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Abstract

Concrete carbonation, i.e. the reaction of alkaline species (inside the concrete) with at-
mospheric carbon dioxide, is one of the major physicochemical processes compromising the
service life of concrete structures. While the main carbonation reaction is that of calcium hy-
droxide, other constituents such as calcium silicates or calcium-silcate hydrates in the concrete
can also carbonate. Many authors neglect the carbonation of these additional constituents
competing with calcium hydroxide for carbon dioxide when formulating prediction models.
This paper is concerned with the theoretical and numerical investigation of this competition.
In particular, the effect on the simulated carbonation depth, i.e. the depth how far the car-
bonation layer has advanced into the concrete at any given time, is investigated. For this
purpose, the concrete-carbonation process is modelled by a semi-linear coupled system of
reaction-diffusion equations. For this system, a dimensional analysis is carried out and it is
solved by numerical techniques. Experimental data is used for reference.
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1 Introduction

Steel bars in reinforced concrete are protected from corrosion by the highly alkaline environment
inside the concrete (pH ≈ 13). If the pH decreases in the environment of the reinforcements, this
protection ceases and the steel bars can corrode. Consequently, the rusting of the reinforcement
usually leads to a severe reduction of the durability of the structure. The main process that
destroys the protection by alkalinity is concrete carbonation, i.e. the reaction of alkaline species (in
the concrete) with atmospheric carbon dioxide to produce calcium carbonate amongst other species.
Detailed surveys and literature accounts on the carbonation problem and related aspects concerning
the durability of concrete can be found, for instance, in [Bie88, Kro95, Cha99, MIK03, Sis04] and
references therein.

The carbonation process is associated with several reaction and transport mechanisms. The
main carbonation reaction is that of calcium hydroxide which may be described by

CO2(g → aq) + Ca(OH)2(s → aq) −→ CaCO3(aq → s) + H2O. (1.1)

Other constituents in the concrete can also carbonate, particularly calcium-silicate hydrate (CSH)
and unhydrated calcium silicates (CS), but are commonly neglected when simulating concrete
carbonation. The main focus of this paper is the investigation of the influence of these (usually
neglected) species and the effects of their competition with calcium hydroxide for carbon dioxide
in concretes with ordinary portland cement (OPC).

A short summary of the carbonation scenario that we focus on here can be given as follows:
The atmospheric carbon dioxide diffuses through the unsaturated concrete matrix, dissolves in the
pore water via a Henry-like transfer mechanism, and then reacts in the presence of water with
available carbonatable constituents. These are available in the pore solution by dissolution from
the solid matrix. At the same time, CS hydrate (i.e. they react with water) to calcium hydroxide
and CSH. Once building up, carbonates precipitate quickly to the solid matrix.

Experimental evidence suggests that the bulk of the carbonation reaction (1.1) is located on an
internal reaction layer of a priori unknown width which is formed initially and progresses into the
material afterwards [cf. PVF89, e.g.]. Therefore, our main interest is in the carbonation pentration
depth, which determines how far this reaction layer has advanced into the concrete sample at a
given time. It was also shown experimentally that the CSH starts carbonating as soon as the
available calcium hydroxide has been depleted by via (1.1) [cf. Cha97, e.g.]. However, it is not
clear when the carbonation of CS starts.
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The carbonation reactions of the other carbonatable species are not as fast as that of calcium
hydroxide but are still faster than the hydration reactions (in the late stage of hydration considered
here). However, all of these reactions compete for carbon dioxide. It is the aim of this research
to investigate the competition of carbonation and hydration as well as the competition between
several parallel carbonation reactions. This is particularly interesting since many authors neglect
all of these aspects when modelling and simulating concrete carbonation which may lead to an
over-estimation of the real carbonation depth. We investigate the formation and the evolution of
possible additional internal layers associated with the respective reactions of the other carbonatable
constituents. This is particularly studied with respect to the layer formed due to the carbonation
of calcium hydroxide. The numerical studies are based on a proper nondimensionalisation of the
governing system of equations allowing easy comparisons and identification of characteristic time
scales.

Cf. [Ram01, Tay97], e.g., there are various problems associated with the determination of water
chemically associated with CSH. For instance, it is difficult to really distinguish this (gel) water
from the free water which is present in the pores. In our model, we explicitly distinguish between
the moisture (pore water and moist air) and the gel water and only consider the evolution of the
moisture while assuming a constant (sufficient) amount of gel water to be present in the porous
matrix. However, more research has to be initiated in order to translate the present considerations
in a double-porosity model [cf. Hor97, e.g.] which might be more appropriate to describe such
scenarios. Such a model allows for variations in the gel porosities as well. Evidence on concrete
materials presenting a double-porosity structure has been drawn by Houst and Wittmann [cf.
Hou96, HW02]. We do not strictly follow this direction here and rather try to see some of the
effects due to the carbonation of CSH and unhydrated constituents on the penetration curve which
is the main output of the model. This problem is also related to the various morphologies and
multiple choice of stoichiometry for the CSH compound. In this work, the precise morphology and
stoichiometry of CSH plays no role. For definiteness, we only consider one particular stoichiometry
for CSH.

We consider the hydration process in its final period (namely, much time after the 26 hours
after the mixing referred to in table 1 in [MS01], e.g.). In an accelerated test, it is usually as-

sumed that the hydration is complete [cf. Sis04, Ste00]. Nevertheless, we account for an almost

complete hydration reaction and study a special competition between hydration and carbonation
of unhydrated constituents. We do not go into detail in what the modelling of the hydration is
concerned but rather refer the reader to [Tay97, Ram01, PVF89] for fairly detailed descriptions
of the physicochemical processes, or to [PBK01, SBK03] for a presentation of some mathematical
issues concerning some of the existing hydration models.

The paper is organised as follows: In section 2, the problem under consideration is specified in
detail and we particularly discuss the chemical processes associated with the concrete-carbonation
problem. In section 3, these results are used to formulate a complete system of reaction-diffusion
equations including intial and boundary conditions for all species under consideration. In order to
investigate numerically the course of the carbonation process we introduce a weak formulation of
the problem and perform its nondimensionalisation in section 4. The largest part of this paper is
section 5. It contains a significant part of our numerical experiments. Basic results (penetration
curves and concentration profiles) obtained when simulating an accelerated carbonation test are
given. We particularly study the competition of carbonation and hydration and that between the
different carbonation reactions as well as their effect on the penetration curves. Moreover, we
investigate the effect of changes in the rapidness of the carbonation and hydration reactions on the
penetration curves. Finally, we summarise the simulation results and conclusions in 6. The values
of all parameters used in this paper can be found in the appendix.
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2 Main setting

In this section we shortly describe the setting under consideration and discuss some chemical issues.
Moreover, the basic geometry and notation is introduced.

2.1 Basic geometry and porosity

We focus on a part of a concrete member which is exposed to ingress of gaseous CO2 and humidity
from the environment. Fig. 1a shows a typical control volume (box A) in such a structure. We
denote by Ω the part of the concrete sample contained in box A, for which we model the carbonation
process. The dark area points out a zone Ωε(t) or a very thin front Γ(t) of steep change in pH
dependent on the time variable t. This indicates that the carbonation reaction is in its fast regime:
namely the characteristic reaction time is much faster than the characteristic diffusion time of the
fastest active species (here CO2(g)). Ω2(t) denotes the uncarbonated zone, Ω1(t) is the carbonated

zone, and ΓN and ΓR are the interior and exterior boundaries, respectively (not shown in the
figure). For ease of notation, we also define Γ := ΓN ∪ ΓR. Our considerations are also valid for
cylindrical concrete structures as long as the carbonation-reaction zone has not advanced too far
into the concrete. Then, what we have in mind is depicted in Fig. 1b and Ω is the concrete part of
box B. Since we are only interested in the forming and propagation of the carbonation layers within
Ω, we do not consider situations where the layers get close to the unexposed boundary ΓN. We
prescribe homogeneous Neumann boundary conditions at these parts (cf. section 3). Therefore, the
real width of the concrete sample is of no relevance in our considerations as long as Ω is chose wide
enough. Unlike the case of moving-interface formulations [BKM03b, e.g.], we cannot say anything
a priori about the widths of the carbonated and uncarbonated regions.

a) b)

Figure 1: a) Typical corner of a concrete structure. Box A is the region which our model refers to.
b) Cross section of a cylindrical concrete sample. Box B is the region which our model refers to.

We introduce some concepts usually needed to describe reactive processes taking place in porous
media. Ω is composed of the solid matrix Ωs and of the totality of pore voids Ωp. Furthermore,
since the pore space is unsaturated and carbonation is a heterogeneous process, Ωp splits into Ωa

(the parts filled with dry air and water vapors) and Ωw(the parts filled with liquid water). We
denote by the volumetric ratio φ := |Ωp|/|Ω| the concrete porosity and by φj := |Ωj |/|Ωp| the air
and water fractions, where j ∈ {a, w}. Like other authors [cf. SSV95, SV04, Ste00, e.g.], we assume
a constant concrete porosity, i.e. the porosity does not change during the course of carbonation
and last stage of hydration. Cf. [PVF89], we calculate it as

φ :=
Rw/c

ρc

ρw
(

Rw/c
ρc

ρw
+ Ra/c

ρc

ρa
+ 1

) , (2.1)
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where Rw/c and Ra/c represent the water-to-cement and aggregate-to-cement ratios, while ρa, ρw

and ρc are aggregate, water and concrete densities, respectively. Throughout the paper, the space
variable is denoted by x ∈ Ω.

2.2 Chemistry

It is well-known [cf. PVF89, e.g.] that if the hydration reactions are not complete, then some of
the unhydrated constituents may carbonate. Consequently, we expect that a special competition
between hydration and carbonation reactions may take place in the concrete structure. Such a
competition does not seem to be too significant in the case of accelerated testing, mainly due to
the high hydration degree which is reached by the sample during the period before the accelerated
test starts. On the other hand, since much more CO2 is available for reaction, the effect might be
stronger yet again. For natural carbonation, these competitive effects might be stronger because
of the lower (initial) degree of hydration of the sample [cf. Ste00, PVF89]. On the other hand, for
a natural carbonation setting the state of hydration at a given time is generally unknown. For this
reason, we focus on the simulation of accelerated tests for which the state of hydration is fairly
certain at the beginning of the test. Nevertheless, the model derived in the sequel also applies to
natural carbonation. The carbonation of other alkaline species like KOH, NaOH and Mg(OH)2,
e.g., and of the aluminate phases is neglected in this first approach. See [Ste00, e.g.] for more
details on this subject.

2.2.1 Hydration reactions

The main species to be hydrated are 2CaO · SiO2 (dicalcium silicate, C2S) and 3CaO · SiO2 (tri-
calcium silicate, C3S). The products of their hydration are 3CaO · 2SiO2 · 3H2O (calcium silicate
hydrate, CSH) and Ca(OH)2. The hydration reactions of C2S and C3S are given by

2(2CaO · SiO2) + 4H2O −→ (3CaO · 2SiO2 · 3H2O) + Ca(OH)2, (2.2)

2(3CaO · SiO2) + 6H2O −→ (3CaO · 2SiO2 · 3H2O) + 3Ca(OH)2, (2.3)

respectively [cf. Tay97, PVF89, e.g.]. In the hydration reactions (2.2) and (2.3), water is consumed.
However, these reactions take place in the (porous) matrix space (as opposed to the pore space)
at the late stage of hydration considered here. By matrix space we mean the concrete matrix
which can be considered a porous medium (of low permeability) itself [see Hor97, for some details
concerning the notion of double-porosity models]. We assume that there is a sufficient amount of
water available in the matrix space for the hydration reactions to be completed.

2.2.2 Carbonation reactions

The main carbonation reaction can be described by

Ca(OH)2 + CO2 −→ CaCO3 + H2O. (2.4)

Beside Ca(OH)2, the other hydration product CSH and as well as unhydrated constituents such
as C2S and C3S are susceptible to carbonation. Their carbonation reactions can be described via

(3CaO · 2SiO2 · 3H2O) + 3CO2 −→ (3CaCO3 · 2SiO2 · 3H2O), (2.5)

(2CaO · SiO2) + 2CO2 + νH2O −→ (SiO2 · νH2O) + 2CaCO3, (2.6)

(3CaO · SiO2) + 3CO2 + νH2O −→ (SiO2 · νH2O) + 3CaCO3, (2.7)

respectively. The coefficient ν is an arbitrary positive number of moles of water that is conserved
through the reactions (2.6) and (2.7). Note that these reactions, especially (2.6) and (2.7), take
place in the matrix space and therefore, the water entering in these reactions is not assumed to be
mobile. Moreover, also note that the carbonation reactions (2.6) and (2.7) do not directly affect
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the alkalinity of the concrete. We may account for this scenario provided the concrete is sufficiently
wet and all phases are available to CO2.

In general, CSH has a variable stoichiometry. There are at least five different morphologies
of CSH-phases which grow during the hydration process [cf. SD96, CTTJ04, DdNC05, e.g.]. In
this approach, the exact morphology is not relevant and for definiteness, we restrict ourselves
to the stoichiometric combination (3-2-3) (also cf. section 5). Amorphous silica gel and calcium
carbonate are usually the end products of cement phases carbonation (see [KK01], [Sis04, p. 22]
and references therein).

2.3 Active concentrations

We define the active concentrations (in grams per cm3) by:

cCO2(g) – concentration of CO2 in pore air,
cCO2

– concentration of CO2 in pore water,
cCa(OH)2

– concentration of Ca(OH)2 ,
w – concentration of (mobile) moisture,
cCaCO3 – concentration of CaCO3,
cCSH – concentration of CSH,
cC2S – concentration of C2S,
cC3S – concentration of C3S.

We refer to w as total humidity, or total moisture, or simply, moisture – in all cases this variable
encorporates the pore water and the vapors from the air-filled parts of the pore. However, it does
not include the immobile water stored in the porous matrix (like gel water, e.g.).

3 Mass balances

Before formulating the mass balances of the active species, we introduce the specific form of the
production terms.

3.1 Production terms

The kinetics of the carbonation and hydration reactions are assumed to be of power-law type [cf.
FB90, e.g.]. While we assume standard reaction-rate constants for the carbonation reaction (2.5)–
(2.7) and the hydration reactions (2.2), (2.3), an improved reaction constant is used for the rate
constant of the carbonation reaction of Ca(OH)2. It incorporates the fact that the rapidness of
this reaction depends on the moisture potential w. We only give a short summary here. For more
details see [MPMB05]. Other production terms due to dissolution, precipitation and exchange
with the environment are discussed afterwards.

3.1.1 Production by hydration

The production terms by hydration, ηhydr
j for j ∈ {C2S, C3S}, are defined by means of power-law

kinetics in the following way

ηhydr
j := Chydr

j (cj)
pj , (3.1)

where Chydr
j := khydr

j /(c0
j )

pj−1. Here, c0
j is the initial concentration of species j, while the factor

khydr
j is the reaction constant for the (hydration) reaction between constituent j and water. The

exponents pj are the partial reaction orders of species j with respect to the hydration reaction.
Following [PVF89], we choose pC2S = 3.10, pC3S = 2.65. Therefore, we define the production terms
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due to hydration by

fhydr
C2S := Chydr

C2S (cC2S)pC2S and fhydr
C3S

:= Chydr
C3S (cC3S)pC3S . (3.2)

3.1.2 Production by carbonation

We define the reaction rate of reaction (2.4) as

ηreac
Ca(OH)2

:= Creac
Ca(OH)2

fhum(w)cp
CO2

cq
Ca(OH)2

, (3.3)

where Creac
Ca(OH)2

is the reaction constant. For the partial orders of reaction p, q, we assume p, q ≥ 1.

The factor fhum(w) is defined as

fhum(w) := ghum(RH(w)). (3.4)

RH is the relative humidity calculated from w. The equilibrium with the relative humidity RH is
implicitly assumed by using an sorption isotherm RH(w). For a range of RH ∈ [50%, 80%] the
sorption isotherm can be well approximated by an affine function, namely

RH(w) = a + b · φ · w, (3.5)

where a and b are porosity-dependent fitting parameters from [Ste00], see table 1 in the appendix
for their values. The clipping factor (3.4) describes the dependence of the carbonation kinetics on
RH. According to [Ste00, SSV93], it can be written as

ghum(RH) :=











0, RH ≤ 0.5,

5/2(RH − 0.5), 0.5 < RH ≤ 0.9,

1, RH > 0.9.

(3.6)

We are only aware of few references where possible values for C reac
Ca(OH)2

are mentioned ([Ste00,

IM01, Cha99], e.g., in case of a first-order kinetics w.r.t. CO2).

To point out the structure of the carbonation-reaction rates of reactions (2.5)–(2.7), we follow
the modelling ideas in [PVF89]. For j ∈ {CSH, C2S, C3S}, we define the production terms by
carbonation by as

ηreac
j := Creac

j cCO2 , (3.7)

where Creac
j := kreac

j as
j and kreac

j is the reaction constant for the reaction between the constituent j
and CO2(aq). The factor as

j represents the liquid-exposed surface area of the constituent j. There
is some uncertainty about the ratio of the constants of reactions (2.4) and (2.5). For this, only

a lower estimate can be obtained from the literature, namely
kreac

j

kreac
Ca(OH)2

> 2.4 · 10−3 [cf. PVF89].

For the simulations we select a value for kreac
j such that the latter estimate is satisfied. Then,

we point out the effect of varying kreac
j on the penetration depth. Therefore, we define the local

carbonation-reaction terms as

f reac
Ca(OH)2

:= Creac
Ca(OH)2

fhum(w)cp
CO2

cq
Ca(OH)2

, (3.8a)

f reac
CSH := Creac

CSHΘ(cCSH)cCO2
, (3.8b)

f reac
C2S := Creac

C2SΘ(cC2S)cCO2 , (3.8c)

f reac
C3S := Creac

C3SΘ(cC3S)cCO2
, (3.8d)

where Θ: R→ {0, 1} is the Heaviside function,

Θ(u) =

{

1, u > 0,

0, u ≤ 0.
(3.9)
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3.1.3 Other production terms and boundary conditions

We model the interfacial mass transfer from pore air to pore water by means of Henry’s law. The
corresponding production term has the form

fHenry := Cex
(

CHenrycCO2(g) − cCO2

)

, (3.10)

where Cex is the interfacial mass-transfer coefficient and CHenry is the dimensionless Henry con-
stant.

We implicitly assume instantaneous dissolution and precipitation of some of the carbonation
reactants and products. Moreover, we assume homogeneous Neumann boundary conditions for all
diffusing species at the interior boundary. At the exterior boundary, Robin boundary conditions
are assumed for cCO2(g) and w while homogeneous Neumann boundary conditions are applied for
all other diffusing species. The fluxes across the external boundary are expressed as

ηRob
CO2(g) := CRob

CO2(g)(cCO2(g) − cext
CO2(g)), (3.11a)

ηRob
H2O := CRob

H2O(w − wext), (3.11b)

where the constants CRob
j represent mass-transfer coefficients at the external boundary and cext

CO2(g)

and wext are given exterior concentration of CO2 and the moisture potential, respectively.

3.2 Mass balances of active species

We formulate the macroscopic mass balances for CO2 in both phases (gaseous and liquid) and for
Ca(OH)2, CaCO3, CSH, C2S and C3S in the liquid phase. The fact that the latter species should
actually be associated with the solid matrix is taken care of via the structure of the reaction-
rate constants. For moisture, we assume a local equilibrium of the gas and liquid phase [see
Ste00, Arf98, Gru97, e.g.]. Moreover, we do not further distinguish between the products 3CaCO3 ·
2SiO2 · 3H2O and 3CaCO3. A more detailed description on the general modelling aspects of the
carbonation problem can be found in [BKM03b, BKM03a, Mun05].

We formulate the system of reaction-diffusion equations independent of the space dimension.
The time interval of interest is denoted by S. For numerical simulations, we only consider the case
of one space dimension. In the formulation of the mass balances, we make use of some additional
notation, namely mj (the molar mass of species j) and Dj (the microscopic diffusivity of species
j), ν (the outer normal unit vector), and the superscript 0 which denotes initial concentrations.
Based on the discussion in the previous subsections, the complete model can be formulated in the
following manner:

Mass balance for CO2(g):

∂t

(

φφacCO2(g)(x, t)
)

−∇ ·
(

DCO2(g)φφa∇cCO2(g)(x, t)
)

= −fHenry(x, t), x ∈ Ω, t ∈ S, (3.12a)

−(DCO2(g)φφa∇cCO2(g)(x, t)) · ν = 0, x ∈ ΓN, t ∈ S, (3.12b)

−(DCO2(g)φφa∇cCO2(g)(x, t)) · ν = CRob
CO2(g)(cCO2(g)(x, t) − cext

CO2(g)(x, t)), x ∈ ΓR, t ∈ S,

(3.12c)

cCO2(g)(x, 0) = c0
CO2(g)(x), x ∈ Ω. (3.12d)

Mass balance for CO2:

∂t

(

φφwcCO2
(x, t)

)

−∇ ·
(

DCO2
φφw∇cCO2

(x, t)
)

= fHenry(x, t) (3.13a)

+ mCO2
φφw

(

−f reac
Ca(OH)2

(x, t) − 3f reac
CSH(x, t) − 2f reac

C2S (x, t) − 3f reac
C2S (x, t)

)

, x ∈ Ω, t ∈ S,

−(DCO2
φφw∇cCO2

(x, t)) · ν = 0, x ∈ Γ, t ∈ S, (3.13b)

cCO2
(x, 0) = c0

CO2
(x), x ∈ Ω. (3.13c)
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Mass balance for Ca(OH)2:

∂t

(

φφwcCa(OH)2
(x, t)

)

−∇ ·
(

DCa(OH)2
φφw∇cCa(OH)2

(x, t)
)

(3.14a)

= mCa(OH)2
φφw

(

−f reac
Ca(OH)2

(x, t) +
1

2
fhydr
C2S

(x, t) +
3

2
fhydr
C3S (x, t)

)

, x ∈ Ω, t ∈ S,

−(DCa(OH)2
φφw∇cCa(OH)2

(x, t)) · ν = 0, x ∈ Γ, t ∈ S, (3.14b)

cCa(OH)2
(x, 0) = c0

Ca(OH)2
(x), x ∈ Ω. (3.14c)

Mass balance for (mobile) moisture:

∂t

(

φw(x, t)
)

−∇ ·
(

DH2Oφ∇w(x, t)
)

= mH2Oφφwf reac
Ca(OH)2

(x, t), x ∈ Ω, t ∈ S, (3.15a)

−(DH2Oφ∇w(x, t)) · ν = 0, x ∈ ΓN, t ∈ S, (3.15b)

−(DH2Oφ∇w(x, t)) · ν = CRob
H2O(w(x, t) − wext(x, t)), x ∈ ΓR, t ∈ S, (3.15c)

w(x, 0) = w0(x), x ∈ Ω. (3.15d)

Mass balance for CaCO3:

∂t

(

φφwcw
CaCO3

(x, t)
)

(3.16a)

= mCaCO3
φφw

(

f reac
Ca(OH)2

(x, t) + 3f reac
CSH(x, t) + 2f reac

C2S (x, t) + 3f reac
C3S (x, t)

)

, x ∈ Ω, t ∈ S,

cCaCO3
(x, 0) = c0

CaCO3
(x), x ∈ Ω. (3.16b)

Mass balance for CSH:

∂t

(

φφwcw
CSH(x, t)

)

(3.17a)

= mCSHφφw

(

−f reac
CSH(x, t) +

1

2
fhydr
C2S

(x, t) +
1

2
fhydr
C3S

(x, t)

)

, x ∈ Ω, t ∈ S,

cCSH(x, 0) = c0
CSH(x), x ∈ Ω. (3.17b)

Mass balance for C2S:

∂t

(

φφwcw
C2S(x, t)

)

= mC2Sφφw
(

−f reac
C2S (x, t) − fhydr

C2S
(x, t)

)

, x ∈ Ω, t ∈ S, (3.18a)

cC2S(x, 0) = c0
C2S(x), x ∈ Ω. (3.18b)

Mass balance for C3S:

∂t

(

φφwcw
C3S(x, t)

)

= mC3Sφφw
(

−f reac
C3S (x, t) − fhydr

C3S
(x, t)

)

, x ∈ Ω, t ∈ S, (3.19a)

cC3S(x, 0) = c0
C3S(x), x ∈ Ω. (3.19b)

For consistency, we also included the factors φφw in (3.17)–(3.19). Therefore, the formulation
(3.12)–(3.19) is also true for porosities dependent on space or time.

4 Numerical implementation

In this section, we first present a weak formulation of the model (3.12)–(3.19). Afterwards, we
perform a nondimensionalisation of all quantities which results in the final system of equations to
be implemented using the finite element method [analogously as in MPMB05].
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4.1 Weak formulation

We reformulate the system (3.12)–(3.19) in terms of macroscopic quantities. More precisely, we
perform a transformation of the quantities from the previous section into volume-averaged concen-
trations of the form

c̃CO2(g) := φφacCO2(g), c̃CO2
:= φφwcCO2

, w̃ := φw, etc. (4.1)

We exclusively use the macroscopic quantities in the following, so – for ease of notation – we omit
the tilde from now on. The main advantage of this procedure is that the porosities solely appear
on the right-hand sides of the equations, i.e. in the production terms.

Define the spaces V and W as

V = H1(0, T ; L2(Ω)), (4.2)

W = {v ∈ L2(0, T ; H1(Ω)) | ∂tv ∈ L2(0, T ; (H1(Ω))′)}, (4.3)

and denote the L2(Ω)-scalar product by ( · | · )Ω. Note that we have ∂Ω = ΓN ∪ ΓR (disjoint). See
[DL92] for the definition of the function spaces in (4.2) and (4.3).

The weak formulation of problem (3.12)–(3.19) in terms of macroscopic concentrations is given
by

cCO2(g) ∈ W , cCO2(g)(0) = φφac0
CO2(g) such that

(∂tcCO2(g) | v)Ω + DCO2(g)(∇cCO2(g) | ∇v)Ω

= −(fHenry | v)Ω − CRob
CO2(g)(cCO2(g) − φφacext

CO2(g) | v)ΓR ,

(4.4)

cCO2
∈ W , cCO2

(0) = φφwc0
CO2

such that

(∂tcCO2
| v)Ω + DCO2

(∇cCO2
| ∇v)Ω = (fHenry | v)Ω

+ mCO2(−f reac
Ca(OH)2

− 3f reac
CSH − 2f reac

C2S − 3f reac
C2S ) | v)Ω,

(4.5)

cCa(OH)2
∈ W , cCa(OH)2

(0) = φφwc0
Ca(OH)2

such that

(∂tcCa(OH)2
| v)Ω + DCa(OH)2

(∇cCa(OH)2
| ∇v)Ω =

mCa(OH)2
(−f reac

Ca(OH)2
+

1

2
fhydr
C2S (x, t) +

3

2
fhydr
C3S | v)Ω

(4.6)

w ∈ W , w(0) = φw0 such that

(∂tw | v)Ω + DH2O(∇w | ∇v)Ω = mH2O(f reac
Ca(OH)2

| v)Ω − CRob
H2O(w − φwext | v)ΓR ,

(4.7)

where each equation needs to be satisfied for a.e. in S and all v ∈ W as well as

cCaCO3
∈ V , cCaCO3

(0) = φφwc0
CaCO3

such that

(∂tcCaCO3
| v)Ω = mCaCO3

(f reac
Ca(OH)2

+ 3f reac
CSH + 2f reac

C2S + 3f reac
C3S | v)Ω,

(4.8)

cCSH ∈ V , cCSH(0) = φφwc0
CSH such that (∂tcCSH | v)Ω = mCSH(−f reac

CSH +
1

2
fhydr
C2S +

1

2
fhydr
C3S | v)Ω,

(4.9)

cC2S ∈ V , cC2S(0) = φφwc0
C2S such that (∂tcC2S | v)Ω = mC2S(−f reac

C2S − fhydr
C2S

| v)Ω, (4.10)

cC3S ∈ V , cC3S(0) = φφwc0
C3S such that (∂tcC3S | v)Ω = mC3S(−f reac

C3S − fhydr
C3S

| v)Ω, (4.11)

where each equation needs to be satisfied a.e. in S for all v ∈ V . Some of the production terms
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need to be re-defined due to the switch from microscopic to macroscopic quantities. These are

fHenry := Cex(CHenry(φφa)−1cCO2(g) − (φφw)−1cCO2
), (4.12)

f reac
Ca(OH)2

:= Creac
Ca(OH)2

fhum(φ−1w)(φφw)1−p−q(cCO2
)p(cCa(OH)2

)q , (4.13)

fhydr
C2S := Chydr

C2S (φφw)1−pC2S(cC2S)
pC2S , (4.14)

fhydr
C3S := Chydr

C3S (φφw)1−pC3S(cC3S)
pC3S . (4.15)

4.2 Nondimensionalisation

We introduce the following nondimensional quantities,

u1 := cCO2(g))/cm
1 , u2 := cCO2

/cm
2 , u3 := cCa(OH)2

/cm
3 ,

u4 := w/cm
4 , u5 := cCaCO3

/cm
5 , u6 := cCSH/cm

6 , (4.16)

u7 := cC2S/cm
7 , u8 := cC3S/cm

8 ,

where cm
j , j = 1, . . . , 8, are some maximal concentrations. In order to make a reasonable choice for

the cm
j and to simplify the model, we make the following assumptions :

1. cCO2(g)(0) = cCO2
(0) = cCaCO3

(0) = 0.

2. cext
CO2(g), wext, c0

Ca(OH)2
, w0, c0

CaCO3
, c0

CSH, c0
C2S, c0

C3S are positive constants.

3. Diffusion of the species in water is sufficiently slow compared to diffusion in air.

Note that assumptions 1–3 are not inevitable but very much simplify making an appropriate choice
for the cm

j . They lead to the following definitions of the maximal concentrations:

cm
1 := φφacext

CO2(g),

cm
2 := φφwCHenrycext

CO2(g),

cm
3 := φφwc0

Ca(OH)2
+

1

2

mCa(OH)2

mC2S
φφwc0

C2S +
3

2

mCa(OH)2

mC3S
φφwc0

C3S,

cm
4 := max

{

mH2O

mCa(OH)2

cm
3 + φw0, φwext

}

,

cm
5 :=

mCaCO3

mCa(OH)2

cm
3 + 3

mCaCO3

mCSH
cm
6 + 2

mCaCO3

mC2S
cm
7 + 3

mCaCO3

mC3S
cm
8 ,

cm
6 := φφwc0

CSH +
1

2

mCSH

mC2S
φφwc0

C2S +
1

2

mCSH

mC3S
φφwc0

C3S,

cm
7 := φφwc0

C2S,

cm
8 := φφwc0

C3S.

(4.17)

Define a characterisitic diffusion time for the fastest species involved, CO2(g), as

T := L2/DCO2(g), (4.18)

and let t̃ := t/T and x̃ := x/L be the nondimensional time and space coordinates. An analogous
nondimensionalisation was also used for the model considered in [MPMB05].
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With definitions (4.16)–(4.18) we are led to the introduction of the following dimensionless
combinations,

β2 :=
cm
2

cm
1

, β3 :=
cm
3 mCO2

cm
1 mCa(OH)2

, β4 :=
cm
4 mCO2

cm
1 mH2O

, β5 :=
cm
5 mCO2

cm
1 mCaCO3

,

β6 :=
cm
6 mCO2

cm
1 mCSH

, β7 :=
cm
7 mCO2

cm
1 mC2S

, β8 :=
cm
8 mCO2

cm
1 mC3S

,

δ2 :=
DCO2

DCO2(g)
, δ3 :=

DCa(OH)2

DCO2(g)
, δ4 :=

DH2O

DCO2(g)
,

WHen :=
L2

DCO2(g)
Cex, WRob

1 :=
L

DCO2(g)
CRob

CO2(g), WRob
4 :=

L

DCO2(g)
CRob

H2O, (4.19)

Φ2 :=
L2mCO2

(cm
2 )p(cm

3 )q

DCO2(g)c
m
1

Creac
Ca(OH)2

, (Thiele modulus)

R6 :=
L2mCO2

cm
2

DCO2(g)c
m
1

Creac
CSH, R7 :=

L2mCO2
cm
2

DCO2(g)c
m
1

Creac
C2S , R8 :=

L2mCO2
cm
2

DCO2(g)c
m
1

Creac
C3S ,

H7 :=
L2mCO2

(cm
7 )pC2S

DCO2(g)c
m
1

Chydr
C2S , H8 :=

L2mCO2
(cm

8 )pC3S

DCO2(g)c
m
1

Chydr
C3S .

The parameters βj are usually called capacity factors, whereas the δj are ratios comparing each
diffusivity with that of CO2(g), see [PVF89, MPMB05]. The Thiele modulus Φ2 as well as the
factors Rj describe the rapidness of the carbonation reactions where as the Hj describe the rapid-
ness of the hydration reactions. Furthermore, the factors W Hen, WRob

1 and WRob
4 account for the

rapidness of the different types of interfacial mass transfer.

For notational purposes we finally define

uext
1 :=

φφacext
CO2(g)

cm
1

, uext
4 :=

φwext

cm
4

, u0
4 :=

φw0

cm
4

, u0
5 :=

φφwc0
CaCO3

cm
5

,

u0
6 :=

φφwc0
CSH

cm
6

, u0
7 :=

φφwc0
C2S

cm
7

, u0
8 :=

φφwc0
C3S

cm
8

(4.20)

Transformation of system (4.4)–(4.11) to the dimensionless quantities yields the system of equations
to be solved numerically:

u1 ∈ W , u1(0) = 0 such that

(∂tu1 | v)Ω+(∇u1 | ∇v)Ω = −(fHenry | v)Ω − WRob
1 (u1 − uext

1 | v)ΓR ,
(4.21)

u2 ∈W , u2(0) = 0 such that

β2(∂tu2 | v)Ω + β2δ2(∇u2 | ∇v)Ω = +(fHenry | v)Ω + (−f reac
3 − 3f reac

6 − 2f reac
7 − 3f reac

8 | v)Ω,

(4.22)

u3 ∈ W , u3(0) = 1 such that

β3(∂tu3 | v)Ω + β3δ3(∇u3 | ∇v)Ω = (−f reac
3 +

1

2
fhydr
7 +

3

2
fhydr
8 | v)Ω,

(4.23)

u4 ∈ W , u4(0) = u0
4 such that

β4(∂tu4 | v)Ω + β4δ4(∇u4 | ∇v)Ω = (f reac
3 | v)Ω − WRob

4 β4(u4 − uext
4 | v)ΓR ,

(4.24)
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where each equation has to be satisfied for a.e. t ∈ S and for all v ∈ W as well as

u5 ∈ V , u5(0) = 0 such that β5(∂tu5 | v)Ω = (f reac
3 + 3f reac

6 + 2f reac
7 + 3f reac

8 | v)Ω (4.25)

u6 ∈ V , u6(0) = u0
6 such that β6(∂tu6 | v)Ω = (−f reac

6 +
1

2
fhydr
7 +

1

2
fhydr
8 | v)Ω (4.26)

u7 ∈ V , u7(0) = u0
7 such that β7(∂tu7 | v)Ω = (−f reac

7 − fhydr
7 | v)Ω (4.27)

u8 ∈ V , u8(0) = u0
8 such that β8(∂tu8 | v)Ω = (−f reac

7 − fhydr
8 | v)Ω (4.28)

where each equation has to be satisfied for a.e. t ∈ S and for all v ∈ V . The dimensionless
production terms are

fHenry := WHen(CHen(φφa)−1u1 − (φφw)−1β2u2), (4.29)

f reac
3 := Φ2(φφw)1−p−qfhum(u4c

m
4 φ−1)up

2u
q
3, (4.30)

f reac
j := RjΘ(uj)u2, j ∈ {6, 7, 8}, (4.31)

fhydr
k := Hk(φφw)1−pkupk

k k ∈ {7, 8}. (4.32)

In the numerical implementation, we approximate the Heaviside function Θ by

Θapprox(x) :=
x

x + γ
(4.33)

for x ≥ 0 with 0 < γ � 1 in order to avoid numerical problems.

4.3 Carbonation depth

As discussed earlier, we are interested in the prediction of the carbonation penetration depth, i.e. in
how far the carbonation reaction of Ca(OH)2 has advanced into the concrete sample at any given
time. We define the penetration depth to be the isoline which corresponds to a (dimensionless)
Ca(OH)2-concentration equal to 0.1,

s(t) := {x ∈ Ω |u3(x, t) = 0.1} for each t ∈ S. (4.34)

Analogous definitions of the carbonation front can be found in [SSV95, SSV93], e.g. We follow
here the way indicated in [Ste00, SDA02].

4.4 Numerical solution

The equations (4.21)–(4.28) form a weakly-coupled system of semi-linear parabolic partial and
ordinary differential equations. As in [MPMB05], we solve it numerically in one space-dimension
by using a standard finite element discretisation method. More precisely, we accomplish a semi-
discretisation in space on a uniform mesh of width h = 1/(n − 1) by the Galerkin method. For
the test and trial functions, first-order splines are used. In addition, we apply the standard mass-
lumping-scheme, cf. [KA00], e.g. See [GM03] for a detailed description of a similar discretisation

problem. The nonlinear terms f reac
j and fhydr

k are approximated by the trapezoidal rule.

The resulting stiff system of 8 × n ODEs is numerically integrated using the MATLAB ODE
stiff solver ode15s, which is a variable-order solver based on numerical-differentiation formulas
(NDFs).1

The examples in the following section are obtained by choosing n = 80.

1See www.mathworks.com for details and further references.
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5 Numerical simulation of an accelerated carbonation test

In figures 2 and 3, we show dimensionless concentration profiles of all involved species (CO2(g),
CO2(aq), Ca(OH)2, moisture, CaCO3, CSH, C2S and C3S) as well as the carbonation depth.
For this, we use a set of parameters for the accelerated carbonation scenario based on data from
[PVF89] (cf. the appendix for values of the parameters). We refer to this set of parameters as the
standard set in the sequel. The experimental data we are plotting for the carbonation depth is
also due to [PVF89].

The characteristic time scale of the carbonation reaction of Ca(OH)2 is essentially faster than
the characteristic time scales of the carbonation reactions of the other species and of the hydration
reactions. For the standard set of parameters, we have

Φ2 ≈ 103, R6 ≈ 7, R7 ≈ 5, R8 ≈ 4, H7 ≈ 5 · 10−4, H8 ≈ 2 · 10−4.

Moreover, the characteristic diffusion time scale of CO2(g) is considerably faster than those of all
other species (we have δ1 = 1 while the second largest is δ2 ≈ 8 · 10−6).

The present formulation does not allow the diffusion of the additional phases CSH, C2S and
C3S. However, we also investigated what happens if they diffused with the diffusivity of ions in
pore water. There is only a slight change in the quantitative results and none in the qualitative
results. This is basically due to the fact that the ionic diffusivity is very small compared to that
of CO2(g).

Compared to the simulation results of the simplified model [MPMB05], the concentration pro-
files shown in figures 2 and 3 differ only marginally, except that of CaCO3 which now shows a bend
in the decrease. This is due to the fact that in this model, there is more than one source producing
CaCO3. Moreover, the additional profiles of the concentrations of CSH, C2S, and C3S show a
similar behaviour like that of Ca(OH)2. It can be observed that due to hydration reactions, the
concentrations of C2S and C3S also decrease in the uncarbonated part of the concrete sample while
those of CaCO3 and CSH increase. However, these effects are comparably small for the chosen set
of parameters.

Note that assuming a constant moisture profile instead of choosing a PDE for moisture does
not change the qualitative results. Even the quantitative change is fairly small since the moisture
content only enters in the improved reaction rate of the carbonation reaction of Ca(OH)2 (cf. 3.1).
Moreover, we always choose the mass-transfer coefficients at the external boundary of the concrete
sample very high in order to account for Dirichlet boundary conditions. This seems to be a standard
choice when simulating accelerated carbonation tests. For a detailed discussion of the effect of the
moisture on the carbonation penetration we refer to [MPMB05].

The CSH-phases admit several stoichiometries [cf. SD96]. In our model, we only account for a
particular stoichiometry for CSH (namely, 3-2-3). This does not influence the qualitative results
although other stoichiometries may consume more CO2 when carbonating and they may also have
different (carbonation-) reaction constants (they also have different molar masses). We investigate
the effects due to a change of the carbonation-reaction constant in section 5.2.1. This numerical
test may be thought of as considering different CSH stoichiometries.

Since an extensive study of the effects due to variations of some of the relevant parameters was
performed for the simplified model in [MPMB05] (neglecting CSH, C2S, and C3S), we concentrate
on additional effects basically due to the inclusion of the other phases. We investigate the influence
of each carbonation reaction, in particular the consumption of CO2 by each reaction and the
alternate neglect of CSH, C2S, and C3S (cf. section 5.1) as well as the effects due to a variation of
the carbonation- and hydration-rate constants (cf. section 5.2).
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Figure 2: Concentration profiles of the involved species obtained with the standard set of parame-
ters of the accelerated test.
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Figure 3: Profiles of concentrations of C2S and C3S as well as carbonation depth obtained with
the standard set of parameters of the accelerated test.
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Figure 4: Dimensionless production terms of the different carbonation reactions.

5.1 Influence of the competition of parallel carbonation reactions

We want to compare the influence of each carbonation reaction on the penetration depth. In figure
4, the dimensionless production terms

ηreac
j := nreac

j f reac
j , j ∈ {3, 6, 7, 8}, (5.1)

are plotted (with stoichiometric factors nreac
j equal to 1, 3, 2 and 3 for j equal to 3, 6, 7 and 8,

respectively).

It can be observed that the strongest carbonation reaction is that of Ca(OH)2, followed by that
of CSH. The reaction rates of C2S and C3S are essentially smaller. The reaction zone associated
with Ca(OH)2-depletion is the most narrow and most furthest advanced into the concrete sample
at any given time. On the other hand, the reaction zone of CSH is the widest and also lagging
behind the most. The reaction zone of C2S is somewhere in between while that of C3S is quite
similar to that of Ca(OH)2 (apart from the magnitude of the reaction rate). This last fact can be
explained by the comparably small amount of C3S available to carbonation.

Since we expect a strong competition for CO2 by the three carbonation reactions, we are
interested in how much CO2 is consumed by each carbonation reaction. Moreover, since simpler
models usually neglect CSH, C2S, and C3S, we are interested in how great their impact is on the
carbonation of Ca(OH)2. Therefore, we also consider two scenarios and compare them to the full
scenario (cf. figs. 2 and 3): in the first, we neglect CSH, C2S and C3S; in the second, we neglect
C2S and C3S.
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Figure 5: Consumed CO2 due to carbonation of the carbonatable species.

5.1.1 Consumption of CO2 by each carbonation reaction

Since CSH, C2S and C3S cannot diffuse, we can calculate the amount of CO2 which has been
consumed due to each carbonation after any given time. We are particularly interested in the
amount of CO2 consumed by carbonation of each reactant. We denote this quantity with Pj(x, t),
j ∈ {3, 6, 7, 8}. Note that this quantity satisfies the ordinary differential equation

∂t(β2Pj(x, t)) = nreac
j f reac

j , x ∈ Ω, t > 0, Pj(x, 0) = 0. (5.2)

The spatial profiles of Pj(x, t) are plotted in figure 5.

It can be observed that all four species compete for CO2. However, the amount of CO2 con-
sumed by the carbonation of Ca(OH)2 is much greater than that of all other species. Namely, the
amount consumed by carbonation of Ca(OH)2 is four times as great as that of CSH, 16 times as
great as that of C2S and roughly 36 times as great as that of C3S. It is also worth noting that the
reaction zone associated with Ca(OH)2 is always ahead of the other reaction zones. This agrees
with the experimental observations in [Cha97].

5.1.2 Alternate neglect of CSH, C2S, and C3S

In this section we investigate the influence of each carbonation process on the penetration depth.
Recall that the carbonation depth is defined via an a priori fixed isoline of the concentration profile
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Figure 6: Profile of CaCO3 and carbonation depth if CSH, C2S and C3S are neglected (a,b); and
if C2S and C3S are neglected (c,d).

of Ca(OH)2 (cf. sec. 4.3). Therefore, we consider the amount of produced CaCO3 as well as the
carbonation depth in two cases:

• neglect of CSH, C2S, and C3S,

• neglect of C2S and C3S.

These two scenarios are illustrated in figure 6 (also compare with the full scenario, figs. 2e and
3c). Note that since C2S and C3S do not consume much CO2 compared to CSH and Ca(OH)2, it
is reasonable to consider them together.

It can be observed that the carbonation of CSH affects the simulated carbonation depth as
it consumes CO2 which would otherwise be available for carbonation of Ca(OH)2. On the other
hand, the influence of C2S and C3S is almost negligible.
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5.2 Variation of carbonation- and hydration-rate constants

As the carbonation- and hydration-rate constants are somewhat uncertain [cf. PVF89, SD96, e.g.]
we want to illustrate the effects due to their variation. The effect of the variation of the Thiele
modulus on the carbonation penetration depth was extensively investigated in [MPMB05]. There-
fore, we concentrate on the reaction and hydration rates of CSH, C2S, and C3S. Note that the
influence of the additional species is already quite small which is why we only investigate the effect
of faster rates.

5.2.1 Variation of carbonation-rate constants

In figure 7, the dimensionless production terms ηreac
j (also cf. (5.1)), the concentration profile of

CaCO3 as well as the carbonation depth are plotted for the standard setting, except that the
reaction-rate constants of the carbonation of CSH, C2S, and C3S have been chosen ten times
greater.

It can be observed that the carbonation depth is smaller than in the in the standard setting
(figs. 2 and 3). This is due to the fact that more CO2 is consumed by the carbonation of CSH, C2S,
and C3S. Therefore, it is not available for carbonation of Ca(OH)2. Moreover, the concentration
profiles of CSH, C2S and C3S appear steeper and it can be seen that, in this setting, all reaction
zones seem to coincide.

If the carbonation-rate constants of CSH, C2S, and C3S are chosen 100 times greater than in
the standard setting it can be observed that the reaction zones of these additional phases overtake
the one associated with Ca(OH)2 (cf. fig. 8). It is not clear whether these observations reflect
the reality. Nevertheless, it is due to the fact that there is not as much CSH, C2S and C3S
available for carbonation as there is Ca(OH)2. Therefore, these phases are used up more quickly
and the reaction zone associated with them advances more quickly. As in the previous setting, the
carbonation depth is only slightly affected, however. Regarding this last observation, recall again
that the carbonation depth is defined via an isoline of the concentration profile of Ca(OH)2 so that
it does not recover this faster advancement of the reaction zones of the additional phases. It can
also be observed that the maximum of the production term related to carbonation of Ca(OH)2

increases (beside the maxima of the other production terms). This is due to the fact that, in this
setting, the concentration of CO2 at the position of the reaction zone is significantly higher (the
profile of the CO2-concentration changes only slightly compared to the standard setting).

If the reaction-rate constants of CSH, C2S, and C3S are chosen significantly smaller than in
the standard setting (multiplying them by a factor of 1/10 or 1/100, e.g.) the influence of the
additional phases just decreases steadily.

5.2.2 Variation of hydration-rate constants

In figure 9, selected concentration profiles as well as the carbonation depth are shown for the
standard setting but with hydration-rate constants which have been chosen ten times faster than
in figures 2 and 3.

Recall that the overall hydration process is assumed in its final phase. Therefore, it is almost
complete at the beginning of our simulations. However, some small competition effects can be
observed. The concentration profiles of C2S and C3S show a considerable deviation. The influence
on the profiles of interest (the carbonation depth, e.g.) is rather small. Note that even a multipli-
cation of the hydration-rate constants by a factor of 1000 does not have a significant effect on the
carbonation depth.
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Figure 7: Production rates, profile of CaCO3 as well as carbonation depth obtained with
carbonation-reaction rates ten times faster than in the standard setting.
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Figure 8: Production rates, profile of CaCO3 as well as carbonation depth obtained with
carbonation-reaction rates one hundred times faster than in the standard setting.
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Figure 9: Profiles of selected concentrations as well as carbonation depth obtained with hydration-

reaction rates ten times faster than in the standard setting.
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6 Summary and discussion

The carbonation of concrete was investigated taking into account several parallel carbonation and
hydration reactions. A closed system of reaction-diffusion equations was used to model the mass
balances of all active species under consideration. To allow easy comparisons of the importance of
the involved carbonation and hydration reactions, a nondimensionalisation was carried out for this
model. Using results from numerical simulations, the influence of each reaction on the penetration
depth was investigated in detail. Experimental data from [PVF89] was recovered.

Compared to simplified models which neglect CSH, C2S and C3S, it can be observed that the
two silicate phases only have a small influence on the total outcome in the late stage of hydration
considered here. This was found for an accelerated carbonation scenario. Further research is
required with respect to natural carbonation where the effect of CSH and unhydrated constituents
on the penetration depth is not a priori clear.

In general, all species compete for carbon dioxide. This slows down the carbonation of calcium
hydroxide since less carbon dioxide is available to carbonation. This effect, reducing the propaga-
tion speed of the carbonation layer, was of noticable extent only for CSH. Under natural conditions,
experiments suggest that the influence of the carbonation of CSH might become even smaller [cf.
Cha97, e.g.] because of the worse accessibility of carbon dioxide and the possibly lesser amount
of CSH available in the concrete (due to uncomplete hydration). On the other hand, for concretes
with high CSH content (such as those containing blast furnace slag, fly ash, silica fume, etc.), this
influence might be stronger again. Moreover, depending on the cement chemistry, several other
alkaline species such as KOH, NaOH, Mg(OH)2, and aluminate phases may also carbonate and,
altogether, might have a noticable effect on the simulated carbonation depth.

For a large range of parameters, different reaction layers are formed associated with the several
carbonation reactions. On the other hand, the hydration reactions occur fairly uniformly as long
as unhydrated constituents are available. The fact that the reaction layer associated with CSH lags
behind that of calcium hydroxide, which was observed experimentally by [Cha97], is also recovered
in our simulations. We are not aware of experimental information about the formation of reaction
zones associated with the carbonation of C2S or C3S.

It is well-known that the effect of moisture on the carbonation process is of considerable impor-
tance. In the model considered here, a rather simple approach was chosen. The mobile moisture
influencing the rapidness of the carbonation of calcium hydroxide was modelled by a reaction-
diffusion equation weakly coupled with the production term associated with the carbonation of
calcium hydroxide. The effect by immobile moisture stored in the porous concrete matrix was
neglected. Further research is required in order to take into account possible effects of the mobile
moisture (on the diffusivities, e.g.), the immobile moisture (on the reaction rates, e.g.) as well
as couplings between them. A possible better approach could be the use of double-porosity-type
models. More research is required to investigate this issue.
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Appendix: Dimensional parameters

We list the standard sets of dimensional parameters of the reference setting which we use for the
numerical simulations. It refers to ordinary portland cement. There are some parameters which are
definite, for instance the molecular weights of the involved species. Others are generally unknown,
for instance the carbonation-reaction constants, or they strongly depend on the setting considered.
Therefore, we first list all parameters in table 1. We give exact values where the parameters
are definite and ranges where they are uncertain. The particular values used for the numerical
simulations are given in table 2, representing an accelerated carbonation setting. Note that due to
some dependencies, changing a certain parameter may imply several other changes (e.g. changing
Rw/c implies a change in φ which, in turn, implies a different uext

1 etc.).

Most of the values of the dimensional parameters can be found in the standard literature, e.g. in
[Lid02]. For some specifics, we refer to [BKM03b] and [Ste00], as well as [Arf98] for values of DH2O.
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Parameter Value Unit Description
Rw/c 0.4 – 0.6 – water-to-cement ratio
φ 0.1 – 0.6 – concrete porosity
φa 0 – 1 – volume fraction of air-filled pores
φw 0 – 1 – volume fraction of water-filled pores
L 3 cm width under consideration
DCO2(g) 1 – 20 cm2/day diffusion constant for CO2(g)
DCO2 10−6 – 10−2 cm2/day diffusion constant for CO2(aq)
DCa(OH)2 10−9 – 10−5 cm2/day diffusion constant for Ca(OH)2(aq)
DH2O 10−3 – 10−1 cm2/day diffusion constant for moisture
CHenry 0.7 – 0.9 – dimensionless Henry constant
Cex 100 – 106 1/day mass transfer coefficient

for absorption of CO2(g)
CRob

CO2(g) 1 – 105 cm/day mass transfer coefficient for CO2

for exchange at the exposed boundary
CRob

H2O 1 – 107 cm/day mass transfer coefficient for moisture
for exchange at the exposed boundary

Creac
Ca(OH)2

102 – 104 cm3

gp+qday
carbonation reaction constant of Ca(OH)2

Creac
CSH 10−1 – 101 cm3

gday
carbonation reaction constant of CSH

Creac
C2S 10−1 – 101 cm3

gday
carbonation reaction constant of C2S

Creac
C3S 10−1 – 101 cm3

gday
carbonation reaction constant of C3S

Chydr
C2S 10−3 – 10−1 cm3

gpC2Sday
hydration reaction constant of C2S

Chydr
C3S 10−3 – 10−1 cm3

gpC3Sday
hydration reaction constant of C3S

p 1 – exponent in carbonation reaction rate of Ca(OH)2
q 1 – exponent in carbonation reaction rate of Ca(OH)2
pC2S 1 – 4 – exponent in hydration reaction rate of C2S
pC3S 1 – 4 – exponent in hydration reaction rate of C3S
mCO2 44 g/mole molecular weight of CO2

mCa(OH)2 74 g/mole molecular weight of Ca(OH)2
mH2O 18 g/mole molecular weight of water
mCaCO3 100 g/mole molecular weight of CaCO3

mCSH 342 g/mole molecular weight of CSH
mC2S 228 g/mole molecular weight of C2S
mC3S 172 g/mole molecular weight of C3S
φφac0

CO2(g) 0 g/cm3 initial concentration of CO2(g)

φφwc0
CO2

0 g/cm3 initial concentration of CO2(aq)
φφwc0

Ca(OH)2
0.01 – 0.08 g/cm3 initial concentration of Ca(OH)2(aq)

φw0 0.02 – 0.04 g/cm3 initial concentration of moisture
φφwc0

CaCO3
0 g/cm3 initial concentration of CaCO3

φφwc0
CSH 0.01 – 0.1 g/cm3 initial concentration of CSH

φφwc0
C2S 0.001 – 0.01 g/cm3 initial concentration of C2S

φφwc0
C3S 0.001 – 0.01 g/cm3 initial concentration of C3S

cext
CO2

10−3 – 10−7 g/cm3 ambient concentration of CO2(g)
φwext 0.02 – 0.04 g/cm3 ambient concentration of moisture
a −0.11 – fitting parameter in sorption isotherm
b 22.7 cm3/g fitting parameter in sorption isotherm

Table 1: Values and ranges of dimensional parameters.
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Parameter Value Unit
Rw/c 0.5 –
φ 0.54 –
φa 0.5 –
φw 0.5 –
DCO2(g) 12 cm2/day
DCO2 1 · 10−4 cm2/day
DCa(OH)2 1 · 10−7 cm2/day
DH2O 1 · 10−2 cm2/day
CHenry 0.85 –
Cex 1 · 103 1/day
CRob

CO2(g) 1 · 105 cm/day

CRob
H2O 1 · 107 cm/day

Creac
Ca(OH)2

450 cm3

gp+qday
Creac

CSH 0.25 cm3

gday
Creac

C2S 0.18 cm3

gday
Creac

C3S 0.14 cm3

gday
Chydr

C2S 0.014 cm3

gpC2Sday
Chydr

C3S 0.043 cm3

gpC3Sday
pC2S 3.1 –
pC3S 2.65 –
φφwc0

Ca(OH)2
0.077 g/cm3

φw0 0.033 g/cm3

cext
CO2(g) 8.7 · 10−4 g/cm3

φwext 0.033 g/cm3

φφwc0
CSH 0.043 g/cm3

φφwc0
C2S

0.0074 g/cm3

φφwc0
C3S

0.0015 g/cm3

Table 2: Specification of the values of table 1 used in the simulations.



28 REFERENCES

References

[Arf98] J. Arfvidsson. Moisture Transport in Porous Media. Modelling Based on Kirchhoff

Potentials. PhD thesis, Department of Building Technology, Building Physics, Lund
University, 1998. Report TVBH-1010.

[Bie88] Th. A. Bier. Karbonatisierung und Realkalisierung von Zementstein und Beton. PhD
thesis, University Fridericiana in Karlsruhe, Karlsruhe, 1988. Schriftenreihe des Insti-
tuts für Massivbau und Baustofftechnologie. Editors: J. Eibl, H. K. Hilsdorf.
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der beschleunigten Karbonatisierung von Portlandzementen. Berichte aus der Techno-
mathematik 03–12, ZeTeM, University of Bremen, 2003.

[Gru97] J. Grunewald. Diffusiver und konvektiver Stoff- und Energietransport in kapillar-
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tigung von Phasenumwandlungen, Dezember 2002.
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