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Abstract

We study parametric optimal control problems governed by a system of time-
dependent partial differential equations (PDE) and subject to additional control
and state constraints. An approach is presented to compute optimal control
functions and so-called sensitivity differentials of the optimal solution with re-
spect to perturbations. This information plays an important role in the analysis
of optimal solutions as well as in real-time optimal control.
The method of lines is used to transform the perturbed PDE system into a
large system of ordinary differential equations. A subsequent discretization is
discussed that transcribes parametric ODE optimal control problems into per-
turbed nonlinear programming problems (NLP) which can be solved efficiently
by SQP methods.
Second order sufficient conditions can be checked numerically, and we propose to
apply an NLP-based approach for robust computation of sensitivity differentials
of optimal solutions with respect to the perturbation parameters.
The advertised numerical method is illustrated by the optimal control and sensi-
tivity analysis of the Burgers equation. This example demonstrates the general
ability of the algorithm to efficiently and robustly calculate an accurate numer-
ical solution.

Keywords: perturbed optimal control problems; control-state constraints; non-
linear programming methods; partial differential equations; parametric sensitivity
analysis
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1 Introduction

This paper is concerned with the numerical solution and sensitivity analysis of per-
turbed optimal control problems governed by time-dependent partial differential equa-
tions and subject to control and state constraints. Such control problems play an
important role in the natural sciences and other disciplines, where numerous real-life
applications exist. A growing interest in optimization techniques has been stimulated
by theoretical and numerical investigation of these problems. In practice, control
problems are often subject to disturbances or perturbations in the system data. In
mathematical terms, perturbations can be expressed by means of parameters appear-
ing in the dynamics, boundary conditions or in control and state constraints. Stability
and sensitivity analysis are concerned with the behavior of optimal solutions under pa-
rameter perturbations. The so-called parametric sensitivity derivatives are a helpful
tool in the analysis and assessment of optimal solutions for practitioners. In addition,
these derivatives are being widely used in real-time optimal control applications, see
e.g. Pesch (Ref. 1) and Büskens and Maurer (Refs. 2–5).

There exist many recent papers on the numerical solution and theoretical treat-
ment of optimal control problems subject to partial differential equations of different
type. Numerical aspects of solutions to unconstrained problems by SQP methods
are studied, e.g., by Kupfer and Sachs (Ref. 6), and Heinkenschloss (Ref. 7). Prob-
lems with additional constraints are discussed in Heinkenschloss and Sachs (Ref. 8),
Tröltzsch (Ref. 9), Goldberg and Tröltzsch (Ref. 10), Casas (Ref. 11), Casas, Tröltzsch
and Unger (Refs. 12, 13), Ito and Kunisch (Refs. 14, 15) and Volkwein (Ref. 16), Mau-
rer and Mittelmann (Refs. 17, 18) to name only some references. The quantity of ar-
ticles occupied with this interesting field of mathematical optimization demonstrates
the growing interest in this class of problems.

In the past, numerical algorithms were often in use before the related theory was
completely developed. For instance, direct methods for the solution of optimal control
problems have been used successfully since the end of the 1960s. However, first results
in convergence theory of the discretized optimal control problem towards the contin-
uous solution did not appear until the 1990s, see e.g. Dontchev and Hager (Ref. 19)
and Malanowski, Büskens and Maurer (Ref. 20). The present paper is written in this
spirit, aware of the fact there exists a gap between the computational and theoretical
aspects of parametric sensitivity analysis of optimal control problems with PDEs.

In this paper the method of lines is used to discretize the partial differential
equations, transforming the original system into a system of ordinary differential
equations. We obtain a perturbed optimal control problem for an ODE system with
constraints that can be solved by well-known standard techniques.

Malanowski (Ref. 21), Malanowski and Maurer (Ref. 22), Maurer and Pesch
(Ref. 23) have studied differential properties of optimal solutions. The theoretical
framework in these papers rests on indirect methods using boundary value techniques.
Following the general philosophy of discretization, it is straightforward to develop
techniques to compute sensitivity differentials via nonlinear optimization methods
applied to a subsequent discretization of the ODE control problem instead of work-
ing with boundary value methods. This leads to so-called direct optimization methods
which have been studied extensively in the last 20 years. Direct optimization methods
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have proved to be powerful tools for solving ODE optimal control problems; cf., e.g.,
Büskens (Ref. 24), Büskens and Maurer (Refs. 2–5) and the references cited therein.
The basic idea of direct optimization methods is to discretize the control problem
and to apply nonlinear programming techniques to the resulting finite–dimensional
optimization problem. These methods use only control and state variables as opti-
mization variables and completely dispense with adjoint variables. The latter can
eventually be obtained by a post-optimal calculation using the Lagrange multipliers
of the resulting nonlinear optimization problem.

Second order sufficient conditions (SSC) for continuous control problems represent
an essential prerequisite for sensitivity analysis and convergence of discretized prob-
lems and are usually difficult to verify. Alt (Ref. 25), Dontchev and Hager (Ref. 19)
and Malanowski, Büskens and Maurer (Ref. 20) discuss the question of convergence
of the discretized problem to the continuous solution for optimal control problems
involving ordinary differential equations. For general optimal control problems in-
volving partial differential equations, these results do not yet exist. Hence, we tacitly
assume the convergence to the presumed unique continuous solution as the mesh size
tends to zero. However, SSC for the discretized control problem can be easily tested
using well-known linear algebra techniques for nonlinear optimization problems. This
paper follows the ideas of Büskens (Ref. 24), Büskens and Maurer (Refs. 2–5) where
sensitivity analysis of perturbed ODE optimal control problems is discussed.

To the authors’ knowledge there do not exist any papers which deal with the nu-
merical computation of sensitivity differentials for optimal control problems for PDEs
at all. A reason might be found in the fact that for a closed theoretical approach
to solution differentiability and sensitivity analysis second order sufficient conditions
are needed for which research is just at the beginning, cf. the book by Bonnans and
Shapiro (Ref. 26), Malanowski (Ref. 27), Malanowski and Tröltzsch (Ref. 28), Mit-
telmann (Ref. 29) and Raymond and Tröltzsch (Ref. 30). Nevertheless the proposed
NLP-based method is capable of computing approximations to sensitivity differen-
tials for the state, control and adjoint variables in parametric PDE optimal control
problems.

The general mathematical structure of perturbed PDE optimal control problems
is outlined in section 2. Discretization details for the PDE can be found in section
3. Section 4 is concerned with the solution of ODE optimal control problems by
direct methods, which in turn are approximated by a suitable discretization to ob-
tain a perturbed nonlinear optimization problem. A short overview of basic results
on sensitivity analysis and solution differentiability for perturbed finite-dimensional
nonlinear optimization problems is offered in section 5. By re-transforming the nu-
merical solution and sensitivity quantities, information about the optimal solution
and the sensitivity of the original PDE optimal control problem can be gained. This
will be covered in section 6. Finally, section 7 presents two numerical examples for
PDE optimal control problems with constraints. The numerical methods presented in
sections 3–6 lead to a complete numerical solution including states, controls, adjoints,
and their sensitivity differentials.
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2 Parametric PDE optimal control problems

Let ny, nx, nu, np ∈ N
+ be given positive numbers. Let t ∈ [t0, tf ] = Ωt ⊂ R and

x ∈ Ωx ⊂ R
nx of dimension nx denote the time and spatial variables, respectively.

Here, Ωx is a bounded domain with piecewise smooth boundary Γx = ∂Ωx. Let
Ω = Ωx × Ωt and Γ = Γx × Ωt. Moreover, let y : Ω → R

ny be a vector function of
dimension ny of which yx(x, t), yxx(x, t) are the first and second partial derivatives of
the components of y w.r.t. the spatial variables x. Likewise, yt(x, t) denotes the first
derivative w.r.t. the time variable t. In the sequel, the perturbations are characterized
by a parameter vector p ∈ Ωp ⊂ R

np . The vector function u of dimension nu has
components defined either on Ωx×Ωt (distributed control) or on the boundary Γx×Ωt

(boundary control).
We consider the following general coupled time-dependent PDE system:

yt(x, t) = f(y(x, t), yx(x, t), yxx(x, t), u(x, t), x, t, p). (1)

A solution of (1) depends on the spatial variable x, the time variable t, the control
function u and the fixed parameter vector p.

While we mainly have a parabolic PDE system in mind, hyperbolic and PDE sys-
tems of mixed type can be considered, too, but the method of lines (Section 3) may
have to be replaced by other discretization techniques, transforming the PDE-optimal
control problem into a finite-dimensional nonlinear programming problem (22). We
point out again that—here and in the sequel—questions of existence, numerical solu-
tion and its convergence for PDEs are not the focus of this paper. Instead, we aim at
presenting a general method to compute sensitivity differentials.

Initial conditions of (1) with respect to time may depend on the perturbation
parameter p and are defined by

y(x, t0) = y0(x, p) for x ∈ Ωx. (2)

In principle, terminal conditions like

∫

Ωx

ψ(y(x, tf ), p) dx = 0

can be taken into account by our method.
On the boundary Γx, the partial differential equation (1) has to satisfy Dirichlet

or Neumann conditions of the form

y(x, t) = yD(u(x, t), x, t, p) for x ∈ Γx, t ∈ Ωt

∂νy(x, t) = yN (y(x, t), u(x, t), x, t, p) for x ∈ Γx, t ∈ Ωt
(3)

for given functions yD : R
nu ×Γx×Ωt×Ωp → R

ny or yN : R
ny ×R

nu ×Γx×Ωt×Ωp →
R

ny . The derivative in the direction of the outward unit normal ν of Γx is denoted
by ∂ν in (3). Combinations of Dirichlet and Neumann boundary conditions are also
admitted, always provided that the resulting PDE system in (1) is well-defined and
uniquely solvable for given u and p.
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In addition, inequality constraints on the control and state subject to disturbances
have to be observed: In case of distributed control,

umin(p) ≤ u(x, t) ≤ umax(p) for (x, t) ∈ Ωx × Ωt,

C(y(x, t), u(x, t), x, t, p) ≤ 0 for (x, t) ∈ Ωx × Ωt
(4)

for suitable vectors umin(p), umax(p) ∈ R
nu ∪ {−∞,∞} and a vector function C :

R
ny × R

nu × Ωx × Ωt × Ωp → R
nc , nc ≥ 0. The values −∞ and ∞ for umin or

umax characterize the unconstrained cases. We point out that in the presence of state
constraints, the analysis of the optimal control problem is severely more difficult.
Nevertheless, the proposed method can, in principle, take this type of constraints
into account.
The problem is to determine a control vector — containing boundary or distributed
control elements or both — that minimizes the functional

F (y, u, p) =

∫

Γ

f1(y(x, t), u(x, t), x, t, p) dx dt

+

∫

Ω

f2(y(x, t), u(x, t), x, t, p) dx dt.
(5)

Note that (5) can be extended to contain more general terms, for example of Mayer
form which evaluate the state only at the final time tf .

Hence the time-dependent partial differential equation optimal control problem
POCP(p) with constraints is defined by

POCP(p) :
Minimize F (y, u, p)
subject to (1)–(4).

(6)

Problem POCP(p) is of very general form. Hence a precise description of how
to calculate the solution, perform a sensitivity analysis and compute the sensitivity
differentials as advertised in the introduction is a complex task. To facilitate the
presentation, it is appropriate to perform some simplifications on problem (6). Please
note that these are stimulated only by conceptual reasons. The basic principle of
sensitivity analysis by NLP methods described in the following sections works as well
for the original problem (6). Let us assume in a first step that the pure control
constraint in (4) are picked up by the constraints C.

3 Discretization of PDE control problems

The underlying idea is to transform the partial differential equation into a system of
ordinary differential equations by discretizing all functions with respect to the spatial
variable x. This approach is known as the method of lines. Let us emphasize that the
methods presented in this and the following section are not the only ones possible to
transform a PDE control problem into a finite-dimensional nonlinear programming
problem. However, the results obtained in Section 5 and 6 will still hold, independent
of the discretization technique used.
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The discussion is restricted to Dirichlet conditions. As an example, we present
discretization by finite differences. The finite element method and others are also
possible choices.
Let Ω̃x and Γ̃x be a finite difference grid approximation of Ωx and Γx, respectively.
For simplicity, we restrict ourselves to the case Ωx = (0, 1)nx :

Let Nx ≥ 2 be a natural number and hx := 1
Nx−1 ∈ R

+. A discrete approximation

Ω̃x of Ωx and Γ̃x of Γx is defined by

Ω̃x :=
{

x = hx · (i1, . . . , inx) ∈ Ωx| i
1, . . . , inx ∈{0, 1, . . . , Nx−1}

}

,

Γ̃x := Ω̃x \ Ωx.
(7)

To enumerate all x ∈ Ω̃x and x ∈ Γ̃x, the index sets

Ω̃I
x :=

{

(i1, . . . , inx) ∈ N
nx | ∃x ∈ Ω̃x, x = hx · (i1, . . . , inx)

}

,

Γ̃I
x :=

{

(i1, . . . , inx) ∈ Ω̃I
x | ∃x ∈ Γ̃x, x = hx · (i1, . . . , inx)

} (8)

will be used in the sequel. Instead of calculating the continuous solution on Ωx for the
partial differential equation in (1), the PDE is solved on the discretized grid Ω̃x. The
spatial variable x ∈ Ωx is replaced by x ∈ Ω̃x. Hence the partial derivatives for y in
(1) with respect to x have to be substituted by their finite difference approximation.
For reasons of clarity let ei ∈ R

nx denote the i-th unit vector and define

xl := hx · (i1, . . . , inx), l := (i1, . . . , inx) ∈ Ω̃I
x,

l
k

:= l + ek = (i1, . . . , ik−1, ik + 1, ik+1, . . . , inx),

lk := l − ek = (i1, . . . , ik−1, ik − 1, ik+1, . . . , inx),

(9)l
k,j

:= l
k

+ ej = l + ek + ej ,

lk,j := lk − ej = l − ek − ej ,

l
k,j

:= l
k
− ej = l + ek − ej = lj + ek.

Let l ∈ Ω̃I
x. Then yx(xl, t) = (yx1(xl, t), . . . , yxnx (xl, t)) is approximated by finite

differences, e.g.,

yxk(xl, t) ≈
y(x

l
k , t) − y(xlk , t)

2hx

, whenever l, l
k
, lk ∈ Ω̃I

x. (10)

Second order derivatives can be approximated in the same manner, provided that

l, l
k
, lk, l

k,j
, l

k,j
, l

j,k
, lk,j ∈ Ω̃I

x:

yxkxk(xl, t) ≈
y(x

l
k , t) − 2y(xlk , t) + y(xlk , t)

(hx)2
,

yxkxj (xl, t) ≈
y(x

l
k,j , t) − y(x

l
k,j , t) − y(x

l
j,k , t) + y(xlk,j , t)

(hx)2
, k 6= j.

(11)

If boundary values are required in equations (10) or (11), the Dirichlet condition in
(3) can be substituted directly into the finite difference approximations (10) and (11).
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In the sequel, approximations of yx(xl, t) and yxx(xl, t) for xl ∈ Ω̃x\Γ̃x using formulas
(10) and (11) are denoted by ỹx(xl, t) and ỹxx(xl, t). Hence applying the conventions
in (9) for l := (i1, . . . , inx) ∈ Ω̃I

x, an approximation of problem (6) on Ωx = (0, 1)nx

with Dirichlet conditions only is given by the following semi-discretized formulation:

Minimize

F (y, u, p) =

tf
∫

t0

hnx−1
x

∑

k∈Γ̃I
x

f1(y(xk , t), u(xk, t), xk, t, p) dt

+

tf
∫

t0

hnx
x

∑

l∈Ω̃I
x

f2(y(xl, t), u(xl, t), xl, t, p) dt

subject to

yt(xl, t) = f(y(xl, t), ỹx(xl, t), ỹxx(xl, t), u(xl, t), xl, t, p) ∀ l ∈ Ω̃I
x \ Γ̃I

x

y(xl, t0) = y0(xl, p) for xl ∈ Ω̃x

y(xl, t) = yD(u(xl, t), xl, t, p) for xl ∈ Γ̃x, t ∈ Ωt,

0 ≥ C(y(xl, t), u(xl, t), xl, t, p) for xl ∈ Ω̃x, t ∈ Ωt.

(12)

Note that instead of the simple Euler discretization in the objective of (12) higher
order approximations can be used as well. Due to the discretization, x no longer
represents a continuous variable. Furthermore, the discretized Dirichlet condition in
(12) can be inserted directly into (12) wherever needed. Hence the expressions for
yt(xl, t) represent a system of ordinary differential equations that simplifies to

yt(xl− , t) = ẏl−(t) = fl−(yl−(t), ul(t), t, p) (13)

where the subscripts l ∈ Ω̃I
x and l− ∈ Ω̃I

x \ Γ̃I
x denote the dependency on the spatial

variable xl. The other expressions in (12) can be treated in the same manner. The
state vector yl− is of dimension ny · (Nx − 2)nx while the dimension of the control
vector ul is at most nu · (Nx)nx and depends on the particular choice of boundary
and/or distributed control functions. One finds that problem (12) in fact reduces to

Minimize F (yl− , ul, p) (defined by (12))
subject to ẏl−(t) = fl−(yl−(t), ul(t), t, p),

yl−(t0) = yl−

0 (p),
0 ≥ C(yl−(t), ul(t), t, p),

(14)

∀ l ∈ Ω̃I
x, l− ∈ Ω̃I

x \ Γ̃I
x and t ∈ Ωt, for appropriately defined functions fl− and yl−

0 .
Equation (14) represents a perturbed optimal ODE control problem whose standard
form is given by (15). Please note that the state variable on the boundary Γ̃x is not
included in the state vector yl−(t). However, it can be retrieved from the Dirichlet
condition if required.

4 Numerical solution

The numerical solution of optimal ODE control problems by nonlinear programming
techniques is well developed and there exist a number of excellent methods. In prin-
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ciple these methods can be divided into two classes: The first type of methods is
characterized by a discretization of the state and control variables which results in
the ODE system being approximated by a huge number of equality constraints in the
resulting NLP problem. This leads to a high-dimensional NLP problem which has a
sparse structure in the Jacobian of the constraints and the Hessian of the Lagrangian.
Because of the typically high dimension of the ODE system for yl−(t) in (14), a
method is preferred which gives rise to smaller NLP problems. This motivates the
second type of NLP methods for the numerical solution of optimal ODE control
problems. Here only the control functions are discretized while the state variables
are calculated autonomously by integrating the ODE system using suitable numerical
solvers. In contrast to the first approach, one obtains a small but dense NLP problem.
For the numerical solution of (14) the code NUDOCCCS (Refs. 24, 31) is used which
features post-optimal calculation of the adjoint variables to high precision. In addi-
tion, a parametric sensitivity analysis of the optimal solution can be performed by
the code SENSIA (Ref. 24). The results including the sensitivity information are
subsequently transferred to the original perturbed optimal PDE control problem (6).
In the sequel, a short summary of the underlying idea is given. For a more detailed
discussion please refer to Büskens (Ref. 24) and Büskens and Maurer (Refs. 2–5).

We consider the following perturbed optimal ODE control problem (OCP(p)):

Minimize F (w, v, p) = g(w(tf ), v(tf ), tf , p) +

tf
∫

t0

f0(w(t), v(t), t, p) dt

subject to ẇ(t) = f(w(t), v(t), t, p),
w(t0) = w0(p),

C(w(t), v(t), t, p) ≤ 0, t ∈ [t0, tf ].

(15)

Here, w(t) ∈ R
n and v(t) ∈ R

m denote the state of the system and the control in a
given time interval [t0, tf ] = Ωt, respectively. Data perturbations in the system are
modeled by a parameter p ∈ Ωp. The functions g : R

n+m+1×Ωp → R, f0 : R
n+m+1×

Ωp → R, f : R
n+m+1 × Ωp → R

n, w0 : Ωp → R
n, and C : R

n+m+1 × Ωp → R
k are

assumed to be sufficiently smooth on appropriate open sets. The admissible class of
control functions is the class of piecewise continuous controls. The final time tf can
be either fixed or free. Note that the formulation of mixed state-control constraints
C(w(t), v(t), p) ≤ 0 in (15) may contain pure control constraints C(v(t), p) ≤ 0 as
well as pure state constraints C(w(t), p) ≤ 0. By identifying w(t) = yl−(t) and
v(t) = ul−(t) and adjusting the other components of (14), one finds that (14) is of
the form (15).
For a natural number Nt, let τ i ∈ Ωt be the points of the time grid Ω̃t = {τ i | i =
1, . . . , Nt} in ascending order:

t0 = τ1 < . . . < τN−1 < τNt = tf . (16)

Moreover, to simplify notation, we assume that the discretization in (16) is equidis-
tant:

ht :=
tf − t0
Nt − 1

, τ i = t0 + (i− 1) · ht, i = 1, . . . , Nt. (17)
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Let the vectors wi ∈ R
n and vi ∈ R

m, i = 1, . . . , Nt, be approximations at the grid
points of the state variable w(τ i) and the control variable v(τ i), respectively. For
every choice of the discrete control variables

η := (v1, v2, . . . , vNt−1, vNt) ∈ R
Nη , Nη := m ·Nt, (18)

the state variables w(τ i) can be computed recursively, e.g., by the explicit Euler
approximation

wi+1 = wi + ht · f(wi, vi, τ i, p) , i = 1, . . . , Nt − 1. (19)

The integral in the objective in (15) can be approximated by

tf
∫

t0

f0(w(t), v(t), t, p) dt ≈ ht

Nt−1
∑

i=1

f0(w
i, vi, ti, p). (20)

Instead of Euler’s method incorporated into the relations (19) and (20), one can use
higher order integration methods combined with higher order control approximations.
Either way, it follows that the state variables can be understood as functions of the
control variables with initial condition w1 = w0(p) taken from (15):

wi = wi(η, p) := wi(v1, .., vi−1, p). (21)

This leads to the following NLP problem (NLP(p)):

Minimize F̃ (η, p) = F̃ (w1(η, p), . . . , wNt(η, p), η, p),
subject to Ci(η, p) = C(wi(η, p), vi, τ i, p) ≤ 0, i = 1, . . . , Nt,

(22)

where F̃ denotes an approximation of the objective in (15) according to (20).
Problems of the form (22) can be solved efficiently using sequential quadratic program-
ming (SQP) methods; see, e.g., the codes mentioned in the survey article (Ref. 32).
All calculations described in the sequel were performed by the code NUDOCCCS of
Büskens (Refs. 24, 31) which provides implementations of various higher order ex-
plicit and implicit approximations for state and control variables. For the examples
presented in section 7, the SQP solver E04UCF from the NAG library was used in
NUDOCCCS.
Recently, the convergence of solutions discretized via Euler’s method to solutions of
the continuous control problem has been proved in Malanowski, Büskens and Maurer
(Ref. 33). By solving the NLP problem (22) we obtain an estimate of the continuous
control and state variables (u, y) of (6) at appropriate xl ∈ Ω̃x, τ j ∈ Ω̃t, from

v(τ j) = ul(τ
j) ≈ u(xl, τ

j)
w(τ j ) = yl(τ

j) ≈ y(xl, τ
j).

(23)

Likewise, all other variables and functions of the continuous problem (6) can be de-
termined approximately from the quantities in problem (22).
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5 Parametric sensitivity analysis for perturbed non-

linear optimization problems

In sections 3 and 4, a method to transform a perturbed control problem into a para-
metric NLP problem has been discussed. As was mentioned, the results hereafter do
not depend on the discretization technique used there.

The Lagrangian of this problem (cf. (22)) is of the form

L(η, ζ, p) := F̃ (η, p) + ζTG(η, p), (24)

where G(η, p) := (C1(η, p), . . . , CNt(η, p))T denotes the collection of all constraints
in (22) and ζ are the corresponding Lagrange multipliers. At a reference parameter
p = p0, let η0 and ζ0 denote an optimal solution for (22) satisfying first order necessary
(KKT–)optimality conditions. Define Ia(p0) := {i ∈ {1, ..., r+Nt ·k} | Gi(η0, p0) = 0}
as the set of active indices of size ma := #Ia(p0). Multipliers corresponding to active
constraints Ga := (Gi)i∈Ia(p0) are denoted by ζa

0 ∈ R
ma

. Then the following strong
second order sufficient conditions can be formulated, cf. Fiacco (Ref. 34):

Theorem: (Strong Second Order Sufficient Conditions)
Let F̃ , G be twice continuously differentiable with respect to η and p, and let Ga

η(η0, p0)
have maximal rank ma. Assume that ζa

0 > 0 and

ξTLηη(η0, ζ0, p0) ξ > 0 ∀ ξ ∈ Ker(Ga
η(η0, p0)), ξ 6= 0. (25)

Then η0 is a local minimum for (22) at p = p0.

The main difficulty verifying these SSC numerically consists in establishing the
positive definiteness criterion of the Hessian in (25). This can be done by evaluating
the Hessian projected onto Ker(Ga

η) and computing its eigenvalues, cf. (Ref. 24, 4).
SSCs form the basis of the sensitivity analysis for parametric optimization prob-

lems which started in the mid-senventies with the work of Fiacco (Refs. 34, 35) and
Robinson (Ref. 36). They independently suggested to use the classical implicit func-
tion theorem to show differentiability of solutions to finite-dimensional parametric
mathematical programs.

Theorem: (Solution Differentiability and Sensitivity)
Assume that the optimal solution (η0, ζ0) satisfies the strong second order sufficient
conditions for the nominal problem NLP(p0). Then for p near p0, the unperturbed
solution (η0, ζ0) can be embedded into a C1–family of perturbed optimal solutions
(η(p), ζ(p)) for NLP(p) such that (η(p0), ζ(p0)) = (η0, ζ0) . The active sets Ia(p)
coincide with Ia(p0) , and hence it follows that ζi(p) = 0 for all i /∈ Ia(p0). The
sensitivity differentials of the optimal solutions and Lagrange multipliers are given by
the formula











dη

dp
(p0)

dζa

dp
(p0)











= −

(

Lηη(η0, ζ0, p0) Ga
η(η0, p0)

T

Ga
η(η0, p0) 0

)−1(
Lηp(η0, ζ0, p0)

Ga
p(η0, p0)

)

. (26)
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Moreover, the sensitivity of the objective function is obtained from

dF̃

dp
(η(p0), p0) = Lp(η0, ζ0, p0). (27)

A second order sensitivity derivative for the objective function is given by the np ×np

matrix

d2F̃

dp2
[p0] =

(

dη

dp
(p0)

)T

Lηη [p0]

(

dη

dp
(p0)

)

+2

(

Lpη[p0]
dη

dp
(p0)

)T

+ Lpp[p0], (28)

where the notation [p0] stands for all respective nominal arguments.
In practice, the first and second order derivatives in the right hand side of (26)

can be approximated by finite differences (Ref. 24) or evaluated using automatic
differentiation (Ref. 37). Note that the so-called Kuhn–Tucker matrix on the right
hand side of (26) is regular since second order sufficient conditions (25) are assumed to
hold. In the following section these results are applied to the optimal control problems
defined in Section 2.

6 Sensitivity analysis for perturbed PDE optimal

control problems

The numerical examples, e.g., in Malanowski and Maurer (Refs. 22, 33) and Pesch
(Ref. 1) show that, already for ordinary differential equations, a numerical sensitivity
analysis becomes rather tedious using indirect methods. Hence, the purpose of this
section is to develop a robust direct NLP method for the computation of sensitivity
derivatives of optimal solutions with respect to parameters. The method is based
on the formulas (26)–(28) applied to a discretization of control problem (15), and it
allows to compute approximate sensitivity differentials for state, control and adjoint
variables as well as for the objective.

By (y(p), u(p)), we denote the solution of our original problem POCP(p) for
a given parameter p ∈ Ωp, and λ(p) is the corresponding adjoint variable. Recall
that the quantities of interest are the gradients d

dp
of the maps p 7→ y(p), p 7→ u(p),

p 7→ λ(p), and p 7→ F (y(p), u(p), p), evaluated at the nominal parameter p = p0.

They are denoted by
dF

dp
(y(p0), u(p0), p0), etc. The respective notation is used for

the terms in OCP(p) and NLP(p).
Equations (27) and (28) yield sensitivity differential approximations of first and

second order for the objective function F (y, u, p) in (5) by means of

dF

dp
(y(p0), u(p0), p0) ≈

dF

dp
(w(p0), v(p0), p0) ≈

dF̃

dp
(η(p0), p0),

d2F

dp2
(y(p0), u(p0), p0) ≈

d2F

dp2
(w(p0), v(p0), p0) ≈

d2F̃

dp2
(η(p0), p0).

(29)

Note that initial value perturbations in (2), e.g.,

y0(x, p) = y0(x) + p for x ∈ Ωx (30)

11



lead to a simplification of (29):

dF

dp
(y(p0), u(p0), p0) ≈ λ(x, t0) for x ∈ Ωx (31)

where λ(x, t0) denotes the adjoint variable at t = t0 belonging to the state y computed
post-optimally by the code NUDOCCCS. Equation (31) represents an approximation
of the well–known marginal interpretation of the adjoint variable.

Applying the expression for dη
dp

(p0) from formula (26) to the discretized controls

v(τ j) = vj provides an approximation of the sensitivity differentials of the perturbed
optimal solution’s control component at all mesh points (xl, τ

j), xl ∈ Ω̃x, τ j ∈ Ω̃t,
namely,

du

dp
(xl, τ

j ; p0) ≈
dul

dp
(τ j ; p0) =

dv

dp
(τ j ; p0) ≈

dvj

dp
(p0). (32)

Likewise the sensitivity differential
dtf

dp
(p0) for a free terminal time tf can be calculated

from equation (26) since it is handled as an additional optimization variable in (22).
The state sensitivities dy

dp
(x,t;p0) can be approximated by

dy

dp
(xl, τ

j ; p0) ≈
dyl

dp
(τ j ; p0) =

dw

dp
(τ j ; p0) ≈

dwj

dp
(η0, p0), (33)

if we take the recursive expression (19) into account and differentiate the control–state
relation (21) with respect to the parameter:

dwj

dp
(η0, p0) =

∂wj

∂η
(η0, p0)

dη

dp
(p0) +

∂wj

∂p
(η0, p0). (34)

The quantity dη
dp

(p0) is taken from (26).

The sensitivities of the Lagrange multipliers dζa

dp
(p0) in (26) not considered up to

now can be used to approximate the sensitivity differentials of the adjoint variables,
but this will not be discussed here.

7 Examples

We shall present a numerical example to illustrate the performance of the algorithms
presented in sections 2–6. All computations were performed on a 1GHz PIII personal
computer using the code NUDOCCCS.

7.1 Example 1: The Burgers Equation

We consider tracking-type optimal control of the non-linear one-dimensional Burgers
equation with additional control constraints. For a detailed analysis of this problem

12



we refer to Volkwein (Refs. 38, 39):

Minimize

F (y, u, p) =
1

2

tf
∫

t0

∫

Ω

[y(x, t) − 0.035]2 dx dt +
σ

2

tf
∫

t0

[u1(t)
2 + u2(t)

2] dt,

subject to
yt(x, t) = p1νyxx(x, t) − y(x, t)yx(x, t) + p4t,
y(x, t0) = p2x

2(p3 − x)(1 − x),
yx(0, t) = u1(t), yx(1, t) = u2(t),
umin ≤ ui(t) ≤ umax, i = 1, 2,

(35)

with nx = ny = 1, nu = 2, np = 4, Ωt = [0, 1], Ωx = (0, 1), σ = 0.01, ν = 0.1,
−umin = umax = 0.015. The solution of the state equation is known to exist and be
unique in W (0, tf ) ∩ C(Ω) where (Refs. 38, 39)

W (0, tf ) = {ϕ ∈ L2(0, tf ;H2(Ωx) ∩H1
0 (Ωx)) : ϕt ∈ L2(0, tf ;H−1(Ωx))}.

Recent research shows that the differentiability of the optimal solution depends on
a certain property of the first order necessary conditions, called strong regularity,
see Malanowski (Ref. 27) and Griesse (Ref. 40). Interestingly, strong regularity is
also a prerequisite in proving convergence of the generalized Newton method, see
Tröltzsch and Volkwein (Ref. 41). The latter authors also prove strong regularity for
a distributed control problem similar to our example.

BILD FEHLT

Figure 1: Optimal nominal solution y(x, t; p0).
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Figure 2: Nominal control u1(p0) (left) and u2(p0) (right).

For the nominal perturbation parameter p0 = (1, 1, 1, 0)T , the optimal solution
is obtained from the discretized formulation (22). All computations are performed
with a discretization of Nx = 34 for the spatial variable x which leads to a system of
32 first order ordinary differential equations if the Neumann conditions are directly

13



inserted into all functions. The state variables on the boundaries y(0, t) and y(1, t)
— which are used on the right hand side of the PDE in (35) to approximate yx(x, t)
and yxx(x, t) — are calculated by the second order approximations

y(0, t) ≈
4y(hx, t) − y(2hx, t) − 2hxu1(t)

3
,

y(1, t) ≈
4y(1 − hx, t) − y(1 − 2hx, t) + 2hxu2(t)

3
.

(36)

In order to be able to use an explicit higher order Runge–Kutta scheme, it is necessary
to choose the number of time grid points sufficiently high. The discretized time inter-
val has Nt = 151 grid points, but due to printing resolution reasons only every fifth
point in time is included in the three-dimensional plots (Figures 1, 3–6). An explicit
fourth order Runge–Kutta scheme and a linear interpolation of the control variable
is used for the integration in time. Similar results can be achieved using an implicit
Runge–Kutta method with fewer time steps, at the expense of additional numerical
cost. The spatial integral in the objective is approximated by the trapezoidal method.
After about 9.5 seconds of computational time, the optimal nominal solution is ob-
tained with an objective value F (y(p0), u(p0), p0) ≈ 2.5073 · 10−5. The unperturbed
optimal control functions with two boundary arcs are depicted in Figure 2.

BILD FEHLT

Figure 3: Sensitivities dy
dp1

(x,t;p0)

BILD FEHLT

Figure 4: Sensitivities dy
dp2

(x,t;p0)

BILD FEHLT

Figure 5: Sensitivities dy
dp3

(x,t;p0)

All assumptions of the theorem on solution differentiability and sensitivity have
been carefully checked numerically for the discretized problem, and the Hessian of
the Lagrangian has been found to be positive definite on the kernel of the Jacobian
of the active constraints. Hence the sensitivity differentials of the control and state
variables and of the objective can be obtained from the expressions (26)–(34). Figures
3–6 display the respective sensitivity differentials.

Note that the sensitivities of the controls in figure 7 are zero on the boundary
arcs. Moreover, from the theory known in the case of ODEs (Refs. 22, 33) one
expects that the control sensitivities are discontinuous at each junction point of the
control constraints. Overshooting at these points in figure 7 results from the linear
interpolation of the control variables.

An investigation of the optimality conditions for problem (35) shows that since
there is no observation of the terminal state in the objective, the adjoint state is tero
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BILD FEHLT

Figure 6: Sensitivities dy
dp4

(x,t;p0)

at tf . From the control law (where P denotes projection onto the admissible interval
[umin, umax])

u1(t) = P

(

λ(0, t)

σ

)

u2(t) = P

(

λ(1, t)

σ

)

it follows that ui(tf ) = 0 holds, see figure 2. As the sensitivity quantities satisfy a
linearized version of these optimality conditions, one infers that all control sensitivities
will have the property that dui/dpj(p0)(tf ) = 0, as is clearly shown in figure 7.

First and second order sensitivity derivatives of the objective function can be
computed from the equations (27)–(29) which yield

dF

dp
[p0] ≈ 10−5 · (−2.50, 4.25, 6.56,−5.15)

d2F

dp2
[p0] ≈









4.98 · 10−5 −4.87 · 10−5 −8.38 · 10−5 3.67 · 10−5

−4.87 · 10−5 9.49 · 10−4 2.37 · 10−3 3.77 · 10−3

−8.38 · 10−5 2.37 · 10−3 5.96 · 10−3 9.26 · 10−3

3.67 · 10−5 3.77 · 10−3 9.26 · 10−3 3.44 · 10−2









.

(37)
Note that while the absolute values of the sensitivities appear small, they have to

be interpreted in relation to the absolute value of the objective F ≈ 2.5073 · 10−5.
The sign of the entries in the first order sensitivity of the objective provide information
about the direction of change of the objective under parameter changes. This follows
from first-order Taylor expansion. For example, the objective will decrease when
the parameter p1 increases. However, second-order information should be included

whenever possible as can be seen in the case of p4:
d2F
dp2

4

[p0] ≈ 3.44 · 10−2 has opposite

sign and is large compared to dF
dp4

[p0] ≈ −5.15 · 10−5. A discussion of the second-order
Taylor approximation reveals the influence of perturbations of different size.

The perturbation parameter p1 is connected with the viscosity coefficient ν. Figure
3 shows the sensitivity profile for changes in p1ν.
Perturbations in the initial values are studied by means of the parameters p2 and
p3 where the latter causes unsymmetry which is being propagated with time. The
corresponding sensitivities are depicted in figure 4 and 5. The sharp corners in these
quantities near the boundaries are caused by the control constraint.
Finally, p4 produces a forcing term on the right hand side which grows with time.
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7.2 Example 2: The Wave Equation

We now consider the optimal control of the one-dimensional wave equation with ad-
ditional control and state constraints:

Minimize

F (y, u, p) =
1

2
p2

∫

Ω

y(x, t)2 dx dt+
σ

2

tf
∫

t0

u(t)2dt,

subject to
ytt(x, t) = p1 yxx(x, t),

y(x, t0) =

{

cos(2π(2x− 1)) + 1, if x ∈ [0.25, 0.75],
0, else,

y(0, t) = 0,
y(1, t) = u(t),

0 ≤ at+ b− 1
2

t
∫

t0

∫

Ωx

y(x, t)2 dx dt,

umin ≤ u(t) ≤ umax,

(38)

with nu = nx = ny = 1, np = 2, Ωt = [0, 5], Ωx = (0, 1), σ = 10, a = 0.06, b = 0.15,
−umin = umax = 0.25,
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Figure 8: Optimal nominal solution y(x, t; p0).

The goal of this control problem is to eliminate the initial wave while taking
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Figure 9: Nominal control u(p0) (left) and state constraint (right).

control cost into account. At x = 1, the control allows to absorb parts of the wave.
The boundary condition at x = 0 causes reflection of any incoming wave.

At this time, no results are available concerning the existence of parametric sensi-
tivity functions for optimal control problems involving the wave equation, much less
in the presence of state constraints. Here, clearly the suggested numerical method
precedes the theoretical investigations.

For the nominal perturbation parameter p0 = (1, 1)T , the optimal solution is ob-
tained from the discretized formulation (22). All computations are performed with
a discretization of Nx = 34 for the spatial variable x which leads to a system of
32 second order ordinary differential equations (or 64 first order ordinary differential
equations) if the Dirichlet conditions are directly inserted into all functions. The
time interval is split into Nt = 151 discrete points to obtain the three-dimensional
plots (Figures 8, 10 and 11). Figures 9 and 12 were obtained from a discretization
of Nt = 351 discrete points of time to highlight the subtle structures of the control
and its sensitivities. An explicit fourth order Runge–Kutta scheme and a linear in-
terpolation of the control variable is used for the integration in time. The spatial
integrals in the objective and in the state constraint are approximated by the trape-
zoidal method. After about 4.5 seconds of computational time the optimal nominal
solution is obtained with F (y(p0), u(p0), p0) ≈ 0.7225.

One can easily recognize the characteristic lines illustrating the typical behavior
of hyperbolic PDEs propagating information. Since the control acts only on one of
the boundaries one part of the initial wave is only attenuated after its reflection and
return to the control boundary. Moreover, the damping of the remaining wave in time
can be observed.

The unperturbed optimal control function with three boundary arcs is depicted on
the left hand side of figure 9. There exist two contact points t1 ≈ 2.43 and t2 ≈ 3.10
where the state constraint in (38) becomes active, cf. the right hand side of figure 9.

Again all assumptions of the theorem on solution differentiability and sensitivity
have been carefully checked numerically for the discretized problem, and the Hessian
of the Lagrangian has been verified to be positive definite on the kernel of the Jacobian
of the active constraints. Hence the sensitivity differentials of the control and state
variables and of the objective can be obtained from the expressions (26)–(34). Figures
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Figure 10: Sensitivities dy
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(x,t;p0).
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Figure 12: Sensitivities of the control function du
dp1

(p0) (left) and du
dp2

(p0) (right).

10–12 display the respective sensitivity differentials. As expected, the characteristic
lines also appear in the state sensitivities.

Note that the sensitivities of the controls in figure 12 are zero on the boundary
arcs and that the overshooting at each junction point of the control constraints results
from the linear interpolation of the control variables.

First and second order sensitivity derivatives of the objective function can be
computed from the equations (27)–(29) which yield

dF

dp
[p0] ≈ (−0.8666, 0.4235)

d2F

dp2
[p0] ≈

(

13.1883 0.0746
0.0746 −0.0115

)

.
(39)

The parameter p1 influences the wave propagation speed. Figure 10 shows the
corresponding state sensitivity.

The tracking-type cost depends on the parameter p2. In figure 11, one can find
the sensitivity whose amplitude grows with time. Note that the parameter p2 does
not appear directly in the PDE. So perturbations in p2 will only alter the boundary
control function whose domain of influence does not include the upper-left corner of
the state in the (x, t) picture. Therefore, the sensitivity dy

dp2
(p0) equals zero in the

corner mentioned.
The control sensitivities in figure 12 feature very fine structures. While they are

in fact smooth functions except at the junction points of the control constraints, they
appear jagged due to scaling reasons.

The discussion of objective sensitivities can be carried out like in the previous
example.

8 Conclusion

We have proposed a method to compute parametric sensitivities of perturbed optimal
control problems for time-dependent PDEs with control and state constraints. Under
convergence assumptions to the presumed unique continuous solution, the original
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control problem has been discretized at various stages to finally yield a perturbed
NLP problem for the discrete control variables. For this finite-dimensional problem,
we are able to compute the sensitivity differentials of the optimal solution with respect
to the perturbation parameters. These sensitivities represent an approximation of the
corresponding continuous variables of the original PDE optimal control problem.

The examples show that this technique can be used for different types of PDEs
and demonstrates its general ability to calculate accurate solutions in a robust way.

The nominal solution and its sensitivities can be used for real-time optimal control
strategies, cf. (Refs. 2–5) for ODE optimal control problems. These ideas will be
adapted to real-time PDE optimal control strategies in an upcoming paper.
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04–08. Christof Büskens, Roland Griesse:
Computational Parametric Sensitivity Analysis of Perturbed PDE Optimal Control Prob-
lems with State and Control Constraints,
August 2004.

04–09. Christof Büskens:
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