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Abstract

A numerical method for the approximation of reachable sets of linear
control systems is discussed. The method is based on the formulation of
suitable optimal control problems with varying objective function, whose
discretization by Runge-Kutta methods lead to finite dimensional convex
optimization problems. It turns out that the order of approximation for the
reachable set depends on the particular choice of the Runge-Kutta method
in combination with the selection strategy used for control approximation.
For an inappropriate combination the expected order of convergence can
not be achieved in general. The method is illustrated by two examples
using different Runge-Kutta methods and selection strategies and allows
to estimate the order of convergence numerically.
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1 Introduction

The subject of this paper is the description of an algorithm for the approximation
of reachable sets of linear control problems. The problem of determining convex
reachable sets can be equivalently described by infinitely many optimal control
problems, where the objective function is adapted. By choosing only finitely
many directions approximations of reachable sets can be obtained. The occuring
optimal control problems are not solved theoretically by use of the Pontryagin’s
maximum principle as in [38] but numerically by suitable discretization methods.
This allows to treat also time dependent linear problems and even nonlinear
ones. Non-polyhedral control regions can be treated as nonlinear inequalities
and equalities. Results concerning the convergence of discretized optimal control
problems can be found in [30], [10] and the references stated therein.

In this context, the particular choice of the selection strategy used for control
approximation turns out to be crucial for the order of convergence and depends on
the choice of the Runge-Kutta scheme used for the discretization of the underlying
differential equations. In order to illustrate this dependency several Runge-Kutta
methods with different selection strategies (piecewise constant, piecewise linear,
independent selection) are discussed in more detail for two illustrative examples.

By this approach cumbersome set operations (like Minkowski sums, unions
of sets, ...) can be avoided and lead to comparatively fast methods, which in
addition yield not only the endpoints of optimal trajectories, but the entire trajec-
tory including the corresponding optimal control. However, the close connection
between set-valued analysis and optimal control is shown in Section 3.

Methods for linear differential inclusions based on set-valued quadrature meth-
ods or set-valued Runge-Kutta methods are mentioned in [3] as well as other
methods, e.g. estimation methods for reachable sets (cf. [15]) and ellipsoidal
methods (cf. [23] for an overview). Newer developments of these methods achieve
inner approximations ([24], [26]) and outer approximations [25] of the reachable
set (see also [4]).

The problem of the approximation of reachable sets appears in several disci-
plines: control theory, ordinary differential equations with uncertainties or with
discontinuities in the state, necessary conditions for a minimum in nonsmooth
analysis, differential games and viability theory, cf. [5], [1], [33], [14]. The con-
vexity of these reachable sets can be guaranteed for linear differential inclusions,
but may also appear for nonlinear problems.

The paper is organized as follows. In Section 2 basic notations and proper-
ties of reachable sets are summarized. Basic facts on the description of convex
sets and arithmetic set operations are introduced and form the basis for the re-
sults of Section 3. In particular, the Hausdorff and the Demyanov distances are
defined, which are used to measure the speed of convergence w.r.t. the opti-
mal value and the optimal trajectory, respectively. In Section 3 the problem of
calculating the boundary of the reachable set is reformulated as infinitely many



optimal control problems which differ only in the objective function. These opti-
mal control problems are discretized by use of explicit Runge-Kutta methods and
suitable control approximations resulting in finite dimensional (linear/nonlinear)
optimization problems. Herein, several approximation classes for the control lead
to different selection strategies in the discretization. The section ends with a
formulation of the proposed method for the approximation of reachable sets and
its implementation. Several combinations of Runge-Kutta methods and selec-
tion strategies are discussed in Section 4 with illustrative examples. Tables with
convergence results and visualizations of reachable sets are included. Finally, an
outline for further research conludes the paper.

2 Notation

In this section, some introductory definitions and results are collected.
The basic underlying problem is the following control problem:

Problem 2.1 Let A(:) : R* — R"™™ gnd B(-) : R™ — R™*"™ be two L, -integrable
matrix functions.

Let U C R™ be a nonempty, convex compact set and I == [to,ty] be a real interval.
For a given control function u : I — R™ with u(-) € Lo (I,R™) we are looking
for a solution z(-) € WH®(I,R") of the differential equation

(t) = A(t)z(t) + B(t)u(t) (a.e.tel), (1a)
.I(t()) = Xy, (1b)
u(t) e U (a.e. t€1). (1c)

Definition 2.2 Let us study Problem 2.1 and let t € I. Then,

R(t,to, xo) := {y € R" | Fu(-) control function and Ix(-) corresponding
solution of Problem 2.1 with z(t) = y}

1s called the reachable set of the corresponding control problem for the time t.

In 1965, Aumann discovered the convexity of the set-valued integral in [2]
which easily leads to the convexity of the reachable set for linear control problems.

Proposition 2.3 In Problem 2.1, the reachable set R(t,t,x0) is convez, com-
pact and nonempty for every t € I.

Proof: see e.g. [37, Theorem 1] |
Some notations from Convex Analysis are recalled which are necessary for the
explanation of the algorithm described later.



Definition 2.4 Denote by C(R™) the set of all nonempty convex compact sets in
R™ and let C € C(R") and | € R™.
Then,

§*(1,C) := maxl'c

ceC

is the support function of C in direction | and
Y(,C):={ceC|lTc=6*(1,C)}
is the set of supporting points of C' in direction [.
We need the following property of support functions:

Lemma 2.5 Let C = C; x Cy € C(R") with convex sets C; C R, 6 n; €
{1,...,n}, 1 = 1,2, and ny + ny = n. Then, for given | = (I],l5)" € R*
with l; € R" 1 =1,2, we have:

(5*([,0) = 6*(l1,01) + 5*(l2, CQ)

Proof: see e.g. [19, §V, Discussion after Remark 3.3.6] [ |
Support functions resp. supporting points describe fully a convex compact
set.

Proposition 2.6 Let C € C(R"). Then,

C= () {zer|I'z<6(,0), oc= ] Y(,0),

[It]2=1 llZ]]2=1

C = co U {y(1,C)}) with arbitrary y(I,C) € Y(I,C),

lUll2=1
where OC' denotes the boundary of C' and co(-) denotes the convex hull of a set.

Proof: see e.g. [19, §V., Theorem 2.2.2] and [19, §V., Proposition 3.1.5].

The last equation follows easily, if you estimate the support function of the right-

hand side in direction n by n"y(n, C) = 6*(n, C) from below. |
A common arithmetic operations on sets is the scalar multiplication and the

Minkowski sum which are recalled here.

Definition 2.7 Let C,D € C(R"), A € R and A € R™*". Then,
AC :={Xc|ce C}
defines the scalar multiplication,

AC :={Ac|ce C}



the image of C' under the linear map x — Ax and

C+D:={c+d|ceC,de D}
the Minkowski sum.

We need the following theoretical result which states convexity and compact-
ness of the set operations defined above.

Lemma 2.8 Let C,D € C(R"), A € R and A € R™*". Then, \C, AC and
C + D are elements of C(R™). Furthermore,
§*(1,\C) = \3*(1, C), Y (1,AC) =AY (I, C) (if A > 0),
§*(1,AC) = 6*(AT1,C), Y(I,AC) = AY (AT1,C),
5*(,C + D) = 6*(1,C) + 6*(l, D), Y(I,C+D)=Y(l,C)+Y(,D)
for alll € R".

Proof: To guarantee that the operations give results in C(R") and the equations
on the support functions see [19, §V, Theorem 3.3.3(i) and Proposition 3.3.4].
The equations on the supporting set follow immediately from calculus rules on
the subdifferential in [19, §VI, Theorem 4.1.1 and equation (3.1)] and [32, The-
orem 23.9], since [19, §VI, Proposition 2.1.5 and equation (3.1)] connects the
subdifferential of the support function and the supporting set. [ |

Definition 2.9 Let C,D € C(R"). Then,
d(C, D) := maxmin ||c — d||o,
ceC deD
dy(C, D) := max{d(C, D),d(D, C)}
are defining the one-sided Hausdorff distance resp. the Hausdorff distance of the

two sets.
The Demyanov distance between two sets is defined as

dp(C, D) := sup |[[y(l,C) —y(l, D)2,

leTeNTp

where T is defined as set of all normed directions in R™ for which the supporting
set Y(I,C) consists of only one point y(I,C) (Tp is defined analogously for the
set D). Te and Tp are subsets of the unit sphere of full measure.

Well-known properties of the support function make it easy to prove the
following result for the Hausdorff-distance:

Proposition 2.10 Let C, D € C(R"). Then,
dg(C, D) := max |6*(l,C) — 6*(l, D)| < dp(C, D).

lIEf]2=1

Proof: see e.g. [19, §V, Theorem 3.3.8] and [9, Lemma 4.1] [ |
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3 New Method for the Approximation of Reach-
able Sets

3.1 Computation of the Reachable Set by Optimal Con-
trol

Since we know from Proposition 2.3 that the reachable set for problem 2.1 is
convex, it is sufficient to calculate merely the boundary of the reachable set.

Proposition 2.6 gives a motivation to calculate at least one support point
(which lies automatically at the boundary) of the reachable set in direction [ € R"
with ||/l = 1. Note that even in the case that the reachable set is not strictly
convex and the set of supporting points is a (n — 1)-dimensional face, for a fixed
direction [, one supporting point in this direction is sufficient to reconstruct the
reachable set.

Thus, to calculate a supporting point x(¢;) on the boundary of the reach-
able set R(tr,to, o) in a fixed direction ! we have to find an admissible control
function u(¢) € U that maximizes the functional y — [Ty (resulting in the sup-
port function 6*(1, R(ts, %o, zo)) as optimal value). This constitutes the following
special optimal control problem of Mayer type:

Maximize ["z(ts)
(OCP)) W.I.t. u € L>®([to, t;], R™),z € WH([to, t7],IR")
z(+) corresponding solution to u(-) for (1a)—(1c).

We denote the optimal solution of (OCP,) by z*(t;1) and u*(t;1), where the
argument [ indicates the dependency of the direction /.

As already mentioned in Proposition 2.6, the convexity and compactness of the
reachable set guaranteed by Proposition 2.3 leads to the equivalent representation
by considering supporting points in all directions [ € R", ||I||s = 1:

Rts,to,20) = cola*(t31) | 1 € R™, [l]}2 = 1}.

3.2 Approximation of Reachable Sets by Discretized Op-
timal Control Problems

In general, for complex problems neither we can compute a solution of (OCP,)
analytically nor for all directions /. Hence, we suggest to approximate (OCP,)
numerically and consider only a finite number of directions ;, 7 =1,..., M := Nj.
This yields an approximation

RM(tf, t(), Io) ~ R(tf, t(), xo)

of the reachable set which will be specified hereafter.
For the moment let [ be fixed with ||/||2 = 1.
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For N; € IN, N; > 2 we introduce a grid with grid points

tr—1
t; =to + ih € [to,tf],i =0,1,...,N := N, h = fN 0. (2)
t
The control function u(t) is discretized on each subinterval [¢;,¢;11] by the ap-
proximation .
uly(t; ), t € [t tiva],

app

where @t = (ug,u1,...,up_1)' € UF is a finite dimensional vector parametriz-
ing the selection strategy for the control in the following explicit Runge-Kutta
scheme.

Let us first define explicit Runge-Kutta schemes before we will discuss partic-
ular strategies for the approximation of the control in more details. Each explicit
Runge-Kutta scheme can be characterized by its Butcher array:

" 0 Ce Ce 0
Yo |z O e 0
Vs | Os1 - Qg1 0

ﬁl e Bsfl Bs

For a given control approximation ula,(¢; @) on [t;,%i41] a state approximation

Tapp(t; 1) is obtained via an explicit s-step Runge-Kutta discretization scheme:

xapp(ti-l-l; ﬁ) = xapp(ti; ﬁ) + hq)(mapp(ti; ﬁ)a ﬁa h)7 1= 07 17 R Nt - 17

(3)

xapp(tO; ﬁ) = X
and
D(Tapp(ti; 1), & ZBJ ( (ti + )0y + B(t; + )l (t; + vih; & ))
772(_1_)1 = xapp + h Z (0713 ( t + r}/kh)nz(—lf—)l + B(tz + fykh)u((zzp)p(t + ’Ykh'; ﬁ)) :

Suitable values for the coefficients oy, 8; and «;, 1 < j, k < s can be found in
[7].
Let us now consider examples for selection strategies used in Section 4.

(i) Continuous and piecewise linear approximation:
—(ui+1 - UZ) fort e [ti,ti+1],i =0,1,...,N—1,

with P =N + 1.



(ii) Piecewise constant approximation:
uld (t:4) :=wu; fort € [t;,tip],i=0,1,...,N —1,
with P = N.
(iii) Independent selections at intermediate grid points t; + y;h:

u((lzgp(t_{_f}/]h,ﬁ) ::ui-s—}—jfla i:o,l,...,N—l, jzl,...,S,

with P =s- N.

Please notice, that further selection strategies are possible, e.g. independent se-
lections with additional continuity constraints at the inner grid points ¢;, + =
1,..., N — 1, or additional equality constraints at those intermediate grid points
t; + v;h where different indices j produce the same intermediate grid point (i.e.,
points where y; = 7, with j # k).

Thus, by this discretization the infinite dimensional optimal control problem
(OCP,) is approximated by the finite dimensional convexr programming problem

( Maximize ' Top(ty,; 1)
w.r.t. aeUrf
(CPl) ) subject to xapp(tHl; ) = xapp(tw )+ h(p(iapp( ;1), 14, h),
! =0,1,...,N,— 1
xapp(to; ﬁ) = Xy,
{ a e U" (%)

Notice, that @ implicitly defines a control approximation u&,},,( 1) on each subin-

terval [tz, ti11], compare the examples (i)-(iii).

We denote the optimal solution of (CP}) by a*.

If the conditions (%) can be written with a finite number of affine inequalities,
(CP}) is a linear programming problem and called (LP}'), otherwise a nonlinear
(convex) programming problem.

In the sequel, we investigate the simplest case, the Euler’s method with piece-
wise constant control approximation, since it is then possible to derive explicit
solutions for the finite dimensional problems (CP}'). In this case, (3) reduces to

cb(xapp(ti; ﬁ), ﬁ, h,) = A(t,):rapp(tz, ﬁ) + B(tz)uz
The recursive evaluation in (3) for Euler’s method yields

Ni—1 Ni—1 [/ Ny—1
Zapp tN” = (H Qz) To + h Z ( H Qz) Bkuk (4)

i=k+1



with @Q; :== I + hA(t;), By := B(tx) and the n X n-identity matrix /. The matrix
product [] is defined as

J

[[Q:=@Q- Qi1 Qx

i=k

Introducing this expression for zqp,(ts; @) in (LP}) yields the linear program

N¢e—1 Ne—1
.. T
(LP2) Maximize [ (Z (H Q,) Bkuk)
k=0 \i=k+1
subject to u; € U, +=0,1,..., N;.

Note that this linear program has the same solution @ as (LP!), whereas the
optimal objective function values are different, since we neglected constant terms.

To compute the objective function in (LP?) very efficiently we introduce ad-
ditional artificial variables

Ay, = 1T,

A= MLQi =2 R A

These artificial variables are calculated backward in time and correspond to the
discretized adjoint variable of the optimal control problem (OCP).
Then, (LP?) can be replaced by

Ny—1
Maximize Z )\,LlBkuk

k=0
subject to uy €U, k=0,1,...,N;.

(LPY)

Lemma 2.5 gives us

Ng—1 Ni—1

> 6 (A1, BU) = D 6°(B{ A, U)
k=0 k=0

as optimal value of (LP?) and hence, (u1,us,...,un,_1) with the supporting
points ug € Y (B} M\g11,U) as one solution.

In the special of box constraints, that is U = {u € R™ | u < u < 4}, we
define S := (Si,...,S™) :== A\, By € R™. Since the objective function

Ne—1 Ne—1 m
§ — § E J L ,d
k=0 k=0 j=1



is maximized, if each term S,’e' : ufc is maximized, the solution of (LP?) is given by

ul, if S <0,
ul =<, if $7 >0,

arbitrary, else.
forj=1,...,m, k=0,..., N, — 1.

3.3 Discrete reachable sets

Discrete reachable sets are the reachable sets of the discretized equations and
could be defined as endpoints of discrete solutions of the following problem.

Problem 3.1 Given the data in Problem 2.1, the discretized problem depends on
the choice of the set Uy, of all discretized control functions and on the Runge-
Kutta scheme.

For a time discretization (2) with step-size h = 3= and a given discretized
control function wqpy(-, @) we are looking for a solution x4y,(-,0) at the grid-points
t;, 1=0,1,..., N;, with

tr—to

37app(ti+1§ ) = xapp(tﬁ ) + h@(xapp(tﬁ 4),1,h) (5a)
fori=0,1,...,N; — 1,

xapp(to; ﬁ) = Zop, (5b)

quU, 120,1,,Nt, (5C)

Uapp (5 @) € Unpp-
Definition 3.2 Consider Problem 3.1 with a time discretization (2) and let i €
{0,1,...,N¢}. Then,
R (tiyto, zo) := {y € R* | Jugpy(-; 0) discretized control function and
A2 gpp(+; 1) corresponding solution of Problem 3.1
With T py(ti;; @) =y}
1s called the discrete reachable set of the corresponding discretized control problem
for the time t;.

The definition above shows that each optimizer of problem (CP!) (resp. the refor-
mulation (LP?)) is a supporting point of the discrete reachable set Ry (¢, to, To)
in direction /. The optimal value of problem (C'P!') coincides with the support
function 6*(I, R (ty, to, %0)). Proposition 2.6 shows that

Rty to, z0) = ﬂ {z eR" |[I"z <M zapp(ty; 0%)},
[le]]2=1

RN(tf’ lo, xO) = CO( U {xapp (tf; ﬁ*)})

llEf]2=1
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In practice, only a finite number of different normed directions 1!, i = 1,..., M,
are chosen.

Proposition 3.3 Consider Problem 3.1 with a time discretization (2) and leti €
{0,1,..., N;}. Then, the corresponding discrete reachable set is convex, compact
and nonempty.

Proof: For a chosen discretized control function wu,pp(-, @), the discrete solution
is defined by (4). The discrete reachable set coincides with the union of all such
discrete solutions for all feasible discretized control functions. In the case of Euler
and linear approximation of the controls, this corresponds to the union over all
vectors @t € R™M¥+1 | Definition 2.7 shows that the discrete reachable set

Ni—1 Ni—1 [/ Ni—1
R (s, to, zo) = (H Qi) To +h Z(( H Qi) By)U
=0 k=0 \i=k+1

is a scaled Minkowski sum of linearly transformed convex sets U. Lemma 2.8
proves the wanted properties of the discrete reachable set. |

3.4 Implementation

In the sequel, we briefly discuss some numerical methods, which are suitable for
solving the discretized optimal control problem (CP'). Of course, the choice
of an appropriate method depends on the explicit representation of the control
region U. Hence, we restrict the discussion to control regions U defined by

U={ue X |gu)<0,i=1,...,r}, (6)

where X := {u € R" | Au = b, u > 0} and the functions g¢;(-), i =1,...,r, could
be either linear or nonlinear.

Remark 3.4 In the case, that the support function or the supporting points of
the convex control set U are known, general control regions U can be approximated
in another way. Proposition 2.6 suggests to use the approxrimation

U~ () {zeR Iz <8 (I 0)}

i=1,..,M

resp.

U ~ co( U {y(I*,U)}) with arbitrary y(I',U) € Y (I*,U).

i=1,.,M

Herein, the M different normed directions I* € R* should be chosen in an appro-
priate way in order to approximate the unit sphere.
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If the functions g; in (6) are affine linear, then problem (CP}!) is a linear
optimization problem and can be solved by the well-known simplex method or
some interior point method, cf. [42], suitable for linear programs. In the special
case of an Euler approximation and U defined by box constraints only, a very
efficient method is described in Section 3.2.

If the functions g; are convex and smooth, i.e. at least continuously differen-
tiable, then the resulting problem (C'P}) is a convex but nonlinear programming
problem and the sequential quadratic programming (SQP) method is appropri-
ate provided the functions g; are defined for infeasible points, cf. [34], [35], [18].
Alternatively, the method of feasible directions is applicable, especially, if the
functions g; are only defined for admissible points, cf. [43].

If the functions g; are convex but nonsmooth, the bundle method respectively
the bundle trust region method (BT-method) is suitable, cf. [28], [31], [21], [22],
[36]. In addition, Kelly’s cutting plane method is also applicable, cf. [20]. Notice,
that the BT-method and the cutting plane method are closely related, cf. [21],
(36].

4 Examples

In the sequel we refer to the optimal control problem (OCP;), the differential
equation (1a)-(1b), the control constraint (1c), and the control approximations
discussed in (i)-(iii) in Section 3.2.

The following Runge-Kutta methods are used for the numerical computation
of reachable sets:

ol o o 0] 0 0
00 1|1 0 1/2(1/2 0
1 172 1/2 0 1

Euler’s method Heun’s method Modified Euler’s method

From Definition 2.9 of the Hausdorff distance, it is clear that the approxi-
mation of the reachable set corresponds to a uniform convergence of the optimal
value functions, whereas the approximation of trajectories corresponds to the uni-
form convergence of the maximizers and the Demyanov distance. Table I shows
the approximated values

~Inax |5*(lz, R(l, O, -TO)) - 5*(ZZ7 ﬁref(ov o, ))| (7)

i=1,...,

resp.

I?aXM“Y(li’ R(]-’ 07 .7}())) - Y(lm 7/?\’I'ef(ov Zo, ))”2 (8)

i=1,...,

12



at the chosen directions l;, : = 1, ..., M, for the two distances
dH(R(l’O’xO)aRN(laOaxO)) resp. dD(R(laOaxﬂ)aRN(laOaxO))'

Example 4.1 (see [39, Example in section 4]) Let us consider the following
ezample withn =2, m =1, zo = (0,0)7, I =[0,1], U = [0, 1], and

A(t):(g é) B(t):(?).

In Figure 1 approzimations to the reachable set R(1,0,xq) are shown, in the
left picture approzimations with Fuler’s method with piecewise constant selections
are shown (first order of convergence), in the right one the corresponding ones
for Heun’s method with continuous and piecewise linear control approrimation
(second order of convergence) are depicted. In both cases the set with the solid line
shows the reference set (calculated with the corresponding method for N = 1280).
The dashed lines show the approrimations for N = 10, 20,40 for Euler’s method
on the left picture (please remark the halfening of the distance of the upper right
corner of the sets when the number of subintervals is doubled). At the right one,
the dashed lines show the approzimations for N =1,2,4 for Heun’s method (one
could see the more rapid convergence even for these small number of subintervals).

12 12
1t 1l
08} 08t
06 06
04t 04t
02t 02t
0f 0f
R —— 02—
0 01 02 03 04 05 0 01 02 03 04 05

Figure 1: First order contra second order approximations to the reachable set
(left: Euler’s method with error O(h), right: Heun’s method with error O(h?))

As Veliov explains in [39], the convergence of the trajectory could not be bet-
ter than O(h) in this ezample. In Figure 2 the first order approzimations to the
control and to the state components (coordinates 1 and o) are shown for Heun’s
method with continuous, piecewise linear selections. Again, the reference is com-
puted by the method itself with N = 1280 (solid line) and in dashed lines the

13



approzimations for N = 10,20,40. As it is clearly seen, the order of convergence
s only 1.

0.5

0.8
0.4

0.6
03

04
0.2

0.2
0.1

Figure 2: First order approximations to the control (left) and the state compo-
nents (middle, right) by Heun’s method

Here, the combination method of set-valued iterated trapezoidal rule together
with Heun’s method introduced in [3, 4] with N = 1000000 serves as the reference
set ﬁref((),xo,). By comparing the different values based on the optimal value
function resp. the maximizers, the order of convergence is estimated. The angle
@ for the direction | € R?, in which the mazimum in (7) resp. (8) is attained, is
shown in the most right column.

Hausdorff | estim. Demyanov | estim.
N distance order angle N distance order angle
10 | 0.05000000 | NaN 0.00500 10 | 0.13702925 | NaN | 5.55500
20 | 0.02500000 | 1.00000 | 0.00500 20 | 0.06806368 | 1.00953 | 5.55500
40 | 0.01250000 | 1.00000 | 0.00500 40 | 0.03392323 | 1.00461 | 5.51500
80 | 0.00625000 | 1.00000 | 0.00500 80 | 0.01731662 | 0.97012 | 5.53500
160 | 0.00312500 | 1.00000 | 0.00500 160 | 0.00861479 | 1.00727 | 5.53500
320 | 0.00156250 | 1.00000 | 0.00500 320 | 0.00426388 | 1.01465 | 5.53500
640 | 0.00078125 | 1.00000 | 0.00500 640 | 0.00209303 | 1.02657 | 5.62500

Table I: order of convergence for Euler’s method (left table: approximation of
the reachable set, right table: approximation of the trajectories).

Table I shows the expected order of convergence 1 for reachable set and the
trajectories. As remarked above the Hausdorff distance is attained at the upper
right corner.

For Heun’s method with continuous, piecewise linear control approrimation,
Table II shows order of convergence 2 for the reachable set and only order 1 for
the trajectories.
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Hausdorff | estim. Demyanov | estim.
N distance order angle N distance order angle
10 | 0.00124700 | NaN 3.09500 10 | 0.06636590 | NaN | 5.55500
20 | 0.00031111 | 2.00295 | 3.12000 20 | 0.03273184 | 1.01975 | 5.55500
40 | 0.00007788 | 1.99805 | 6.27500 40 | 0.01668369 | 0.97226 | 2.40000
80 | 0.00001947 | 1.99990 | 3.14000 80 | 0.00848003 | 0.97630 | 5.53500
160 | 0.00000488 | 1.99688 | 6.26000 160 | 0.00419649 | 1.01488 | 5.53500
320 | 0.00000122 | 1.99929 | 3.14500 320 | 0.00205473 | 1.03024 | 5.53500
640 | 0.00000030 | 2.00266 | 6.22500 640 | 0.00099208 | 1.05042 | 5.62500

Table II: order of convergence for Heun’s method (left table: approximation of
the reachable set, right table: approximation of the trajectories)
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Example 4.2 (see [4, Example 4.4]) Let us consider the following example
withn =2, m=2, o= (0,007, I =10,2], U={z € R? | ||z]]z < 1}, and

an=(2 1Y) so=(y 7).

This example introduces the nonlinear constraint
ul +uj <1

for the control variable u = (uy,us)".

The second order approximations to the reachable set R(2,0,z¢) calculated
by Heun’s method with piecewise constant controls resp. with independent control
selection are shown in Figure 3.
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1 ‘ ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘ e
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Figure 3: second order approximations to the reachable set for Heun’s method
with piecewise constant control approximation (left) resp. independent control
selection (right).

The set with the solid line shows the reference set (calculated with the corre-
sponding method for N = 160) and the dashed lines represent the approzimations
for N =5,10,20. At the left picture the convergence order O(h?) can be seen by
studying the boundary of the sets near by y = 1.

Both selection strategies seems to converge with order 2 which is assured by
Tables III and IV.

Nevertheless, Figure 4 shows that the choice of the selection strategies for the
control should depend on the Runge-Kutta method. In Figure 4 the piecewise con-
stant selection strateqy is compared with two independent selections for modified
FEuler’s method. The latter selection strategy destroys order of convergence 2 of
the Runge-Kutta method. This is verified in the Tables V (order O(h?)) and VI
(only order O(h)) for the convergence to the reachable set and the trajectories.

16



N | Hausdorff | Order angle N | Demyanov Order angle
distance distance | trajectory

5 | 0.10328935 NaN | 1.37000 5 | 0.37223126 NaN | 0.90500
10 | 0.02307167 | 2.16250 | 1.53000 10 | 0.07159599 2.37825 | 0.88500
20 | 0.00521186 | 2.14625 | 1.57500 20 | 0.01535558 2.22112 | 4.02500
40 | 0.00123195 | 2.08086 | 4.73500 40 | 0.00355544 2.11066 | 4.02500
80 | 0.00029922 | 2.04164 | 1.60000 80 | 0.00085565 2.05493 | 4.02500
160 | 0.00007372 | 2.02105 | 4.74500 160 | 0.00020992 2.02719 | 4.02500

Table III: Order of Convergence for Heun’s method with piecewise constant con-
trol approximation.

N | Hausdorff | Order angle N | Demyanov Order angle
distance distance | trajectory

5 0.04517018 NaN | 1.72000 5 | 0.16781544 NaN | 1.18500
10 | 0.00772443 | 2.54787 | 4.23500 10 | 0.04611042 1.86371 | 0.87500
20 | 0.00203009 | 1.92789 | 4.30000 20 | 0.01077148 2.09788 | 4.01500
40 | 0.00051385 | 1.98211 | 4.33500 40 | 0.00257389 2.06520 | 0.87500
80 | 0.00012897 | 1.99429 | 1.21000 80 | 0.00062808 2.03492 | 0.87500
160 | 0.00003229 | 1.99784 | 1.22000 160 | 0.00015506 2.01802 | 4.01500

Table IV: Order of Convergence for Heun’s method with two independent selec-
tions.

1
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Figure 4: approximations to the reachable set for N = 160 (solid) and N =
5,10, 20 (dashed) computed by modified Euler’s method with piecewise constant
(left) resp. independent control selection (right).
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N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory

5 0.10328935 NaN | 1.37000 5 | 0.37223121 NaN | 0.90500

10 | 0.02307167 | 2.16250 | 1.53000 10 | 0.07159599 2.37825 | 0.88500

20 | 0.00521186 | 2.14625 | 1.57500 20 | 0.01535559 2.22112 | 4.02500

40 | 0.00123195 | 2.08086 | 4.73500 40 | 0.00355571 2.11056 | 4.02500

80 | 0.00029922 | 2.04164 | 1.60000 80 | 0.00085566 2.05503 | 0.88500

Table V: Order of Convergence for the modified Euler’s method with piecewise

constant control approximation.

N | Hausdorff Order angle N | Demyanov Order angle
distance distance | trajectory

5| 0.83583108 NaN | 4.03000 5 | 1.03202096 NaN | 0.73000

10 | 0.33319435 | 1.32685 | 0.85500 10 | 0.36562913 1.49702 | 3.85000

20 | 0.15333206 | 1.11970 | 5.34000 20 | 0.16060144 1.18690 | 3.76000

40 | 0.07575471 | 1.01725 | 5.36000 40 | 0.07933801 1.01740 | 4.72000

80 | 0.03762644 | 1.00959 | 2.22500 80 | 0.03952243 1.00534 | 4.72000

Table VI: Order of Convergence for the modified Euler’s method with free selec-

tion.
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5 OQOutline of Further Research

It is known that set valued quadrature methods in [4] could lead to a order of
convergence greater than two, if the problem satisfies additional smoothness con-
ditions, cf. [3]. In this case, selection strategies with piecewise constant controls
are no longer appropriate. Preliminary computer experiments with the classical
Runge-Kutta method show that order of convergence greater than two is attain-
able. But for these Runge-Kutta methods suitable selection strategies have to
be studied in more detail. In this context, additional difficulties arise if state
constraints are present, because these constraints should be fulfilled also at the
intermediate stages of the Runge-Kutta scheme (as in [8]).

Further research can be conducted towards the study of Runge-Kutta schemes
as in [29], [13], [27], where the selection strategy is motivated by multiple control
integrals. In the special case of two selections per Runge-Kutta step this leads to
alternative selection sets of type (ugﬂp(ti + y1h; 1), ugigp(t,- + Y2h; ﬁ)) ceUcUx
U, where U x U corresponds to case (iii) of independent selections in Section 3.2.
This set U can be described by finitely many nonlinear inequalities and equalities,
which can be easily imposed as additional constraints in the discretized optimal
control problems.

The proposed method itself can be easily adapted to the calculation of convex
reachable sets for nonlinear differential inclusions. For the numerical solution of
discretized optimal control problems efficient algorithms are available, cf., e.g.,
[6], [16, 17]. In the more general case of nonconvex reachable sets suitable modi-
fications of our approach have to be studied. Theoretical results in this direction
can be found in [12], [41], [40] for Runge-Kutta methods of order one and two.
A survey of other methods is given in [11] and [8].

However, those Runge-Kutta methods with appropriate selection strategies,
which show higher order of convergence in the linear case, are worth being in-
vestigated also in the nonlinear case. In addition, these methods have to be
compared with set-valued Runge-Kutta methods based on set arithmetics, cf. [8],

which work also on the general nonlinear case. First steps in this direction can
be found in [8, Example 5.3.1].
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