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Abstract

The multibody system of an industrial robot leads to a mathe-

matical modell described by ordinary differential equations. Control

functions have to be determined such that a given performance index is

optimized subject to additional constraints. In order to solve such op-

timal control problems time-consuming methods are used which have

no real-time capability. Hence a robust numerical method based on

the parametric sensitivity analysis of nonlinear optimization problems

is suggested. Real-time control approximations of perturbed optimal

solutions can be obtained by evaluating a first order Taylor expansion

of the perturbed solution. Successive improvement of the constraints

in direction of the optimal perturbed solution leads to an admissi-

ble solution with a higher order approximation of the objective. The

proposed numerical method is illustrated by the optimal control of an

industrial robot subject to deviations in the payload and initial values.

Keywords

robot control, sensitivity analysis, real-time control, nonlinear pro-

gramming methods
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1 Introduction

In present production lines common tasks like welding, gluing and trans-
portation of loads are performed by industrial robots. Employing robots for
dangerous, exhausting and monotonous work has become necessary in order
to stay competitive on the international market: They raise production rates,
bring down costs and in general improve the products’ quality.
However the commonly used methods for teaching trajectories are not as
advanced as one would expect. Often users rely on manually generated tra-
jectories or on paths found by heuristic algorithms. To exploit the capacities
of industrial robots improved trajectories have to be calculated.
In the last decade, this situation has motivated research to design and im-
plement feasible controllers. The design of mathematical models complicates
the numerical computations due to highly complex dynamics. In compact
form the dynamics for a common industrial robot look like the well-known
formula for multi-rigid-body systems

u = M(q)q̈ +R(q, q̇). (1)

Optimal control is a powerful tool for calculating trajectories which are opti-
mal in view of a user defined performance index, like minimizing the process
time, reducing the energy consumption or even considering the wear and
tear.
During robot motion one may often detect deviations from nominal param-
eters in the system, e.g., deviations in the load mass or in the coordinates
of the trajectory. Unfortunately the comparatively high computing times
for solving those perturbed optimal control problems disqualify commonly
used methods for a number of applications. This motivates the development
of fast and reliable real-time control approximations for perturbed optimal
solutions.
In stability analysis, differential properties of optimal solutions with respect
to perturbation parameters are studied. Sensitivity analysis is concerned
with the computation of sensitivity differentials of optimal solutions. This
sensitivity information enables the control engineer to estimate the changes
in the modeling function and optimal solution due to small deviations of the
design parameters from fixed nominal values. The purpose of this paper is to
show that the property of solution differentiability is essential for designing
real-time control algorithms.
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In this paper approximations of perturbed solutions are obtained from non-
linear programming methods that can be used in an efficient and robust
way for the computation of both the nominal solution and the sensitivity
differentials of perturbed solutions. Numerical results are presented for the
industrial robot ABB IRB6400 2.8. The discussion is restricted to the three
main joints of the robot which are responsible for the positioning of the tool.

2 Robot equations

2.1 Dynamics

For a system with nf degrees of freedom under holonomic constraints La-
grange’s equations can be written as

d

dt

(

∂T

∂q̇j

)

−
∂T

∂qj
= Qj, j = 1, . . . , nf , (2)

where qj describes a generalized coordinate, Qj is the generalized work, and
T is the kinetic energy.
For the dynamic system representing the manipulator of an industrial robot
the generalized coordinates are chosen to be the angle positions in the joints,
which connect two adjacent bodies. The generalized work depends on the
gravitational potential energy V invoked by a conservative force field and on
the work performed by an external control uj. This control addresses the
motor at the appropriate joint of angle qj:

Qj = −
∂V

∂qj
+ uj.

Evaluating the derivative with respect to time in (2) yields

uj =
nf∑

i=1

∂2T

∂q̇j∂q̇i
q̈ +

nf∑

i=1

∂2T

∂q̇j∂qi
q̇ −

∂(T − V )

∂qj
, j = 1, . . . , nf

or in compact form
u = Tq̇q̇q̈ + Tq̇qq̇ − (T − V )q,

since T = T (q, q̇) and V = V (q).
Each of the nk bodies of the manipulator accounts for the total kinetic energy
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T . The kinetic energy for a single body i is divided into a translatory part
Ti,trans and a rotational part Ti,rot:

T =
nk∑

i=1

Ti,trans + Ti,rot.

Accordingly the potential energy is given by the sum of the potential energy
Vi of the individual bodies:

V =
nk∑

i=1

Vi.

For a single body i these energy terms are given by

Ti,trans =
1

2
mi|vi|

2, Ti,rot =
1

2
ω>

i Jiωi, Vi = gmihi.

The mass mi and the moment of inertia Ji are constant for each body and can
be obtained by e.g. CAD tools, measurement or by parameter estimation.
As customary g is the gravitional constant.
Formulating the robot kinematics, as it is done in the next section, allows for
an evaluation of the absolute coordinates Si describing the center of gravity
for each body i. The height hi of body i is just the height of the center of
gravity, i.e. hi := (Si)3.
Since Si depends on the generalized coordinates qj = qj(t) the center of
gravity is time dependent, too. Hence the velocity vi is given by its first time
derivative

vi =
dSi

dt
=
∂Si

∂q
q̇.

Finally ωi denotes the angular velocity of body i.

2.2 Kinematics

To set up the formulas of the robot dynamics we require the position and
orientation of the bodies of the robot manipulator with respect to a fixed
base system B.
Therefore local coordinate systems Ki (i = 1, . . . 4) are assigned to each body
of the system. K1 specifies the position and orientation of the first body of
the robot. K2 and K3 are the coordinate systems of the following bodies,
which form the manipulator. An additional coordinate system K4 is consid-
ered for a counterweight.
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Next the transformations between adjacent coordinate systems can be given
as 4× 4-matrices by using the notation of homogeneous coordinates. Trans-
formations from a coordinate system A to a system B will be denoted by
TB

A . Translations along a vector s are named by Tr(s), while rotations by an
angle α e.g. about the main axis z of the local coordinate system are denoted
by Rotz(α).

TK1
B = Rotz(q1) =








cos q1 − sin q1 0 0
sin q1 cos q1 0 0

0 0 1 0
0 0 0 1







,

TK2
K1

= Tr(l1)Roty(q2) =








cos q2 0 sin q2 l11
0 1 0 l12

− sin q2 0 cos q2 l13
0 0 0 1







,

TK3
K2

= Tr(l2)Roty(q3 − q2) =








cos(q3 − q2) 0 sin(q3 − q2) l21
0 1 0 l22

− sin(q3 − q2) 0 cos(q3 − q2)1 l23
0 0 0 1







,

TK4
K1

= Tr(l1)Roty(q3) =








cos q3 0 sin q3 l11
0 1 0 l12

− sin q3 0 cos q3 l13
0 0 0 1







.

Herein the vectors li = (li1, li2, li3)
>, i = 1, 2 denote the position of the joints

(i+1) with respect to the system Ki. These transformations can be combined
to express transformations with respect to the base system:

TK2
B = TK1

B TK2
K1

TK3
B = TK1

B TK2
K1
TK3

K2

TK4
B = TK1

B TK4
K1

Herewith the absolute coordinates for the center of gravity Si can be calcu-
lated from

Si = TKi

B si, i = 1, 2, 3, 4,

where si = (si1, si2, si3)
> denotes the local coordinates of the center of gravity

of body i.
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The absolute angular velocities depend on the velocities q̇i in the joints.
Formulated in homogeneous coordinates we obtain

ω1 =








0
0
q̇1
0







,

ω2 = (TK2
K1

)>ω1 +








0
q̇2
0
0








=








− sin(q2)q̇1
q̇2

cos(q2)q̇1
0







,

ω3 = (TK3
K2

)>ω2 +








0
q̇3 − q̇2

0
0








=








− sin(q3)q̇1
q̇3

cos(q3)q̇1
0







.

The absolute position of the tool center point TCP is given by

STCP = TK3
B l3.

Herein l3 denotes the relative coordinate of the TCP with respect to K3. By
derivating we get the vector of velocity

vTCP =
d

dt
STCP =

∂STCP

∂q
q̇.

2.3 Implementation of the control equation

Next we present the mass matrix M = (M)i,j, i, j = 1, 2, 3 and the right
hand side vector R = (R1, R2, R3)

> of (1). With the abbreviations

a1 = s31 cos q3 + s33 sin q3

a2 = s33 cos q3 − s31 sin q3

a3 = s41 cos q3 + s43 sin q3

a4 = s43 cos q3 − s41 sin q3

a5 = s21 cos q2 + s23 sin q2

a6 = s23 cos q2 − s21 sin q2

b1 = l23 cos q2
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b2 = l23 sin q2

c1 = a1b1 − a2b2

c2 = a2b1 + a1b2

the mass matrix M is given by

M1,1 = m1s
2
11 +m2((a5 + l11)

2 + s2
22) +

m3((a1 + b2 + l11)
2 + s2

32) +m4(a3 + l11)
2 +

i1z + i2x sin2 q2 + i2z cos2 q2 + i3x sin2 q3 + i3z cos2 q3

M1,2 = M2,1 = −m2a6s22 −m3b1s32

M1,3 = M3,1 = −m3a2s32

M2,2 = m2(s
2
23 + s2

21) +m3l
2
23 + i2y

M2,3 = M3,2 = m3c2

M3,3 = m3(s
2
33 + s2

31) +m4(s
2
43 + s2

41) + i3y.

Defining

d1 = m2(a5 + l11)a6 +m3(a1 + b2 + l11)b1 + (i2x − i2z) sin q2 cos q2

d2 = m4(a3 + l11)a4 +m3(a1 + b2 + l11)a2 + (i3x − i3z) sin q3 cos q3

yields

R1 = 2q̇1q̇2 d1 + 2q̇1q̇3 d2 + q̇2
2 (m2a5s22 +m3b2s32) + q̇2

3 m3a1s32

R2 = −q̇2
1 d1 − q̇2

3 m3c1 − g(m2a5 +m3b2)

R3 = −q̇2
1 d2 + q̇2

2 m3c1 − g(m3a1 +m4a3).

Moreover the velocity of the TCP is given by

a7 = cos q3l31 + sin q3l33

a8 = cos q3l33 − sin q3l31

‖vTCP‖
2 = (b2q̇2 + a7q̇3)

2 + ((a7 + b2 + l11)q̇1)
2

+(−l32q̇1 + b1q̇2 + a8q̇3)
2.

2.4 Frictional and restoring forces

Frictional and restoring forces go beyond the scope of the Lagrangian Me-
chanics. However, these forces are considered by the following modification
of (1):

q̈ = M(q)−1(Du− R(q, q̇) − τfric(q̇) − τrest(q)) (3)
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The Coulomb friction in the joint angles is included by the additional force
τfric:

τfric(q̇) =






380 tanh(3q̇1)
345 tanh(3q̇2)
337 tanh(3q̇3)




 .

The body of the robot is stabilized by pneumatic cylinders. Hence an addi-
tional restoring force τrest similar to Hooke’s Law is considered:

τrest(q) =






0
3783.4297 · q2

0




 .

The control vector u is normalized by the diagonal matrix

D = diag(3412.256, 3465.5725, 3465.5725)>.

2.5 Technical data

All computations presented hereafter are applied to the industrial robot ABB
IRB6400 2.8 without any tool mounted to the end effector. In detail we have
the moments of inertia

J1 =






0 0 0
0 0 0
0 0 28.0




 , J2 =






33.63 0 0
0 28.43 0
0 0 9.4




 ,

J3 =






8.6607 0 0
0 181.8004 0
0 0 195.2742




 ,

while the masses are given by

m1 = 510.0, m2 = 240.0, m3 = 294.9 + p4, m4 = 465.0.

Herein p4 ∈ IR provides a perturbation parameter in the mass of the payload
and will be used later.
Moreover we have

l1 =






0.188
0.0

0.900




 , l2 =






0.0
0.0

0.950




 , l3 =






1.900
0.0
0.




 ,
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and the centers of gravity

s1 =






0.130
0.0

0.783




 , s2 =






−0.010
0.007
0.430




 ,

s3 =






161.92959+1.6445p4

294.9+p4

−0.0233
0.2171




 , s4 =






−0.665
0.0

−0.015




 .

2.6 Constraints

We consider the following 20 control and state constraints:

• Control constraints defined by the torque voltages

−1 ≤ ui(t) ≤ 1, i = 1, 2, 3. (4)

• State constraints of first order imposed for the angular velocities

100◦/s ≤ q̇i(t) ≤ 100◦/s, i = 1, 2, 3. (5)

• State constraints of second order for the angles

−180◦ ≤ q1(t) ≤ 180◦,
−70◦ ≤ q2(t) ≤ 70◦,
−28◦ ≤ q3(t) ≤ 105◦,
−65◦ ≤ q2(t) − q3(t) ≤ 65◦.

(6)

For the definition of the order of a state constraint, cf. Hartl et al. [7].

In this paper we will determine point-to-point trajectories with the following
initial and terminal conditions:

q(t0) = (π
2
− p1,−p2,−p3)

>, q(tf ) = (−π
4
, 0, 0)>,

q̇(t0) = 0, q̇(tf ) = 0.
(7)

Hereafter we assume, that there might exist perturbations in the initial po-
sition of the robot, which are modelled by parameters p1, . . . , p3 ∈ IR in (7).
It is worth to mention, that formulation (7) includes also the more general
case of trajectory perturbations, this means deviations from the nominal tra-
jectory that occure during the motion of the robot.
In summary we examine perturbations in the payload and the initial values
p = (p1, p2, p3, p4)

> ∈ IR4.
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3 Optimal Control Problem

Equations (3)–(7) define a parametric control problem which allows us to
simulate the robot on the computer by fixing a special control vector func-
tion u(t) and integrate the robot dynamics for a given initial value and a
given time intervall [0, tf ].
Nevertheless this is still a demanding problem since on the one hand the fixed
control will in general not fit the constraints in (4)–(7) and on the other hand
we can assume that there exist infinitely many control functions satisfying
the point-to-point conditions in (7).
Contrariwise we can take advantage of the second problem by picking an
’expediently’ control function out of the infinitely many possibilities. There-
fore we require the following objective functional as a convex combination of
energy and power to be minimized:

J [u, tf , p] :=
∫ tf

0
α‖u(t)‖2

2 + (1 − α)‖q̇(t)‖2
2 dt, (8)

with weight factor 0 ≤ α ≤ 1.
Beside the objective in (8) other functionals are conceivable like e.g. minimiz-
ing the time or the wear and tear. For a wider choice of possible objectives
see, e.g. Knauer [8]. In summary, the optimal control problem is to determine
control functions ui : [0, tf ] → IR, i = 1, 2, 3, that minimize the functional
(8) subject to the control problem (3)–(7).
Let x(t) ∈ IRn denote the state of a system and u(t) ∈ IRm the control func-
tion in a time interval [0, tf ]. We consider the following simplified optimal
control problem subject to control and state constraints.

Minimize F (x, u, p) = g(x(tf), tf , p) +

tf∫

t0

f0(x(t), u(t), p) dt

subject to ẋ(t) = f(x(t), u(t), p) for all t ∈ [0, tf ],
x(0) = ϕ(p), ψ(x(tf ), p) = 0,
C(x(t), u(t), p) ≤ 0 for all t ∈ [0, tf ].

(9)

Herein the problem depends on the parameter p ∈ P := IRNp which denotes
data perturbations in the system as described before. The parametric control
problem will be referred to as problem OCP(p). Obviously the path planning
problem of a robot in section 2 combined with the objective (8) is included
in formulation (9) as a special case.
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The functions g : IRn×P → IR, f0 : IRn× IRm×P → IR, f : IRn× IRm×P →
IRn, ϕ : P → IRn, ψ : IRn×P → IRr, 0 ≤ r ≤ n, and C : IRn× IRm×P → IRk

are assumed to be sufficiently smooth on appropriate open sets. The final
time tf is either fixed or free.
Let us choose a reference or nominal parameter p0 and consider problem
OCP(p0) as the unperturbed or nominal problem. Pontryagin’s minimum
principle applied to OCP(p0) leads to a multipoint boundary value problem.
Its solution allows for a calculation of x0(t), u0(t) and the associated adjoint
function λ0(t), 0 ≤ t ≤ tf . This method is not real-time capable in general
but strong C1-stability enables us to embed the unperturbed solution x0(t),
u0(t), λ0(t) into a family of optimal solutions x(t, p), λ(t, p), u(t, p) to the
perturbed problem OCP(p). For more details see Malanowski, Maurer [10],
[11], Maurer, Pesch [13], [14]. This type of strong C1-stability is crucial for
designing real-time approximations of perturbed solutions. Namely, it allows
to calculate sensitivity differentials

∂y

∂p
(t, p0)

which are evaluated along the nominal solution and which satisfy a (linear)
boundary value problem, too.
These sensitivity differentials permit an approximation of the perturbed so-
lution y(t, p) := (x(t, p), λ(t, p), u(t, p)) by its first order Taylor expansion:

y(t, p) ≈ y0(t) +
∂y

∂p
(t, p0)(p− p0). (10)

The quantities y(t, p0) and ∂y
∂p

(t, p0) are computed off-line. Then the benefit

of (10) is that only a matrix-vector multiplication and a vector-vector ad-
dition have to be performed on-line to approximate y(t, p0 + ∆p) very fast.
Consequently, (10) is particularly suitable for time critical processes and
hence can be used as a real-time approximation. For special perturbations,
this approach has also been investigated by Bock, Krämer-Eis [1], Krämer-
Eis [9], and Pesch [15], [16].
There exist two well-known drawbacks for real-time approximations of type
(10): First of all the complete boundary value problem (nominal solution
and sensitivity differentials) has to be solved including the adjoint equations.
Moreover one should know precisely the structure of the optimal solution,
i.e., the number of active time intervals for the control and state constraints
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(4)–(6). Usually, it is rather difficult to determine the structure of the op-
timal control and to find appropriate estimations for adjoint variables. On
the other hand the open-loop expression (10) does not lead to an admissi-
ble solution due to violations e.g. in ψ(x(tf ), p) = 0. For this reason, the
approximation (10) can only be used for perturbed problems, if the viola-
tions are sufficiently small in view of practical requirements. Especially the
exponential error growth in initial value problems for ODE systems caused
by parameter deviations explains, why the real-time approximation (10) for
perturbed optimal control problems cannot be used in general.
Hence the following section is concerned with the reduction of those viola-
tions in the constraints by a method which dispenses with adjoint variables.
But the adjoint variables will not be lost, they can be recovered a posteriori
from Lagrange multipliers obtained via the optimization approach presented
hereafter.

4 Nonlinear Optimization

The numerical solution of (9) by nonlinear programming (NLP) techniques
is well developed and there exists a number of excellent methods. These
methods use a suitable discretization of the the control problem (9) by which
it is transcribed into an NLP problem. We reflect the main idea for the
simple Euler method subsequently. Moreover, for notational simplicity and
for an integer Nt > 1 we choose equidistant mesh points τi := (i − 1)h,
i = 1, . . . , Nt, h :=

tf
Nt−1

. Let ui ∈ IRm denote approximations for u(τi), then

for given z := (u1, . . . , uNt) ∈ IRm·Nt state approximations xi ∈ IRn of the
values x(τi) can be achieved recursively as functions of the control variables:

x1(z) := ϕ(p),
xi+1(z) := xi(z) + hf(xi(z), ui, p), i = 1, . . . , Nt − 1.

(11)

By this means the control problem (9) is replaced by:

min
z

g(xNt(z), p) +
Nt−1∑

i=0

hf0(x
i(z), ui, p)

subject to ψ(xNt(z), p) = 0,
C(xi(z), ui, p) ≤ 0, i = 1, . . . , Nt.

(12)
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Note that a free final time tf can be handled as an additional variable in z.
Problem (12) defines an NLP problem of form

min
z

H(z, p),

subject to Gi(z, p) = 0, i = 1, . . . , Ne,
Gi(z, p) ≤ 0, i = Ne + 1, . . . , Nc,

(13)

which can be solved efficiently for suitable Ne, Nc and functions H and Gi

by standard techniques, e.g. SQP methods.
All calculations described hereafter were performed by the code NUDOCCCS
of Büskens [2, 3] which has implemented also various higher order approxi-
mations for state and control variables. The treatment of stiff ODEs, grid
refinement techniques or numerical check of second order sufficient optimality
conditions can also be found in [3]. The convergence of solutions discretized
via Euler’s method to solutions of the continuous control problem has been
proved in Malanowski, Büskens and Maurer [12].
By solving the NLP problem (13) we obtain an estimate of the continuous
control and state variables (x, u) of (9) depending on the applied discretiza-
tion. Likewise, all other variables and functions of the continuous problem
(9) can be determined approximately. Unfortunately this method is still not
real-time capable.

5 Parametric sensitivity analysis

So far we were able to transform a perturbed control problem into a per-
turbed NLP problem. The results presented hereafter do not depend on the
discretization technique used. After solving (13) we know the set and the
number Na of active constraints. Since inactive constraints have no impact
on the optimal solution, the solution of (13) is the same as the solution of

min
z

H(z, p)

subject to Ga(z, p) = 0,
(14)

if Ga = (Ga
1, . . . , G

a
Na

)> denotes the collection of the active constraints. We
restrict the discussion to formulation (14). Let η = (η1, . . . , ηNa

)> denote the
Lagrange multiplier for the Lagrangian

L(z, η, p) = H(z, p) + η>Ga(z, p),
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then sufficient conditions for the differentiability of an optimal solution z(p)
w.r.t. p are given by

Theorem 1 Let H and Ga be twice continuously differentiable w.r.t. z and
p. Let z0 be a strong regular local solution of (14) for a fixed parameter p0

with Lagrange multiplier η0, i.e. Ga(z0, p0) = 0 and

1. rg (∇zG
a(z0, p0)) = Na (z0 is regular),

2. ∇zL(z0, η0, p0) = 0, η>0 G
a(z0, p0) = 0 (necessary optimality conditions),

3. (η0)i > 0 for i = 1, . . . , Na (strict complementarity)

4. v>∇2
zzL(z0, η0, p0)v > 0, ∀v ∈ ker(∇zG

a(z0, p0)(z0, p0)), v 6= 0 (second
order sufficient conditions).

Then there exists a neighborhood P(p0) such that (14) possesses a unique
strong regular local solution z(p) and η(p) for all p ∈ P(p0). Furthermore,
z(p) and η(p) are continuously differentiable functions of p in P(p0) and it
holds
(

∇2
zzL(z0, η0, p0) ∇zG

a(z0, p0)
>

∇zG
a(z0, p0) 0

)(
dz
dp

(p0)
dη
dp

(p0)

)

= −

(

∇2
zpL(z0, η0, p0)
∇pG

a(z0, p0)

)

.

(15)

Herein ∇2
zzL denotes the Hessian of the Lagrangian. Notice, that the left

matrix in (15) is non-singular under the assumptions of Theorem 1. Hence
the sensitivity differentials dz/dp and dη/dp at p0 can be calculated explicitly
by solving the linear equation system. The proof of the theorem is based on
the implicit function theorem and can be found in Fiacco [6] or Büskens [3].
The assumptions in Theorem 1 can be checked numerically by use of the pro-
jected or reduced Hessian, compare Büskens and Maurer [4] or Büskens [3].
As described before for optimal control problems a first order Taylor approx-
imation for z(p0 + ∆p) can be calculated extremly fast by

z(p) := z(p0 + ∆p) ≈ z̃(p) := z(p0) +
dz

dp
(p0)∆p (16)

for deviations ∆p in p.
Although formula (16) yields acceptable real-time approximations for small
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perturbations ∆p, especially for larger deviations and in case of active con-
straints (16) leads to a non admissible solution, e.g.

Ga(z̃(p), p) = ε1 6= 0. (17)

Additionally formula (16) might be worse in view of optimality, as the fol-
lowing theorem shows, cf. Büskens [5]:

Theorem 2 Let the assumptions of Theorem 1 hold and let the functions H
and Ga in (14) be three times continuously differentiable w.r.t. to z and p.
Then there exists a neighborhood U(p0) of p0 with

‖z(p) − z̃(p)‖ = O(‖∆p‖2), (18)

‖H(z(p), p) −H(z̃(p), p)‖ = O(‖∆p‖2), (19)

‖Ga(z̃(p), p)‖ = O(‖∆p‖2). (20)

In the unconstrained case, i.e., Na = 0, we have

‖H(z(p), p) −H(z̃(p), p)‖ = O(‖∆p‖3). (21)

Note, that the order of optimality of the objective is higher in the uncon-
strained case.
Introducing an artifical perturbation q in (14) enables us to improve the
real-time approximation (16). We treat the problem

min
z

H(z, p)

subject to Ga(z, p) − q = 0.
(22)

If the nominal perturbation is chosen to q = q0 = 0, problem (22) is equiva-
lent to (16). Moreover we are able to calculate the sensitivities dz

dq
(q0) = dz

dq
(0)

and dη

dq
(q0) = dη

dq
(0) similar to (15), since problem (22) fulfills the assumptions

of Theorem 1, if (14) does.
Now we have the munition to calculate higher order admissible real-time
approximations.

6 Higher Order Real-Time Approximations

We suggest the following corrector iteration method to achieve admissibility
for the active constraints without loss of its optimality. If an actual deviation
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of the form (p, q0) = (p, 0)> ∈ IRNp+Na from the nominal parameter (p0, 0)>

is detected, equation (16) provides a very fast open-loop approximation for
the perturbed solution. It was shown in (17), that this approximation causes
an error ε1 in the active constraints Ga(z̃(p), p). Note, that this error is of the
form of the new perturbation parameter q in (22). Hence we can hope, that
a better approximation in view of optimality and especially admissibility can
be found by

z(p) ≈ z̃[2](p) := z(p0) +
dz

dp
(p0)4p

︸ ︷︷ ︸

=:z̃[1](p)

− dz
dqa (0) ε1

= z̃[1](p) − dz
dqa (0) Ga(z̃[1](p), p),

(23)

with z̃[1](p) from (16) and dz
dp

(p0) respectively dz
dqa (0) from equation (15). Since

the nominal solution z(p0) as well as the sensitivity differentials dz
dp

(p0) and
dz
dqa (0) can be calculated off-line, equation (23) provides also a fast computa-
tion of the real-time approximation, since no gradient calculation is needed.
The additional term dz

dqa (0)Ga(z̃[1](p), p) in equation (23) can be understood

as a correcting feedback step for the error caused by equation (17). The
following theorem holds, cf. Büskens [5]:

Theorem 3 Let the assumptions of Theorem 1 hold and let the functions
H and Ga in (14) be three times continuously differentiable w.r.t. to z and
p. Then there exists a neighborhood U(p0) of p0 and a vector v ∈ IRNz ,
v ∈ ker(∇zG

a(z0, p0)) and ‖v‖ = O(‖∆p‖2) with

‖z(p) − z̃[2](p)‖ = ‖v‖ + O(‖∆p‖3), (24)

‖H(z(p), p) −H(z̃[2](p), p)‖ = O(‖∆p‖3), (25)

‖Ga(z̃[2](p), p)‖ = O(‖∆p‖3). (26)

Note that the admissibility in (26) is improved as well as the optimality (25)
of the objective although the variables z̃[2](p) are still of order O(‖∆p‖2).
Approximation (23) is quite good, especially in comparison to the first order
approximation (16), but we can do better since (23) causes an error in the
active constraints again of form of the artifical perturbation q:

Ga(z̃[2](p), p) = ε2 6= 0. (27)
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Hence an additional improvement of (23) is given by

z(p) ≈ z̃[3](p) := z̃[2](p) −
dz

dqa
(0) Ga(z̃[2](p), p). (28)

Obviously the correcting feedback steps in (23) and (28) form an iterative
process which can be described as follows:

1. Choose ε∞ ∈ IR+ and initialize z̃[1](p) by (16), set k := 1.

2. If ‖Ga(z̃[k](p), p)‖2 < ε∞ then STOP.

3. Calculate

z̃[k+1](p) := z̃[k](p) −
dz

dqa
(0) Ga(z̃[k](p), p), (29)

and set k := k + 1.

4. Goto 2.

The algorithm can be enlarged to an approximation of the Lagrangian mul-
tipliers, but will not be discussed here. Although the main request of the
correcting feedback steps is to find an admissible solution, the improved or-
der of optimality is not lost. In enhancement of Theorem 3 we obtain, cf.
Büskens [5].

Theorem 4 Let the assumptions of Theorem 1 hold and let the functions
H and Ga in (14) be three times continuously differentiable w.r.t. to z and
p. Then there exists a neighborhood U(p0) of p0 and a vector v ∈ IRNz with
v ∈ ker(∇zG

a(z0, p0)) and ‖v‖ = O(‖∆p‖2) such that for all p ∈ U(p0) the
sequence z̃[k](p) in (29) converges to a fixed point z̃[∞](p) with

‖z(p) − z̃[∞](p)‖ = ‖v‖ + O(‖∆p‖3), (30)

‖H(z(p), p) −H(z̃[∞](p), p)‖ = O(‖∆p‖3), (31)

‖Ga(z̃[∞](p), p)‖ = 0. (32)

Note, that the fixed point in Theorem 4 is not unique, cf. Büskens [5].
Nevertheless, any fixed point of iteration (29) fulfills (30)-(32). Sensitivi-
ty-Theorem 1 predicts the existence of a neighbourhood where the active
constraints remain unchanged. This guarantees the existence of a fixpoint.
In more detail one can show the relations ‖Ga(z̃[k](p), p)‖ = O(‖∆p‖k+1)
and ‖H(z(p), p)−H(z̃[k](p), p)‖ = O(‖∆p‖3), k = 2, 3, 4, . . ., cf. Büskens [5].
Hence the algorithm can be terminated at any time without loss of optimality
and admissibility.
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7 Numerical Results

The purpose of this section is to illustrate the theoretical results presented in
the sections 3–6 for the mathematical model of the robot ABB IRB6400 2.8
introduced in section 2. We consider the perturbed optimal control problem
defined by (3)–(8). The nominal perturbation is set to p0 = (0, 0, 0, 0)> in
OCP (p0).
We choose a fixed final time tf = 2.0, weight factor α = 0.9 and Nt = 101.
This leads to Nt ·m = 101 · 3 = 303 control variables.
In the first step the optimal nominal solution is calculated by solving the
optimal control problem (3)–(8) with a 4th order approximation for the state
variables and a linear interpolation of the control. All computations use the
initial estimates ui = 0, i = 0, . . . , Nt, for the control functions. For the
nominal parameter p0 we obtain J [u, p0] = 0.7238392 after about 6 seconds
of computational time on a 3GHz PC. The optimal nominal controls are
given in figure 1, while the optimal nominal trajectory can be found in figure
3 as a three dimensional plot.
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Figure 1: Optimal nominal controls u0(t).

Note that the control and state constraints in (4)–(6) do not become active,
hence we find Ga(z0, p0) = (q(tf ) − (−π

4
, 0, 0)>, q̇(tf ))

> = 0, Na = 6. All as-
sumptions in Theorem 1 are satisfied for the nominal problem. Especially the
Hessian in Theorem 1 is positive definite on the kernal of the Jacobian of the
active constraints Ga with smallest eigenvalue ν = 0.13 · h, h =

tf
Nt−1

= 2
100

.
Thus the nominal solution is a strong local minimum and we can apply equa-
tion (15) to calculate dz

dp
(p0) and ∂u

∂p
(ti, p0) ≈ dui

dp
(p0) respectively. Figure 2

displays the sensitivity differentials of the controls. Note that the sensitiv-
ities of the controls with respect to perturbations in the payload are much
smaller than the others. This is due to the fact that the counterweight was
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Figure 2: Sensitivities ∂u
∂pj

(ti, p0) ≈
dui

dpj
(p0), j = 1, 2, 3, 4.
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especially designed to make the robot insensitive in terms of different pay-
loads. Therefore as a spin-off we can notice the good job the robot engineers
did by constructing the special geometry of the robot.
According to relation (16), the sensitivity differentials are necessary to eval-
uate a first order Taylor expansion of the perturbed solution. However equa-
tions (23), (28) and (29) remind us that the sensitivity differentials with
respect to perturbations in the terminal conditions are needed, too. For lack
of space we dispense with a depiction of these sensitivities.

In order to judge the quality of the real-time approximations for the robot
problem, we set up the following Table 1 which lists the relative errors

ζ
[k]
H (p) :=

H(z̃[k](p), p) −H(z(p), p)

H(z(p), p)
, k = 0, 1, 2, . . . (33)

of the objective for different perturbations p. Herein and in the following ζ
[0]
H

denotes the relative error of the objective obtained after an integration of
the perturbed system using the nominal control variables. The error ζ

[k]
G (p)

in the nonlinear constraints is defined by

ζ
[k]
G (p) := max

i
Ga

i (z̃
[k](p), p), k = 0, 1, 2, . . . . (34)

The first eight iterations and the solution of the fixed point predicted in Theo-
rem 4 for different perturbations pa = (2◦, 2◦, 2◦, 3kg), pb = (−4◦, 2◦,−1◦, 1kg)
and pc = (20◦, 20◦, 20◦, 30kg) are listed in Table 1.

p = pa p = pb p = pc

k ζ
[k]

G
(p) ζ

[k]

F
(p) ζ

[k]

G
(p) ζ

[k]

F
(p) ζ

[k]

G
(p) ζ

[k]

F
(p)

0 1.36 · 10−01 6.83 · 10−02 7.07 · 10−02 1.88 · 10−03 1.87 · 10±00 1.14 · 10±00

1 4.76 · 10−03 2.38 · 10−03 1.91 · 10−03 7.66 · 10−04 3.90 · 10−01 2.26 · 10−01

2 2.22 · 10−04 3.71 · 10−06 3.05 · 10−05 1.08 · 10−05 2.17 · 10−01 3.87 · 10−02

3 5.75 · 10−06 2.10 · 10−06 7.61 · 10−07 1.92 · 10−07 7.70 · 10−02 1.39 · 10−02

4 2.59 · 10−07 6.89 · 10−07 2.20 · 10−08 7.85 · 10−08 2.14 · 10−02 5.12 · 10−03

5 9.20 · 10−09 6.34 · 10−07 6.56 · 10−10 8.10 · 10−08 4.18 · 10−03 7.93 · 10−03

6 3.44 · 10−10 6.32 · 10−07 1.97 · 10−11 8.09 · 10−08 1.14 · 10−03 6.85 · 10−03

7 1.39 · 10−11 6.32 · 10−07 5.94 · 10−13 8.09 · 10−08 4.07 · 10−03 7.21 · 10−03

8 5.60 · 10−13 6.32 · 10−07 1.80 · 10−14 8.09 · 10−08 1.40 · 10−03 7.10 · 10−03

∞ 0 6.32 · 10−07 0 8.09 · 10−08 0 7.13 · 10−03

Table 1: Admissible real-time approximations for different perturbations.

Even in the case of very large perturbations pc the method converges. The
zeros in the last line of Table 1 have to be understood as zeros in the sense
of machine precision. Hence all real-time approximations lead to admissible
solutions within machine precision. The results indicate that the precision
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obtained via the proposed method is by far higher than the one calculated by
(10) and (16) respectively. Computing time for iteration 1 is about 2.6 · 10−6

seconds, while each of the other iterates needs about 5.0 · 10−4 seconds. It
should be noted that, in a practical implementation, the computational times
for the iterations 1, 2, 3, . . . , can be reduced by an additional factor of 101
(number of gridpoints), if the time during the motion of the robot is used for
computing the needed approximations.
Figure 3 shows the solutions of the robot trajectory for perturbation pc. Note
that perturbation pc is much larger then deviations appearing in practice.

Figure 3: Optimal trajectories: nominal (solid, bright), perturbed (solid,
dark), first Taylor approximation (dashed, bright), admissible real-time ap-
proximation (dashed, dark).

The numerical results clearly indicate that the real-time optimal control ap-
proximations exhibit a favorable and robust quality, since the nonlinear con-
straints are satisfied exactly, the objective is achieved with sufficiently high
precision and the computational time for the approximation is much smaller
than the operation time of the robot.
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Symmetric Collocation for Unstructured Nonlinear Differential-Algebraic Equations of Ar-
bitrary Index, November 2002.

02–13. Michael Wolff:
Ringvorlesung: Distortion Engineering 2
Kontinuumsmechanische Modellierung des Materialverhaltens von Stahl unter Berücksich-
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Übersicht über einige makroskopische Modelle für Phasenumwandlungen im Stahl,
Juli 2003.

03–10. Michael Wolff, Friedhelm Frerichs, Bettina Suhr:
Vorstudie für einen Bauteilversuch zur Umwandlungsplastizität bei der perlitischen Umwand-
lung des Stahls 100 Cr6,
August 2003.

03–11. Michael Wolff, Bettina Suhr:
Zum Vergleich von Massen- und Volumenanteilen bei der perlitischen Umwandlung der
Stähle 100Cr6 und C80,
September 2003.

03–12. Rike Grotmaack, Adrian Muntean:
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