The one dimensional form of this problemn is obtained by thinking of
the slab [0, L] (L = 0} (ko which the model, which we state in section 2, refers)
to be away from corners or any other type of geometric irregularities. Solving
the moving-boundary model means in our case the calenlakion of the invalved
mass concentrations and determination of the a prisri unknown position of the
moving boundary (here: sharp-reaction front).

Several moving-boundary models have been recently proposed in [BEMODZa,
BEMO3D, ME0SD| (and analyzed by the author in [Mun06]) to numerically
lustrate the carbonation penetration into a large class of concrete-based ma-
terials. In the present frameworl:, we follow other aim=s We use the standard
continuous time Galerlin method (see, for instance, [Joh®d, LT03, Tho7] for
an introduction to the subject) to investigate a semi- discrete FEM approxima-
tion. Specifically, we examine the semi-discretization in space with piecewise
linear finite elements in crder to investigate a few gqualitative features of the
ad hoc FEM approximation that we have employed in chapter 4 of [Mun0#f].
MNow, our goal is to prove thak the spatially semi-discrete solutions converge to
the solution of the carbonation model in question when the mesh size decreases
to zero. The error estimates will show an order of convergence of (2{A) for the
FEM =zemi-discretization of the model, where b denotes the maximum mesh size.
The a posterior error estimate, which we alsn point oot in this frame, may be
of use when implementing 1D adaptive FEM schemes to solve moving-interface
carbonation models. T is worth nebicing thak in [SME05] heuristic a posteriori
estimates of the approimation error were uged in order to caleulate adaptively
with ALEERTA (cf [3508|) the 2D penetration of an aggressive reaction front
in concrete®. With our theoretical @ posteriori estimate we hope to contribute to
the understanding of 1T adaphive simnlations of concrete carbonation when the
carbonated and uncarbonated parts are separated by moving boundaries. The
2D case remains open for further study for both the moving-boun dary scenario
and when the model is formnlated in fixed domains.

The paper is arganized in the following fashion: We state our problem in
section 2. A few remarks on the system (2)-{11), which represents the moving-
boundary problem in study, are given in section 3. Bection 4 collects technical
preliminaries and sechion & presents the main assumptions on which our error
analysiz relies. Along the lines of this section, we prepare a suitable funchional
frameweork and the concept of weal: solution that we use in the sequel. In section
B, we state the main results of this paper, whereas in section ¥ and section 8 we

1ith the tarminalogy fram [Iundd], we prepare the basic framewark for the arror anslysis
of the full sami-dizcrets A model.

?In this paper, an izoline model wes employed to simulate the process, the mowing fromf
being defined uzing the concept of corbanafion degree.



prove them. Finally, we draw a few conclusions and further remarks in seckion
9.

2 Statement of the problem

We analyze a semi-discrete finite element method to approximate the solubion
of & moving-boundary systemn modeling CO5 penetration in concrete. In order
to write down the mass-balance equations we denote the mass concentrations
of the active species as follows: Let u; and us be the concentration of COa(g)
and COa(aq), respectively. ws refers to the CaCOa{aq) concentration, while
uz denotes the Ca{OH)(aq) concentration. Finally, us represents the moisture
concentrabion produced by (1) in the reacted phase.

The problem reads: Find the concentrations vecbor u = u(r, £) (r € L2,(f) =
|0, s(t)[, where t € Sp =|0, T with T > 0) and the position s{t) {t € &) of
the interface T'{t) := {* = #{t) : t € S} such that the couple (u, s) sabisfies the
following set of model equations®:

urg — D ze = Fi{Quuz —wu1)  in S (t) {2)
Unp — Lolin e = —Fa(Qauz — 1) in £21(F) (3}
'113,1{- = SS,dEII{HS,Eq' - 'L[s} ab I‘I::f} I:—l}
Uptr — .Df'l.[f;_zz =10 {f = {4, 5}}, in R]_Iif]l, I:E]I
initial conditions
w0, 1) =ulx) inLn(0) (i {1,2,34,5]), (6]
and boundary conditions
ﬂi{fn D}I = )"l'{f}l:f € 51 {.1' = {11 2:'1: 5}}' {.?}I
—Dhuy L(s(t), 1) = oo(uls(t), ) + s {thuy (s(t), 1) (8)
—Daus o (5(t), 1) = s Hhua(s(t), 1) {9
— Dy (8], 1) = o (ul s(t), 1) (£  {1,5]). (10}
The couple (u, 5) also needs to satisfy the relations
#(t) = nr{u(s(t),t)),t € 5 =0} = =4 (11)

in order to close the system.
To formnlate (2)-(11), a seb of model parameters are employed. In the sequel,
we assume the following restrictions on these parumeters:

Assumption (I} Select
Dy, Py, Sa g ERY (12 {1,2,4,5}, 7€ {1,2}), (12)

Aijuseg: ST — BY, wo (0] —BY (i {1,2,5,4,5])) arc given functions,
(13]

?The underlying model reprecents asimplified case of & more ganeral moving shar p-inberfacs
model, which was developed in [IIondsE].




&

sg == 1, (11}
so < s(f) < L, (15}

where L is the precise length of the 1D geometry in question.

Under Assumption (I}, the model (2)-(11) consists of & wealdly coupled sys-
tem of semi-linear parabolic differential equations {2)-(10) to be simulbaneously
salved together with the non-local ade {11}, which drives the reaction interface
T'{t). Werefer to (11) as the non-knecar kinetic condition that governs the move-
ment of the reaction interface. MNobice that once the domain £3) () is determined,
equabion (1) decouples from the system and can be solved exactly. Although
it produces no mathematical difficulties, we keep it in the sysben formulation
mainly becanse of its physical meaning, see [Mun0f]| for details.

3 Further remarks on (2)-(11)

Let us al=n notice the following facts:

1. Details on the modeling, analysis and simnlation of the concrete carbona-
tion based on the moving-boundary methodology are given in [Munl6, MEDGa].
We only mention thak, employing the same techniques from [Mun0#], locally in
time positive weal: solubions to (2)-{11) exist, are unique and depend continu-
ously on data and parameters, see section 5 (especially Theorem 5.3) for some
details.

2. The system (2)-{11) does nat exclusively refer to concrete carbonation. It
can alzo be imagined as afirst abtempt to model sulfate attad: on concrete pipes,
see [BDIRA8]. For similar reaction-diffusion scenarios arising in geochernistry,
we refer to the book oy Ortoleva [Ortld].

3. Conceptually, the classical problem of ice melting (the Stefan problem,
see [Crafd]) is very often considered as prototype when formulating models like
{2)-(11). At the numerics level, there exist many approaches dealing with the
error analysis of the finite element approximabion of the weal: solution to the
classical one-dimension al one-phase Stefan problem. To our knowledge, Mitsche
{f [IMiE78, IMiEA0]) was the first who analyzed the semi-discrete one-phase Ste-
fan problem and cbtained an optimal error estimate in the W™ norm for the
interface position. He employed the fixing-front techinique of Landau [Lanb0)
in order to freeze the boundaries of the moving phase and examined the trans-
formed pde in the fived-domain. For further developments of his worlking tech-
nique, we refer the reader to the series of papers by Pani and his collaborators
[Pan?3, PD31b, PDa| and [JP 35|, e.g. The papers [LOS02, LLAS, KGA7] and
[Vuif(] are also related to this issue. In all these contributions, various L™ —,
L3 H'— and H*- error estimabes have been cbtained for the case of linear
and quasi-linear single squations provided that standard conditions are imposed
across the moving interface. Standard means in this conbext that both ro jume
in the temperature for in the conceniration) and the Siefan condition (inbter-
facial mass balance] were used to close the respective models. Mevertheless,
much less is known about how to deal with the case of coupled systems of pdes
when, additionally, one or several mouing internal boundarics drisen by binetic
conditions are present.



4. The technical apparatus, which we use to gain a pricri and & a posie riort
error estimates for our setting, combines ideas from [CROS, Mun06] and [BS94]
{ chapter 12). We particularly trust some hints from the paper by Caboussat and
Rappaz [CROY]. In the latter paper, the authors are concerned with the error
analysis of a viscous Burgers equabion, where the end of the moving domain is
driven by a lirear kinclic condilion. In their sebhing, the main difficulty = to
deal with the Burger’s type non-linearity and with additional nos-local terms,
which typically arise due to the freezing of the moving boundary. In conbrast
to [CROY), we do not consider a single model equation but a strongly coupled
wealidy non-linear systern. The latter fact complicates the analysis sulbstantially.

4 Technical preliminaries

The error analysis to be carried oub requires some basic results coneerning the
approximation properties of first-order polynomials and the of funchions spaces
used. These results are elementary, We collect them here without proofs.

MNotation 4.1 {a) We employ the sels of indices:

T o=1{1,2,4,5}, T, ={3}, T =T UTL. (16)

fb) We denote u'(t) 1= %{-,f} = (-, 1), uyly, ) = g—:{y,f} Jor (g t) e 0 x
5r. Notice also thal, sometimes, we omit bo write cxplicitly the dependenes
of u, 4, 4, or the test funclion on the variables t, gy andfor . Also, we
sometimes neglect to write the dependence of 8 on t. In particular, e(1),
u(l) and w (1) replace e(1,t), u(l,t) and u (1)

4.1 Function spaces and elementary inequalities

(i) Let uz introduce the notation of spaces and norms to be considered here:

Set H =L*0,1) = H; (i € Z) and H = [[,.; H; = HI™| The space H;

i
iz equipped with the norm |u| g, = (f:ug{y]liy>= and with the scalar product

(u,u)e, 1= (fﬂbu{y]v[y]ldy)i for all w,u € H; The product space H iz normed

by |y = (Tieron |u,-|§,=]1% for all w € H and equipped with the standard
gealar product.

Dencte ¥V = {u € HY0,1) 1 w(0) =0} := ¥ (i € 1}, ¥ 1= [[ier, Vi =
V%2l The space V; is endowed with the norm ||a|y, = |u | ..

{ii) For reader’s convenience, we also list a few elementary inequalities, which
we extensively use in the sequel

The inequality

ab < £of + b7, {17)

where £ = 0, oz 1= # i:Pll" =0, J%+qL = 1 with g €|1,00[, is true for all
a,bc By (17) is referred to as the inequality of Young. We also make use of

the following generalization of Young's inequality

R . O S Eﬂébg + g et (18)
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This holds for all € & [0,1] and a,b,c € By, where g := -:-EL"‘_ and cg is as in (17).

We obtain (18) by applying first the arithmetic-geometric mean for the numbers

2 and Bt ~? and then by using (17) in the second term for the numbers & and

eF with i =f#and L:=1-4. Kin (18) £ and £ belong to & compact subset of

IEfl_, then it results 1313.1: rz and ¢ are strictly positive and bounded above.
The inequality

orup <] WOl H (L4 E) P forpe(toof (19)
|al” + 4" for p €]0,1[

halds for arbitrary a, b F and £ = 0.
Furthermore, let us consider £ = 0, gg > 0 set a= in (17}, and # € [}, 1].
Then there exists the constant # = ##) = 0 such that

a7 || < HE| ||| + ceus])  forallw € Ve, (i€ T1).  (20)
We refer to (20) as interpolation or multiplicative inequality.

|usi|om < €

4.2 Useful basic facts from approximation theory

In section B, we malee use of the following plecewiselinesr finite element dis-
cretization of the space interval [0,1]. Denote J, :={0,...,n}. Foreachi € J,,
we denote J; =]y, gy Wetakego =0 <y <y < ... gn < ynpr = 1 and
seb h; =y —; forall j € J,. Leb i be the maximom mesh size, namely
h i= maXs, fi;. Denote by Vy i= {01 € C([0,1]) : U|[gsp54.] € 1, J € Ju],
where IT; represents the set of polynomials of degree one.

Assume ug € W, In the sequel, wgy dencbtes the Lagrange interpolant of

ug EWin l-f'hlrll, and respectively, foreachi € 7, ugy represents the interpolant
of ug € V; in Vy,. Hence, we have ||uopn||v = ||uc||v. Set ¥y = i.f'h|11|.
If uye = H3(0,1) for all i £ T, then by classical interpolation results (see
[TJoh2)] or Lemma 1.2 below ) we obtain
|uio — uon| = Chg”“ﬂ”ﬂ?(ﬂ,l]: (21}

where ¢ iz a strictly positive constant independent of A
Let us denate by I} (i € Z;) the interpolation operakor
I 0 ©([0,1]) — W, defined by (Fad(y) = ) wily, thnely), we [0,1].
FETIn
Let 7 (i € 7,) be the arthogonal projection of H; onto ¥,, which is defined by
(Fiu, —u,m) =0for all 1 € V¥ and u; & Hy

Since FPiuy; is the best approximation of u; in ¥, with respect to the L3-norm,
we have

|P,:'u,- —uy = |_.|",‘;u,- — | = ch"||u|| grape for el v e HT nHL (22}

where H™ N H' = {pp e H(0,1) : 0} = (1) = 0}. Fer each i £ Ty,
let B} : Hj(0,1) — ¥, be the orthogonal projection with respect to the en-
ergy inner product (Vu;, Vi), With other wards, a{flu; — u;, ) = 0 for



all o € Vp and u; & H(0,1), where a{u;, ) = (Vu;, Vig). The operator
By = (Ry, R}, R, A ) is the elliptic (Ritz) operator. Mote also that Byu is
the finite element approximation of the solation of the corresponding elliptic
problem with the solution u. Finally, we recall the following classical inberpola-
tion result:

Lemma 4.2 (Lagrange Interpolant) Assumed € [1, 1] and take o € H3(0,1).
Lel By dencte Ricsz’s projeclion operator. Then there crisls the sirictly posilise
consltanis v, vz ard s such thal the Lagrange inlerpolant Tpye of oo salisfies
the following estimates:

(i} oo — Rnis| = "r1h3|<,91m(n,1;|;
(it} [lo — Rnep|| < yahleo|mraga,1y,

(i) k(1) — Ra(1)a(1)] < ysh* P kol o,y

Proof. (i} and {ii} are classical results, see Theorem 5.5, p.65 in [LT03] {(or
[Toh®d], eg.). The proofof (i} follows combining gi]l, {ii} and the multiplicative
inequality (20). Mcre precisely, we seb ys := &4 " 45, whereas & = 0 is cf (20)
and 8 € [L1] =

In sections 7 and 8, we use Lemma 1.2 with the dicice By, = K} and
=y e VNH D) =H NnH foric 7.

5 Fixed-domain formulation. More notations,
assumptions and auxiliary results

By the transformation
T

y= SOk (23)

we map the moving domain £ () inbo |0,1[ for each t € §r. We perform (23)
for (2)-(11), but keep () unchanged. Since the calculations are obvious, we
omit to write the classical fonmulation of the transformed system and will only
give its wealk form in (16).

In what follows, we refer to the concentrations vecbor acting in the domain
whose boundaries are fived, which is originally defined as u(r,t) in the original
domain £ (t), as u(y,t). We also keep the same notation for the position of
the interface, namely s{t). Let ¢» '= (1,¢ps,21,4%)° € ¥ be an arbitrary
test function and take t € Sr. We leb a(-) denote the transport part of the
model, by(-} and (-] comprise various volume and surface productions, and A(-)
incorporate a non-local term, whose presence is due to the use of (23], viz.

(s, = %_EZI(D.-H.-,.,,%,HL (2)
bylu, 5,40 = sglu-{u),m, (25)
(s’ u, ) o= _EIZIE;eES’aﬂilﬂwe{lL (26)
(s uy,0) = _ZS’@H-,H,@.-L (27)



where the prodaction terms f; and g; are given oy

Alu) = Az —w), (28)
falu) = —Pa(Qaus —u1), (20}
falu) = felu) =0, (30}
_gl]_I:Sr,?..[]I = a1t} + Srlileﬂ]_lil,f]l, (31}
gals,u) = F{Hua(l, ), {32)
gels,u) = ar(lt) (33}
Set
K= [ [0k, (34)
ETUT;
and, for fixed A Ay, we tale
Mg = ElEa%{ir fa, A (35)
In (31, we set
ki = ma.x{u.-n{?,r]l +-J'-.'|:ﬂ;-)'-i|:ﬂ THE [D: l]nt = gr}_ﬂi =1,24, 36}
ke = maxjusaly) +As(E), As(t), sy e [0, 1], 1 € Sz, .
where £, I

The only assumptions that are needed to describe the reaction rate s are
contained in the iterms (A) and (B) of the next Aszsumption:

Assumption (II}) Consider

fA) Fie A e My, Letor{u,A) » 0, ifuy > 0 and uz > 0, and o, A) =0,
sthermise. Morcouer, for any iredu; e B the reaction rate e is bownded.

(B) The reaction rate s : BT x 04y — B, is locally Lipschitz.
(C1) 1> ka2 maxz {|usq(f)] -t Sr}, Ds— M, L =0,
trf:-'f',] Pk = Pk, FPaby = Fallaks,
{Gfr‘j [N A
A typical choice of 9 i= the generalized mass balance law, i.e.
griu, A) = kufed, peolgeB k=04 = {p gk}, (38)

where uz i= the posibive solution of ().
For the initial and boundary data we choose the following:



Assumption (IIT) Select

Ae WL s A{E) 2 D ae t e 5, {39)

Us pg € L™(5r), s ot} 2 D ae. t € 5y, (40)

g € L0, 1) ug(g) + A(0) 2 0 ae. y € [0, 1], (41}
uzo € L7(0, s(t)), usolz) = 0 ae. x 2 [0, 5(t)] (12)

Remark 5.1 Cwing to (4], (58], (49} and {42}, we see that Assumption (I1)
{A) iz fulfiled with e chosen as in {58).

Definition 5.2 (Weak Sohition to FL) We call the coupls (u, 5) a local weak
solution te problem PE if and only if there is a S5 =0, 48[ with § €]0,7] such
that

o < SI:IE} ""\_: Lg, {—13}
s € W5, {41)
u € W55V, H) N S5 — L7(0, 1), (45}

SZEEI,_QHI',*{I”:':P!'} + ﬂ{_g:‘u,g’p} + E'I::S‘r:,?..i + 'J":l .:,_-'J]I = be:‘EI + )":l 3:,{’9}
Fhis’ 00 — 55 o (R (), o) forallpwe W, ae t € 5,
st =9r{l,t) ae tc 55,

u(0) = ug € H, s{0) = =

(46)

We possess now all the ingredients which we need in order to state the existence
and uniqueness of locally in time weak sclutions to FF.

Theorem 5.3 (Well-posedness of Fl) Conrsider Azssumptions (I)-(III) be
Jelflled Im this case, the following assertions hold:

fa} There exists ad |0, T such that the problem B admits a unique local so-
lution on S5 iR the sense of De finition 5.2,

(R0 ua, ) + 008 =k ae. ye[0,1{ieTy) forall t 55

fe) =& Wh™ (5.

Sketch of the proof of Theorem 5.3, If in the sharpinterface model Fr,
whose well-posedness was shown in [Mun0#f], the non-carbonated phase |s(t), L]
degenerates, then the tediniques used to prove Theorem 3.1.6 in [Mun06] con-
clude the proof of Thecrem 6.3, =

Let us now turn the attention to the semi-discrete FEM approximabion.
Dencte by #f the approximation of the reaction rate 4 and let s & WH{55)
be an approximation of s € Wi-4{5;). The connection between the quantities
sy and g is given by s = sy {up(en(t), 1)), where sp(0) = #{0) and uy =
{in, wan,uyn, Usp)? € ¥y, represents an approximation of u o= (uy, us,uy, ug b €
W, Furthermere, seb vy := (v1p, v, tun,ten) € Y. The precise definition of
the space Wy iz given in section 1

Definition 5.4 (Weak Sohition to PI]-"’d} We call the couple (up, 5] a local
weak solution to problem Fi™ if and only if there is a Sy =0, 3] with & |0, 4]
sueh that .

Bo < Sh{a} E LQ, {—l?}

gn € WhHHS;), (18)



[Za]

up € [H' Sy, W) N L7=(5,, HY (18)

h 2oz, (e 2 (B oan ) + ooy, un, 0n) +eley, un + A, ) = bylun + 4, 50, 00n)
Hh(sy, Un 4] — 88 3 er (iplt) om) for allipy €Wy, ae tE 5,
s () =92 (1,1) ae t €5y,
up(0) =y e H, 2, (0] = =q.
(50)
A first pesult is the next theorem:

Theorem 5.5 {Well-pozedness of Pﬁ"’d} Let Assumptions (I)-(TIT1) be ful-
filled. There erists § €]0, min{d,§}], which is independent of b, such that prob-
lem ..I‘-"']:]-'Jm:I has a wnique weak solution

(un, s} € [H( S5, Vo) 1 L2055, H)Y) P x Wit s;),

i the sense of Definition 5.4 that continuously depends on dala and model
paramelers.

The proof of Theorem 5.5 followrs the lines of the proof of Theorem 3.1.6 from
[Munlf]. Since here we intend to focus only on the error analysis, we omit it.

6 DMain results

The next theoreimns contain the main results of this paper:

Theorem 8.1 (4 Priori Error Estimate) Selectug € ¥N[H*(0,1)]™! and
consider Assumptions (I)-(II1I). Ther problems Ff and Pr].""d are wniguely
soluable. Let (u, 8) and (up, sn) be the corresponding solutions. Then the fol-
lowing estimate holds: There exist a 8y €]0,max{§,8}] and a strictly positive
constant ¢, which are independent of A, swch that

”'L[ — “h”L“tS.sl,lﬂ:IﬂL’tSsl,V:I +||3 - 3"”“"""'(551] q_f ch. {51}
Proof. Secsection 7 m

Theorem 8.2 (4 Posteriori Error Estimate) Let ug € ¥ [F3(0,1)] ™
and consider Assumptions (I)-(IIT1). Then probiems P and _F‘I%’d are uniquely
soltable. Let (u,5) and (un,sn) be the corresponding solutions.  There erist
da €0, max{4, §}] and sirictly positive constants o fi € {1,2,3}) and c, which
are independent of b and u, such that

t
| — wp|yy +ols— sn|*+ f || — wp|| v
o
<cy. || Run ) [T ags, oy + Rilluoll ez s (52}
EETn
whereas the residual Ffluy ) is defined by

!

Flun) = fulsn,un) —un++ :—hy‘uh u Fenlsy, un(l)). (53)
b
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In (55), the quantilies fu(sy,un) and ep(s), un(l)) are defined by

fulsn,un) = s Z filun),

EETL

en{sh,un{l)) = ZE-‘{S‘;:HH-

€T,
Proof. See section 8w

Remark 6.3 What we have stated 20 far (of Theorem 6.1 and Theorem 6.2)
are efror estimates for uly,t) with y < [0,1]. This is precizely what one neads
when using front-fiving methods bo solue the moving-boundary problem (2)-(11].
On the other hand, if one employs fronl-tracking methods for the same problem,
error cstimates obiatned for the soludion in the fived-domain formulation are
wseless In such case, we need b g0 back Lo the initial formulation of the problem
and get error cstimates for the original wnbrowns, ie for ulr t) with v ¢
[0, =(t)], see [KGET for related ideas. Simce the transformation {25) iz affine
and the solution (un, =) of _F'l-]-';d iz sufficiently requiar {of Proposition 5.4.17
Jrom [Mundg]), the inverse transformation T = ysy(t) can be employed in order
to make the estimales {51) and [52) asailable for the original problem {with
mouing boundarics].

Notation 8.4 For the sake of simplicity, we put §; =8 =5 =4 and § =4

In the remainder of this ncte, we concenbrabte on proving Thecrem 6.1 and
Theorem 6.2.

7 Proof of Theorem 6.1

The role of Theoremn 5.3 and Theorem 5.5 is to ensure the existence of local in
time solutions to FfF and PI]-"":I, respectively. Let us denote by S5 =|0, 4] (with
§ chosen as in Motation 6.1} the commeon time interval on which the continuous
and discrete solutions exist and let ¢ = w — up and & ;= 5 — 5, be the errors
of approximation. Alsa, define g; ;= u; —u, and e = (e, €4, £y, 55t For each
test function wiy € Wy (i € T1), we subtract the variational formulation in terms
of up, from that one in terms of 4 and obtain the following equality:

(a+ M) — (o + X0 e) + 5 5 (et )

iET,
- Sig Z (Dtiin gy, Wen ) + %[ﬁr + sr{u]_{l}l + )] an (1)
b T,
- i [ + splun (1) + A winl) + %r(ﬂzli:l}' +Azjwan(1)

5 1 1
— —Sh Ii'l.[ ah |:1]| =+ .Jl.g ]|'i'..|.'3h |:1::| — ;'ilj‘r"l.l.'s_.h |:1]| =+ _5 'lj‘]r:l"l.l.'sh {1}
;] o]

= (Fi&fus + A} — (w4 M) une)
(P (uan +Aa) — (s +A0)),we)
— [ Fal@alus + A} — (ur+ M) wan)

11



+ {P3(Q3(H3h + Az ) (ﬂlh + A1), wan)

Z(?afﬂ-,ua Win ——Z{y‘u.a,u, i ) (51)

:EI,_ IEI,_
Grouping some of the terms in {51}, we cbtain
1 1 1
{E,f,ﬂ'h]l + 3_3 Z {D.‘{ﬂ.‘ - uih},y:u'ih,y} = E - ; Z{Diﬂih,ya 'u-'ih,y::l
HET, EET,

S (1) +3) — r(ul,,u a0+ = ()
€ )

_ ( (aa(1) + ) — {ugh{l )4 ) )u-g,,m_ (E_l) wen(1)

k)

+ FAQi(ea,wn) —FLI:EL,ﬂlh]l Faa(es, wan ) + Faley, wan)
S'r
= ) e um) + (; - —> > (ytting, wn) (55)
FET, iET,
Thersfore, we may write
. 5
minger, L
(ee.un) + ﬁ(e,y,wh,u} <Y I, (56)
¢

where the terms Jy are given by

1 1

§ET,

1 1
iz = |(% ?r)”u”,[l +wsn(l]},

b S S 20 - ) 4001 o)

i = PlQl':EE;.u'lh) - P].l:E'J.,ﬂ'lh) - Pz@zlifz, Wap) +P3|:E'1, Wap)
Sr
{s = "N Z{yﬁ'i,y,ﬂ'ih}l + (—— —j Zl:y‘ﬂ:h,y, W )
EET, EET,

Bet f :=min;er, L. For any wy, € Wy, the following estimate holds:

1d d
S el Sl <= (e u—un)

e o — ) ) = (= ) (e, (= 1))
+{e s, u —up) + :—E{E‘,u, {vn —up)y) (57}

Mote that wy = wp —up € Wy decompeoses inbo wy = (zy —u)+¢. Mow, choosing
the test function wy := 2y — wy 10 (56), we obbain

1d d d
Sl Sl u ) + Sl (x )y

12



+ (% - 3%) Z{Di{ﬂih}l,y,{ﬂih — uip) )
i€T,
(‘1—" “‘-")Ha,l,,{l —un{l) +usn (1) — usn (1))

+ PLQL{E'z,irlh - ﬂlh}' - F].{E'L,?r'lh - ﬂ].h}l
—  Pala(es,van — Uan) + Faler, van — Uan)

i
3; Z (L/eiy, Vin — Uin)

iET,

+ (— - —) Z{w-h,y,‘b:h i) (58}

IET,

+

In crder to simplify the writing of some of the inequalities, we introduce the
strictly positive constants ¢ (£ € {1,...,7}), whose precise expression is not
explicitly writhen but can be easily derived. However, it is worth mentioning
that for ench £ £ {1,...,7} we have ¢ < co. Before estimating the right-
hand side of (56), let us point out & few technical facts, which we list in the
next Remarle. They are useful for following the estimates. Their proofs are
straightforward {use of the integration by parts and the inequality between the
geometric and arithimetic means).

Remark 7.1 {1} There erists a constant op = c1(A, 5¢) = 0 such that

Fri 1 1 1 1
E—£5|s—sh|£+—|(£ If)|e:r_~1|:|3;—3,,|+|s—3;,,|;|
& L3 EEp Eh 5

{2) For eachi {12}, there erists a constant 0z = ca(h, 50) = 0 such that

!

z—:(u.-,,(n FAY— %@;.{1} + A

5 s &
-2l + +x) 2-—
et 4w +2) (- )
= c3{| {13 + |5 — =] +]5" — 5|0
(%) For eachi €1, we have
(yE!,H: ik — Uy } (‘:‘J'E':,y,fa +|:?;rEl,y: Yin — _lfill +||Ei|||'1-’ih_'u

{.qu It holds
[y‘ﬂih,y,?r'ih — ) = |ﬂih||1r'ih _'uihl + |Hih|||?r'ih —HihH-
{5} I holds
(2ien,p, (Zin — 2 ) ) & [[ecen]|[[en — wan|

By Remark 7.1, (57) and (58), we have

d d
Sl llell® < el el + Sllelll— e
54+ 5
+ |3—3p,| hZKDH,h,H,{Hh—bh gy
*h iET,
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+ couf|s— =]+ |3’ - s’;,|]l|t;p,|:l]l — a1} + ={1}]
+  eaf|e(1)| + |5 — =n| 4|5 — =g )|en (1) —ull) +£(1)|
+  Fugles| (Juin —u| + =]} + P (e —ua| + e
+  PalQla|es| (Juan — ua| 4+ [22]) + Pl er| (Juan — ua| +|ea)
L4
to5n > [l = =l + [l lein — winl]
€I,
+ caf|s— =]+ |57 — S|} Zﬂﬂehﬂﬂm — |
EET,
+  [un|||ein — ]} (59)

After soime elementary manipulations, we directly gain the estimate:

d d d
el Il < fell— ] +<slellllx =]

+esls = sulllunl[{llen =2l +11ell) +enls = sa] +]5" = il

+eaf]
z : Frva 8
+eale(L)]” + caf|s — su| +]5 — =43¢ |e]|"] ¢l

1-&

1-8

Q A
11 {'}lEzl -I—l'l.-]_h| —'i'.-[]_l +|El|3:| +_ {'}lell +|E"lh _.ull ]'

Pz 3
B

P
2ea|” + |wan —ual®) + 5 (Yer|* +[uan — usl )
L _ =
+2 Il - el - o
+eals — snf + [ — spMwn — o] +esllfen —ull +]]=).  (60)

We set v, = Byu and rearrange some of the terms in (60). Afterwards we use
Lemma 4.2 to obtain the next estimabe It therefore yields

L1el” + S1Iel1* < ledmtlumion + Sl rabld o

+es| s — sl ||| {vahlulzragony + ||}

Hew +es)lls = sof 15" = shellel el

+eui]s — 5| + |8 — s‘;,|]|c"r§ha"rf_ah3“_ai|u|;r=tg,1;| + 5 (| e]* +|es| )

!
¥ 3 -4
+eoryht (|ﬂ1|§n(o,1; + |ﬂz|i-=(n 13) + _':||E'|| |E'|gtl ]

E II'E'II3

+E Ykt fu |fr=(o 1)
tes (vahlulmaoy, +||'E'||:I (Js—sul +[s" = s} (61)
Since s(t) — sy, (8] = cfu(l, 1) — un(1,t)) = fnl eyls, t)ds, we obtain
o] = s = si] < [|e]| (62)
Mow, using Young’s inequality (see also (16} in [CROB]), we derive
Aol Lo sy Sl s - sl (53)
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Inequality (61} can be conveniently arranged such thab the proof can be com-
pleted by Gronwall argumnent. Similar ideas have been emplayed, eg., in [CROY]
{ apply Gronwall's inequality for the quantity |e]® + c|s — #n|*) or [Mun06] (use
fS.s |#{r) — sn(7)|*dr = &* fs.s |'{v) — sy (7)|*dr and then apply Gronwall’s in-
equality for the quantity |e|*)

% Proof of Theorem 6.2

For all v & W, we can write

(egn) + L3{E’"’ MEAIRT +—ZDI:‘EI,H,L,H

FET:
1 !
- |fun g2+ e Z Dh(umy, ving )| < —els u,u) +brls,u, )
(€T,
+ h{s Uy, U |F”h f:b} + ) Z L {ulhvnblhu}] ':6'1}
EET,

By (64), we obtain

d
(esu) + —EI:E',H,‘U,H]I < Bals,uu) +h(s uy,,v) — o5, u )

- l{u,, N R ZD (22 s iy + ( ) Y (Datiny, ]

beT, IET,
= belsu,u)+ his u,, v) — (s uu) — beley, un, )
= Ak ) elsh i)~ (35 ) T Dt
EET:
+ / Flupjudy — — 3 Z/ Dilaiiny, v )dy, {A5)
*h FET,

where the residual F{uy) is defined by (53). Since for all y £ (0,1) we have that
up, yy = 0, the berm

/ R{uh]lbﬂ!y——Zj Di{atin, g, vi )y

IEI:_
can be estimated from above by

Z fmhR{HH 'L'liy_ ] Z Z ﬂéﬂxﬂt [ecem g (B 12 (Erer 1) — em, y (2 uiyil]

EETn biET, T

(66)
Owing ko .F'Il-"‘d, we note that reation (66) vanishes when selecting as test fune-
tion v = vy, We rely on this obeervation to add (68) (in which we tale & ;= up)
to (f5). Belecting in the result v = ¢ € W and w, 1= fApe € ¥y, we obtain the
following inequality:

(es,E) + 3||E||3{ Bris,u, e) — bylsn,up, o) + o sf,, un, €}
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1

- E{sr,u,e]l + h{sr,u,me]l - h{s‘;”uh,y,e]l - (—

+ wa{e—me).iy

g2

:E.J'

- Z Z ﬂéaxDr [tien y i rle — Bped(tig )

3
*h
o

EETn FET,

where we have

i
i3
i3

i

s

be(s,a, £) — byl sn,un, €],
&5y, tn, €] —
RTINS

1

(5mg) G

EET,

Z fuhu(e— By )y

:E T

E'I::S'r, U, E]I:

hl:s:;] ,'L[h Mk EI.JII 1

) Forenss

EE Ty

— 2,36 0 — Bred(y)]

(67)

s_ Z Z ma.x.Dg [eign yligrle — Bred(gig1) — tin (g Jie — Bnediyi]] .

hoEd, rezl

(88)

Simple manipulabions of the mulbiplicabive inequality (20) together with Caudy-
Schwarz’s and Young’s inequalities (17) and (18] lead to the following bounds:

We obbain FigL+ F
A] € LT (o2 4 egf ), (69)
—_ 2
o] £ |5 — suf* + |8 — sh[* + & (32 +£%) 2 sT7|¢)?
33 !
15| = Zu (1)) — [l *)
IEI:_
1
+ Eihis’—siiﬂiish—sﬂ{||e||3+|e|3)- (71)
r]

In (70), the constant £ only depends on #q and L. In order to estimate |7,|, we
proceed as follows:

| 4]

| A

(3 1Y S

ey
+
|5 = sn| =5 D (| Deuan()e(1)] +| Deasan]| ]
CRIr=—
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) & 1-a 5+ =n ||E'||.5‘+.5‘h
< s sulllell’le ™" 7" D Deluinl)] +]s —sult > [ Desian
RT3 iET,
Sl T, Diluntl)]y
£ s+sh 2 ET, Up
R I G = ) )
h b

To pound above |Js|, we firstly note that since Ene is the Lagrange interpalant
of e, then we have that (¢ — By Je(y,) = 0foralli € J, U {rn+1}. Additionally,
we easily see that

Mct1
f Flunle — Rneldy < || Rlun)l|zzqaghillell mag

Owing to the latter inequality and the embedding B 7;) — HY(0,1) (¥i € J,.],
we deduce the following bound on |fg|:

Me41
|| = Zf Rlun)(e — Breldy

EES,
= Z||R':“h:'||L=(J=;|h='3||e||ff1m=;|
EETn
= C(Z ”R(HH}HL?U.JF?-?) I
EEJn
E
< gl 4 e 3 R rpil e (73)

iET,

where ¢ only depends on |Jn| Set Oc := #({f +&*). Combining (63)-(73), we
obtain

1d d P + Fs
§E|E‘|3+ L—SHE'H3 £ fl

e1]* + || *)

3 R ET ”E'”3 e JME

s i i R T e L e B
1 i

+ (;lsf_s':ll +:Thh|3' -3 |> ”E-”3 +£”E||

I
+ (r:eel—fﬂsﬁf“whs’— | +*—"|s—sr.|) e’
5 55y

+elell® I|3 stsn 1 s+ sm 3
prep e R max Do+ 2ls = s Tsis pen . ||ul|
2
|
HIEE ec®s® ) || Riun ||z g bl (74)
5
T,
This finally vields
1d d ||E'||3
sl ol A = sl 1S = L)+ A
+ Ale’lj +A.,|, Z ||R{uhjllﬂiﬂ_.]=:|hi: I::?EII
FETn
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where M{s, s, s, 5,) = L[s' — s} + ‘—"‘rﬂs — 5| and A, (i € {1,2,3,4]) are
uniformly bounded positive coefficients defined by

A]_ = 1:|
Az = 3§+ gk,

¥z =
As = M(s, 5 5,50+ —1Q12+ 2+ (C.ECE‘;F + Qaﬁ;) Bk

=T
LTy I
+ CEC-'E_ETEF ({. h:' g_éEI:L |uh{1}|) ,

58,

A1 = L’ {TH)

It iz worth noting that the right-hand side of (75) depends on up but is inde-
pendent of u, and hence, (75) keeps the a posteriori character.

Applying conveniently Gronwall’s inequality, we conclude the proof of The-
orerm 6.2,

9 Conclusion

The problem discussed in this note represents & simplificakion to & one-phase
setting of a more complex problem poged in two-phase moving domains, which
arizes when modeling the progress of the concrete carbonation via moving reac-
tion interfaces. Qur results can be summarized as follows:

s By means of the a priori estimate (51), we showed that the approxima-
tion by piecewise linear finite elements for the semi-discretization in space
converges to the solubion of the initial problem when the discrebization
grid tecomes finer. (51} al=o shows an order of convergence of (k) for
our semi-discretizabion method.

# The a posteriori error estimate (52) can be employed in order to calculate
in an adaptive manner the 1T penetration of a sharp carbonation front in
concrete.

We expect that the way we proceeded to cbtain the error eshtimates may be
applied to deal with a wealth of 1D scenarios, in which several moving phases
and internal fixed or moving boundaries occur.
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gpecial priorvity program SPP1122 Prediction of the course of physicochemical
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