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Abstract

In this paper we consider finite families of complex n x n-matrices. In particular,
we focus on those families that satisfy the so-called Finiteness Conjecture, which was
recently disproved in its more general formulation. We conjecture that the validity
of the Finiteness Conjecture for a finite family of nondefective type is equivalent to
the existence of an extremal morm in the class of complex polytope norms. However,
we have not been able to prove this Complex Polytope Extremality Congecture, but we
are able to prove the Small Complex Polytope Extremality Theorem under some more
restrictive hypotheses on the underlying family of matrices. In addition, our theorem
assures a certain finiteness property on the number of vertices of the unit ball of the
extremal complex polytope norm, which could be very useful for the construction of
suitable algorithms aimed at the actual computation of the spectral radius of the family.
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1 Introduction

We consider a bounded family F = {A(i)}iez of complex n X n-matrices, where Z is a set
of indices, possibly infinite. For such a family JF, the following definitions are given in the
literature.

Let || - || be a given norm on the vector space C" and let the same symbol || - || denote
also the corresponding induced n x n-matrix norm. Then, for each £ =0, 1,.. ., consider the
set X (F) of all possible products of length k& whose factors are elements of F, that is

Si(F) = {AW A |4 i € T,

with the convention that o (F) = {I}, I the identity matrix. Moreover, for each £k = 0,1,.. .,
consider the number

pr(F) = sup [P (1.1)
Pexg(F)

and, finally, define the joint spectral radius of F as

p(F) = limsup py, (F)* (1.2)
k—o0
(see Rota and Strang [RS60]). Note that the numbers py(F) depend on the particular norm
|| - || used in (1.1) whereas, by the equivalence of all the norms in finite dimensional spaces,
it turns out that 4(F) is independent of it.
Analogously, let p(-) denote the spectral radius of an n x n-matrix and then, for each
k=0,1,..., consider the number

(F)= s p(P)

PEE}C(}—)

and define the generalized spectral radius of F as

p(F) = limsup pi(F)*/*

k—00

(see Daubechies and Lagarias [DL92]). It is not difficult to see (see [DL92]) that
pe(F) < p(F)F < p(F)F < pp(F) forall k >0 (1.3)

and it was later shown that

p(F) = p(F)
(see Berger and Wang [BW92], Elsner [Els95], Shih et al. [SWP97] and Shih [Shi99]). In the
light of the above equality, the joint and the generalized spectral radius of F are the same
number, which we shall simply call the spectral radius of the (bounded) family of matrices
F and denote by p(F).

The above definitions and results are nice generalizations of the well-known situation for
single families. In particular, the equality p(F) = p(F) is the generalization of the so-called
Gelfand limit.

In practical applications, the actual computation of p(F) is very important but, unfor-

tunately, if the family F is not just a single matrix, this is not an easy task at all, see e.g.
[Koz90, TBI7|.



In this paper we try to give a contribution in this direction for special classes of families.
More precisely, we find conditions on the family which are sufficient to guarantee the exis-
tence of an extremal norm in the class of complex polytope norms. In addition, under such
sufficient conditions, we prove that the unit ball of the extremal norm is a balanced complex
polytope with a finite essential system of vertices. Such a finiteness property is very useful
in view of the construction of suitable algorithms aimed at the actual computation and ap-
proximation of p(F) via the detection of an extremal norm. In Section 2 we review some
of the most important definitions and results available in the literature, which are useful for
our subsequent developements. In Section 3 we illustrate a few simple results concerning the
extremal norms.

In Section 4 we recall the definition of balanced complex polytope and of adjoint balanced
complex polytope and of the corresponding complex polytope norms and adjoint complex
polytope norms, reviewing a few of their most important properties. The main results of
the paper are presented in Section 5, where we state the Complex Polytope Extremality
Conjecture, that is our guess that, for a finite nondefective family F, the validity of the
Finiteness Conjecture (recently disproved in its more general formulation) be equivalent to
the existence of an extremal norm in the class of complex polytope norms. Indeed, we are able
to prove only the Small Complex Polytope Extremality Theorem under some more restrictive
hypotheses on the underlying family of matrices.

Finally, in Section 6 we present some examples that prove the necessity of the particular
hypotheses of the Small Complexr Polytope Extremality Theorem in order to guarantee some
specific finiteness properties for the unit ball of the extremal norm.

Part of the results of this paper have already been successfully applied by Guglielmi and
Zennaro [GZ01b] to the analysis of the zero stability of some linear multistep methods for
the numerical solution of ordinary differential equations. However, at that time even the
Small Complex Polytope Extremality Theorem was still at the stage of a conjecture and the
mentioned paper [GZ03| makes reference to an early version (in preparation) of the present
paper with another title, namely “Polytope norms for families of matrices”.

2 Preliminary results from the literature

In this section we briefly review some results from the literature.

In what follows, for the bounded family F = {A®},c; of complex n x n-matrices, if || - ||
denotes a norm on the vector space C* and the corresponding induced n X m-matrix norm,
we shall still use the same notation to define

171l = £1(#) = sup 1A@]].

The following result can be found, for example, in [RS60] and in Elsner [Els95].

Proposition 2.1 The spectral radius of a bounded family F of complex n X n-matrices is
characterized by the equality

p(F) = inf 1| (2.1

where N denotes the set of all possible induced n x n-matriz norms.



Given a family F, an important question to answer is whether or not the inf in (2.1) is
actually attained by some induced matrix norm. To this purpose, we give the following
definition.

Definition 2.1 We shall say that a norm || - ||« satisfying the condition

[l = p(F) (2.2)
1s extremal for the family F.

It is well known that, for a single family {A}, the existence of an extremal norm is equivalent
to the fact that the matrix A is nondefective, i.e., all of the blocks relevant to the eigenvalues
of maximum modulus are diagonal in its Jordan canonical form. Whenever p(A) > 0,
another equivalent property is that, with A = p(4)~'A, the power set X(A) = {A* | k > 1}
is bounded. These results generalize to a bounded family F as follows. Given a bounded
family F = {A®},c7 of complex n x n-matrices with p(F) > 0, let us consider the normalized
family R
F={p(F) A},

whose spectral radius is ,0(.7:') = 1. Then consider the semigroup of matrices generated by

F , 1.e.
= U Xk (F)
k>1
Definition 2.2 A bounded family F of complez n X n-matrices is said to be detective if the
corresponding normalized family F is such that the SEMIGroup E(]f ) is an unbounded set of
matrices. Otherwise, if X(F) is bounded, then the family F is said to be nondefective.

Note that we gave the definition of defective family without involving directly the spectral
properties of its elements. The following result can be found, for example, in [K0z90] or
[BW92].

Proposition 2.2 A bounded family F of complex n x n-matrices admits an extremal norm
| - ||+ if and only if it is nondefective. Moreover, if F is nondefective, any given norm || - ||
on the space of vectors x € C* determines the extremal norm

[Pl

[ ]|« = sup sup (2:3)

k>0 PeXy(F) /J(f)k.

From Proposition 2.2 it turns out that, for a nondefective family, each vector norm || - ||
canonically determines an extremal norm. However, it is worth remarking that, although
(2.3) gives a constructive way of finding an extremal norm, its importance is mainly the-
oretical since it is often useless from a practical point of view. In order to state another
important result about defective and nondefective families (see Barabanov [Bar88] or Elsner
[Els95]), we give the following definition according to [RRO0].

Definition 2.3 A bounded family F = {AD};ez of complez n x n-matrices is said to be
reducible if there exist a nonsingular n xn-matrix M and two integers ni,no > 1, ni+ns = n,
such that, for all i € T, it holds that

o= 41 48]
O Ay

where the blocks Agil), Ag, Agz) are ny X ni-, Ny X no- and ng X ng-matrices, respectively. If
a family F is not reducible, then it is said to be irreducible.
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Theorem 2.1 If a bounded family F of compler n X n-matrices is defective, then it is
reducible.

Note that irreducibility is a generic property. Furthermore, in a suitable neighborhood
of an irreducible family F; the spectral radius is a Lipschitz continuous function of F (see
Wirth [Wir02]). We remark that, whereas a defective family is always reducible, the opposite
implication is not necessarily true. For example, for n > 2 all single families {A} are
clearly reducible, but not necessarily defective. See again [Wir02] for conditions that ensure
nondefectiveness for reducible sets F. The following corollary to Theorem 2.1 is obvious.

Corollary 2.1 If a bounded family F of complex n X n-matrices is irreducible, then it is
nondefective.

We conclude this section by recalling an important conjecture, arisen from work of Daubechies
and Lagarias [DL92] and stated by Lagarias and Wang [LW95], whose validity would be of
much help for the actual computation of the spectral radius p(F) of finite families.

Definition 2.4 (Finiteness Property) A finite family of complex n X n-matrices F is
said to have the finiteness property if, there exist k* > 1 and a product P € Y« (F) such
that

p(F) = i (F)VF = p(P)M*. (2.4)

Definition 2.5 If F is a bounded family of complex n x n-matrices, any matriz P € Yy (F)
satisfying (2.4) for some k* > 1 will be called a spectrum-maximizing product (in short, an
s.m.p.) for F.

Observe that the finiteness property yields the existence of at least one s.m.p. P for finite
families. Lagarias and Wang were able to give sufficient conditions in terms of extremal norms
guaranteeing that the finiteness property holds. The general Finiteness Conjecture stating
that all finite sets of matrices have the finiteness property was instead recently disproved
by Bousch and Mairesse [BM02] and, later, by Blondel et al. [BTV03]. Now we recall the
following definition from [GZ01a].

Definition 2.6 Assume that F is a normalized bounded family of complexr n x n-matrices
(i.e., p(F) = 1) and that there exists a sequence of products P, € ¥4, (F), di nondecreasing
integers, such that

lim P, = P, (2.5)
k—o0
where P € S(F) and p(P) = 1. Then P will be called a limit spectrum-maximizing product
(in short, an l.sm.p.) for F.

Note that, for a normalized family F, an s.m.p. P is an L.s.m.p., too. To see this, just put
P, = P for all k > 1. Moreover, if the family F is nondefective, another possibility is to
consider the power sequence {P¥};~; and, since ¥(F) is bounded, to extract a subsequence
{P*s},>1 converging to some P € ¥(F), which obviously satisfies p(P) = 1. For the sake of
brevity, we shall say that such a limit point of the sequence {Pk}kzl is an infinite power of
the matrix P. For nondefective families, Guglielmi and Zennaro [GZ03] proved the following

result.




Theorem 2.2 Let F be a (possibly inﬁrﬁite) nondefective bounded family of complez n X n-
matrices. Then there exists an l.s.m.p. P for the normalized family F.

On the contrary, for defective families they gave some counterexamples to the existence
of 1.s.m.p.’s whenever the dimension of the matrices is n > 4.

3 Some properties of extremal norms

In this section we consider nondefective bounded families F of complex n X n-matrices and
find out some straightforward properties of the extremal norms. Here || - ||, denotes an
extremal norm for F. Note first that as an easy consequence of Definition 2.1 we have

1P|, < p(F)E forall P e S (F). (3.1)

Using (3.1) and the submultiplicative property of the induced matrix norms we immediately
see that if P € ¥;(F) and Q € X (F) are such that ||PQ||. = p(F)*¥*", then they satisfy
the equalities

IPlls = p(F)* and [|Q[l. = p(F)". (3-2)
The next statement is obtained just by iterating (3.2).

Proposition 3.1 Let F = {A®},cs be a nondefective bounded family of complex n x n-
matrices and let || - ||« be an extremal norm for F. If P = AW AW ¢ ¥, (F) satisfies
1P|« = p(F)E, then it holds that ||A%)||, = p(F) for all factors AW r=1,... k, of P.

Lemma 3.1 Let F be a nondefective bounded family of complex n x n-matrices and let || -||.
be an extremal norm for F. If P € Y« (F) is an s.m.p. for F, then

1Pl = p(F)*. (3.3)
Proof. This is an easy consequence of (2.4) and (3.1).

Definition 3.1 Let A be a complex n x n-matriz and let || - || be a norm on C*. Then any
vector x € C*, x # 0, such that ||Az|| = ||A|| - ||z|| will be said to be maximizing for A with
respect to the norm || - ||.

Again, (3.1) and the submultiplicative property of the induced matrix norms yield immedi-
ately the following result.

Proposition 3.2 Let F be a nondefective bounded family of complex n x n-matrices and let
| - |+ be an extremal norm for F. Moreover, let P € Y (F) and Q € Lp(F) be such that
IPQ|l« = p(F)*+h. If x € C* is mazimizing for PQ with respect to the norm || - ||, then =
1s mazimizing also for @ and Qx is maximizing for P.

We conclude this section with a theorem which will be useful in Section 5.



Theorem 3.1 Assume that a nondefective bounded family F of complex n X n-matrices
has an s.m.p. P = AW) A6 and let || - ||. be an extremal norm. Then, if x # 0 is
an eigenvector of P corresponding to an eigenvalue \ with |\ = p(P) = p(F)¥", then it
holds that ||PMz|, = p(F)"||z|l. for all right factors P™ = Al A@) of the s.m.p. P,
r=1,..., k%

Proof. Observe that, by (3.3), the eigenvector z satisfies the equalities || Pz, = [|Az|, =
p(F)*||z||« = ||P]l«||z||+, i-e. z is maximizing for P with respect to the norm || - ||,. Then
apply Proposition 3.2 iteratively, taking (3.2) into account. l

4 Complex polytopes and related norms

In this section we define complex polytopes as generalizations of real polytopes (see, e.g.
Ziegler [Zie95]) to the complex case and, consequently, we extend the concept of polytope
norm to the complex case in a straightforward way. Most of the results (here given without
proof) are just either more particular or more general instances of other results which can be
found in the literature. In any case, a detailed and self-contained presentation of this topic
may be found in Guglielmi and Zennaro [GZ04].

Definition 4.1 We shall say that a set X C C" is absolutely convex if, for all z',2" € X
and X', \" € C such that |X'| 4+ |N'| < 1, it holds that N'z' + N'z" € X.

Definition 4.2 Let X C C*. Then the intersection of all absolutely conver sets containing
X will be called the absolutely convex hull of X and will be denoted by absco(X).

It is well known that absco(X') is the set of all the finite absolutely convex linear combinations
of vectors of X, i.e. x € absco(X) if and only if there exist 2, ... 2®) € X with k > 1
such that

k k
T = Z Nz with )\, ecC and Z [N < 1.
1

= 1=1

i
In particular, if X = {x(i)hgigm is a finite set of vectors, then

z =3 Az with \; € Cand > |A\| <1} (4.1)

i=1 i=1

absco(X) = {x ec’

and, in this case, it is a closed subset of C". In the sequel, if X’ and X" are two subsets of C*,
we shall write X C X" (X' O X") to denote proper inclusions, i.e., X' C X" (X’ O X") and
X' # X". The forthcoming definition extends the usual definition of symmetric polytope in
the real space R".

Definition 4.3 We shall say that a bounded set P C C" is a balanced complex polytope (in
short, a b.c.p.) if there ezists a finite set X = {29} 1<icm of vectors such that span(X) = C*
and

P = absco(X). (4.2)

Moreover, if absco(X') C absco(X) for all X' C X, then X will be called an essential system
of vertices for P, whereas any vector uz™® with u € C, |u| = 1, will be called a vertex of P.
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Remark that, geometrically speaking, a b.c.p. P is not a classical polytope. In fact, if we
identify the complex space C* with the real space R*", we can easily see that P is not bounded
by hyperplanes. In general, even the intersection P (1 R” is not a classical polytope. However,
if the b.c.p. P admits an essential system of real vertices, then P (R" is a classical polytope.
In order to recall the concept of adjoint set (that, in the literature, is often referred to as
polarity or duality (see again [Zie95] or Heuser [Heu82]), we consider the usual Euclidean
scalar product in C" defined by < z,y >= 3% ; z;y;.

Definition 4.4 Let X C C*. Then the set

adj(X) ={ye || <yz>|<1forallze X} (4.3)
will be called the adjoint of X.
It is immediately seen that adj(X’) is closed and absolutely convex.

Definition 4.5 We shall say that a bounded set P* C C" is a b.c.p. of adjoint type (in short,
an a.b.c.p.) if there exists a finite set X = {x®} 1< of vectors such that span(X) = C
and

’P*zadj(X)z{yEC“ ‘ | <y,z® > <1, izl,...,m}. (4.4)

Moreover, if adj(X') D adj(X) for all X' C X, then X will be called an essential system of
facets for P*, whereas any vector uz™ with u € C, |u| = 1, will be called a facet of P*.

Unlike the case of classical polytopes in R™, it is not true that the class of b.c.p.’s coincides
with the class of a.b.c.p.’s. Indeed, for every b.c.p. P, the equality P = adj(X) implies
that X is an infinite set of vectors and, analogously, the same implication holds whenever
we express an a.b.c.p. P* in the form P* = absco(X). In fact, although the essential system
of vertices (facets) X of a b.c.p. P (of an a.b.c.p. P*) is finite, the total number of vertices
(facets) is infinite. An interesting geometric property of the boundary of an a.b.c.p. P* is
that it is piecewise algebraic in the following sense.

Proposition 4.1 Let P* be an a.b.c.p. and X = {Jf(i)hgigm be an essential system of
facets for P*. Moreover, let ® : C* — R*™ be the standard vector space isomorphism

such that ®(z) = l 28; ] for all x = R(z) +iS(z) € C*. Then the boundary of ®(P*)

is contained in the zero set of a polynomial p(z1,...,20,) € Rlz1,. .., 22,] of degree 2m such
that p(0,...,0) #0.

One of the most important relationships between b.c.p.’s and a.b.c.p.’s is given by the fol-
lowing result that, in the literature, is often referred to as the bipolar theorem.

Theorem 4.1 Let P be a b.c.p. and let P* = adj(P). Then it holds that

P = adj(P*) = adj(adj(P)). (4.5)
Conversely, let P* be an a.b.c.p. and let P = adj(P*). Then it holds that
P* = adj(P) = adj(adj(P")). (4.6)



The next two propositions state that, given a b.c.p. P (an a.b.c.p. P*), the essential system
of vertices (facets) X' is uniquely determined modulo scalar factors of modulus equal to 1.

Proposition 4.2 Assume that X = {20}1cicpn and X = {30},c,c) are two essential
systems of vertices for a b.c.p. P. Then k = m and, for each i = 1,...,m, there exist j;,
1 <ji<m, and u; € C, |u;| = 1, such that 2 = uz).
Proposition 4.3 Assume that X = {20},cicp and X = {20},c;< are two essential
systems of facets for an a.b.c.p. P*. Then k =m and, for each i = 1,...,m, there exist j;,
1 <ji <m, and u; € C, |u;| = 1, such that 29 = u;zU".

Now we extend the concept of polytope norm to the complex case in a straightforward way.

Lemma 4.1 Any b.c.p. P is the unit ball of a norm || - ||p on C".
Definition 4.6 We shall call complex polytope norm any norm || - ||p whose unit ball is a
b.c.p. P.

Lemma 4.2 Any a.b.c.p. P* is the unit ball of a norm || - |

p+ on C".

Definition 4.7 We shall call adjoint complex polytope norm any norm || - |
ball is an a.b.c.p. P*.

p+ whose unit

An important link between polytope norms and adjoint polytope norms is illustrated by the
following theorem.

Theorem 4.2 Let P be a b.c.p. and let || - ||p be the corresponding complex polytope norm.
Then, for any z € C*, it holds that

Iollp = min { 320l | 2= Xxa} = g [ < 20> | (4.7)

where P* = adj(P) and X = {0}, cicpm is an essential system of vertices for P. Analo-
gously, let P* be an a.b.c.p. and let ||-||p- the corresponding adjoint complex polytope norm.
Then, for any z € C*, it holds that

2]

. = (%) -
P 11;1%37%\<z,x > | gré%%\<z,:c>|, (4.8)

where P = adj(P*) and X = {x(i)}lgiSm 1s an essential system of facets for P*.

Corollary 4.1 Let P be a b.c.p. and let || - ||p the corresponding complex polytope norm.
Moreover, let P* = adj(P) and let || - ||p+ the corresponding adjoint complez polytope norm.
Then, for any compler n X n-matriz A and its adjoint A*, it holds that

[A*[[p- = [|A][- (4.9)

The next theorem shows that the set of the complex polytope norms is dense in the set of
all norms defined on C* and that, consequently, the corresponding set of induced matrix
complex polytope norms is dense in the set of all induced n X n-matrix norms.

Theorem 4.3 Let || - || be a norm on C*. Then for any € > 0 there exists a b.c.p. P, whose
corresponding complezx polytope norm || - || satisfies the inequalities

]| < llz|le < (1 +€)||z|]| forall z € C". (4.10)

Moreover, denoting by || - || and || - ||e also the corresponding induced matriz norms, it holds
that

(T+e) YA <Al < A+ A|| for all A € ™™, (4.11)



5 The main results

Complex polytope norms play a particular role. In fact, Theorem 4.3 immediately implies
the following refinement of Proposition 2.1.

Proposition 5.1 The spectral radius of a bounded family F of complex n x n-matrices is
characterized by the equality

F)= inf [|F|, 5.1
pF) = inf |17 -1)
where Ny denotes the set of all possible induced n x n-matriz complex polytope norms.

The natural question arises whether a nondefective family admits an extremal complex
polytope norm. Before trying to answer the above question we shall give an important
necessary condition for the existence of an extremal complex polytope norm in Theorem 5.1.
It is based on the result of Lagarias and Wang [LW95] that for finite sets of real matrices
that have an extremal norm that is real piecewise algebraic the finiteness property holds.

Definition 5.1 A norm || -|| defined on R¥ is said to be piecewise algebraic if the boundary
of its unit ball is contained in the zero set of a polynomial p(z1,...,2x) € Rlz1,..., 2] such
that p(0,...,0) #0.

Definition 5.2 Given a bounded family F of complex n X n-matrices, we say that the family
Fr={A*"| Ae F},
where A* is the adjoint of the matriz A, is the adjoint family of F.

The proof of the next lemma is obvious.

Lemma 5.1 Let F be a bounded family of complexr n X n-matrices and let F* its adjoint
family. Then

p(F) = p(F7).
Moreover, a product P € X(F) is an s.m.p. of F if and only if the adjoint product P* €
X(F*) is an s.m.p. of F*.

The next result is a straightforward consequence of Lemma 5.1 and Corollary 4.1 with

P* = adj(P).

Lemma 5.2 A bounded nondefective family F of compler n X n-matrices has an extremal
complex polytope norm || - ||p if and only if the adjoint family F* has an extremal adjoint
complex polytope norm || - |

P

Theorem 5.1 Let F = {A(i)}lgiSm be a finite nondefective family of complexr n X n-matrices
and assume that there exists an extremal complex polytope norm || - |[p. Then the family F
has at least an s.m.p. P.
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Proof. Lemma 5.2 implies that the adjoint family F* has an extremal adjoint complex
polytope norm || - ||p«. Therefore, if we show that the adjoint family F* has an s.m.p. P*,
then the proof is complete by virtue of Lemma 5.1. To this aim, we consider the standard
vector space isomorphism ® defined in Proposition 4.1. It naturally induces a matrix space
homomorphism

_ C¢
@ ™" — R such that ®(A) = [ R(4) —S(4) ]

3(4)  R(4)
It is easy to see that ® preserves matrix products and matrix-vector products, that is
®(AB) = ®(A)®(B) forall A,B e ™" (5.2)
and
O(Ay) = ¢(A)P(y) forall A e ™™ and y € C". (5.3)

It is also easy to see that ® preserves convexity and that, in particular, if B C C" is the unit
ball of a norm on C", which is given by the Minkowski functional (see Heuser [Heu82|)

lyllg = inf{r > 0 | y € rB}, (5.4)
then ®(B) C R*" is the unit ball of a norm on R*", which is given by the Minkowski functional
|z||o(s) = inf{r >0 | z € r&(B)}. (5.5)
In view of (5.4) and (5.5), we immediately have that
[®W)lles) = llylls ~ for all y € C"
and hence that, because of (5.3), for the corresponding induced matrix norms,
|2(A)|los) = ||Allzg for all A e C**". (5.6)

Now consider the a.b.c.p. P*, that is the unit ball of the adjoint complex polytope norm
|| - ||p+ such that

[F* [P+ = p(F7).

Since, as it is easy to see, ® preserves matrix eigenvalues with their algebraic and geometric
multiplicities, by virtue of (5.2) and (5.6) we can state that the corresponding family of real
2n x 2n-matrices ®(F*) has the extremal norm || - ||¢(p+). Now, Proposition 4.1 assures that
| - llo(p+) is a piecewise algebraic norm on R*" (see Definition 5.1). Therefore, the proof
is complete thanks to Theorem 3.2 in Lagarias and Wang [LW95]. In fact, we can claim
that the family ®(F*) has an s.m.p. ®(P*) € ) (®(F*)), where k(m) depends on the
cardinality m of the family F*. This implies that P* is an s.m.p. for 7*. B

Our aim would be to reverse Theorem 5.1, that is to prove the Complex Polytope Extremality
(CPE) Theorem. So far we were not able to find any counterexample, but not able to give
a proof either. So we limit ourselves to the formulation of the following conjecture.

Conjecture 5.1 (CPE Conjecture) Assume that a finite family of complex nxXn-matrices
F = {AD} i, is nondefective and has at least an s.m.p. P. Then there exists an extremal
complex polytope norm for F.
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We shall be able to prove a weaker version of the above conjecture with the forthcoming
Small CPE Theorem at the cost of some additional hypotheses on the family F. To this
aim, for any vector z € C" and for any normalized family F, we define the set

TIF,z] = {z} U{Pz | P € 2(F)},

i.e. the trajectory obtained by applying all the normalized products P of matrices of F to
the vector z. For the convenience of the reader we recall the following characterization.

Proposition 5.2 Let F be a bounded family of complex nxn-matrices and let x € C". Then
span (7'[.7:, :E]) is the smallest linear subspace V' of C" containing x such that F(V) C V.

Proof. 1t is clear that, if V' is a linear subspace of C" containing x such that F (V) C V, then
it must necessarily contain the whole trajectory 7[F,z]. Vice versa, let y € span (T[]:" , x])
Then there exist k vectors (D, ..., 2®) € T[F, z] and k complex numbers a1, ..., oy (with
k < n) such that y = % ;2. Now, if A € F, then Ay = ¥F o Az®. Since
p(F) LAz € 7'[.7:", x], we have that Ay € span('T[./%, :L']) too. Thus the proof is complete. H

Corollary 5.1 Let F be an irreducible bounded family of compler n x n-matrices and let
xeC", x#0. Then

span(T[]A:, x]) =C". (5.7)

Proof. Since F is irreducible, the matrices of F cannot have a common nontrivial invariant
linear subspace (see Definition 2.3). As a consequence, the smallest linear subspace V' of C"
containing x # 0 such that F(V) C Visc". B

For a general family of matrices JF, the sets of the type

S[F,z] = absco(T[F, z]) (5.8)
play an important role.

Proposition 5.3 Let F be a nondefective bounded famjly of complex n X n-matrices and,
given a vector x € C*, let (5.7) hold. Then the set S[F,z| is the unit ball of an extremal
norm for F.

Proof. Since F is nondefective, the trajectory 7'[.7:' ,x] is bounded for any vector z € C".
Thus, because of (5.7), as in the proof of Lemma 4.1 we have that the Minkowski functional
associated to § = S[F, ] is a norm on C*. In order to verify that it is extremal, it is
sufficient to observe that A(S) C p(F)S forall Ae F. R

By virtue of the foregoing result, it appears evident that it is interesting to find conditions
under which S[f', x] is generated by a finite number of points of the trajectory 7'[.73', z]. So,
if (5.7) holds, the set S[]:', x] is a b.c.p. and we can give a positive answer to the question of
the existence of extremal complex polytope norms for nondefective families. In particular,
in view of Corollaries 2.1 and 5.1, we can give a positive answer for irreducible families. In
order to state the main result of this paper, we focus our attention on families that satisfy
some particular properties.

12



Definition 5.3 An eigenvector © # 0 of a matriz P related to an eigenvalue A with |\ =
p(P) is said to be a leading eigenvector of P.

Definition 5.4 Let F be a nondefective bounded family of complex n X n-matrices. A leading
eigenvector x £ 0 of either an s.m.p. P of F or of an lL.s.m.p. P of the normalized family
F is said to be leading eigenvector of F (and of F too).

Remark 5.1 Because of Theorem 2.2, any nondefective bounded family F has at least one
leading eigenvector.

Definition 5.5 Let F be a family of complex n X n-matrices. A set X C C" is said to be
F-cyclic if for any pair (z,y) € X X X there exist «, 5 € C with

ol - 8] =1 (5.9)
and two (finite) normalized products P,Q € X(F) such that

Y= aPz and z= ﬂ@y.

Remark 5.2 Because of (5.9), the normalized products PQ and le determined in the above
definition are s.m.p. of the normalized family F and the set X is necessarily included in the
set £ of the leading eigenvectors of the family F.

Definition 5.6 A nondefective bounded family F of complex n X n-matrices is said to be
asymptotically simple if the set £ of its leading eigenvectors is finite (modulo scalar nonzero
factors) and F-cyclic.

As in Section 2, we shall say that a matrix () is an infinite power of another matrix P if it is a
limit point of the sequence {P¥};>;. Observe that any eigenvalue A of an infinite power @) of
a matrix P satisfies either [A\| = 1 or A = 0, since these are the only two possible limit values
of the numeric power sequence {|u|*}r>1 whenever |u| < 1. Moreover, given a nondefective
matrix P with p(P) = 1, there exists at least an infinite power () of P with an eigenvalue
A =1, whose multiplicity is equal to the sum of the multiplicities of all the eigenvalues y of
P with |u| = 1. This easily follows from the fact that the power sequence {u*};>1 has the
limit point 1 whenever |u| =1 (see, for example, Hardy and Wright [HW79]).

Remark 5.3 It follows from the above observations that, for a (nondefective) asymptotically
simple family F, each s.m.p. P and each l.s.m.p. P have only one leading eigenvector
(modulo scalar nonzero factors). Otherwise there would exist at least one l.s.m.p. of the
normalized family F, obtained as an infinite power, with an eigenspace of dimension > 2
related to the eigenvalue A = 1. This would contradict the finiteness (modulo scalar nonzero
factors) of the set € of leading eigenvectors.

Observe that all the cyclic permutations of a product P have the same eigenvalues with the
same multiplicities. Thus, if P = AG#) . A®) is an s.m.p. for a family F, then each of its
cyclic permutations

AGs) A ACke) o AGer) g = k-1,

still is an s.m.p. for F, along with all the powers of P and their cyclic permutations.
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Definition 5.7 Let F be a family of compler n X n-matrices. An s.m.p. P is said to be
minimal if it is not a power of another s.m.p. of F.

It is clear that, for any s.m.p. P of a family F, it holds that either P is minimal or P
is a power of another s.m.p., which is minimal. We have the following characterization of
asymptotically simple families.

Proposition 5.4 A nondefective bounded family F of complex n x n-matrices is asymp-
totically simple if and only if it has a minimal s.m.p. P with only one leading eigenvector
(modulo scalar nonzero factors) such that the set £ of the leading eigenvectors of F is equal
to the set of the leading eigenvectors of P and of its cyclic permutations.

Proof. Given an s.m.p. P with only one leading eigenvector, the set of the leading eigenvec-
tors of P and of its cyclic permutations is finite (modulo scalar nonzero factors). Indeed, it
consists of k£ elements, k£ being not greater than the number of factors of P. On the other
hand, this set of leading eigenvectors is clearly F-cyclic and, therefore, the sufficiency is
proved. In order to prove the necessity, let zq,...,z5; € C* form a set of representatives
(modulo scalar nonzero factors) of all the leading eigenvectors of F. Since F is asymp-
totically simple, they are finitely many and, for any 7 = 1,...,s, there exist «o;,3; € C
with
il - B3] =1

and two (finite) normalized products B;, Q; € ©(F) such that

T = Pz and @ = BQizmin
where it is understood that z,,; = x;. Therefore, we have that

I :Ckl...Oésps...Pl.Tl :/81...55@1...@5,%1,

where

|(l/1...(l/s| . ‘ﬂlﬁs‘ =1.
Now, since p(P,...P;) <1 and p(Q; ...Q,) < 1, it follows that

log...as)=1 and |Br...08s =1,

that implies A A R R
p(Ps...P))=1 and p(Qr...Qs) =1.

So we can conclude that the matrix P = 155 .. .151 is an s.m.p. of F such that the set of
the leading eigenvectors of P and of its cyclic permutations includes (and thus is equal to)
the set £ of the leading eigenvectors of F. The fact that z; is the only leading eigenvector
(modulo nonzero scalar factors) of P is assured by the considerations in Remark 5.3. Finally,
P can be clearly assumed to be minimal, so that is the normalization of the desired minimal
sam.p. P. B

The following definition selects a particular class of asymptotically simple families.

Definition 5.8 A nondefective bounded family F of complex n x n-matrices is said to be
absolutely asymptotically simple if it is asymptotically simple and has a unique minimal
s.m.p. P (modulo cyclic permutations).
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It is clear that, for absolutely asymptotically simple families, the unique minimal s.m.p. P
coincides with the minimal s.m.p. given by the characterizing Proposition 5.4. Moreover, the
cardinality of the set £ of its leading eigenvectors (modulo scalar nonzero factors) is equal
to the number of factors of P. The result we are going to prove is the main result of this
paper. It was inspired by a conjecture formulated by Maesumi [Mae95] (see also [Mae98]).
Although not strictly necessary, from now on we shall consider trajectories 7’[.7:— ,x] such that
condition (5.7) is satisfied. On the other hand, this is not restrictive for our purposes, since
we are interested in the case that S[F,z] is the unit ball of a norm.

Theorem 5.2 (Small CPE Theorem) Assume that a finite family F = {AD}1cicon of
complex n X n-matrices is nondefective and asymptotically simple. Moreover, let x # 0 be a
leading eigenvector of F and assume that (5.7) is satisfied. Then the set

OS|F, x](TF, 2] (5.10)

is finite modulo scalar factors of unitary modulus. As a consequence, there erist a finite
number of normalized products P, ..., P ¢ Y(F) such that

S[f:, x] = absco({z,f’(l)z, ... ,P(S)x}), (5.11)

so that S[F,z] is a b.c.p.
Before giving the proof of this theorem, we state a useful technical lemma.

Lemma 5.3 Let F = {A(i)hgigm be a nondefective finite family of complex n x n-matrices
and, given a vector x € C", assume that (5.7) is satisfied and that the (bounded) set
AS[F,z] N T[F, z], modulo scalar factors of unitary modulus, is not finite. Then there exists
a sequence of distinct vectors

2® € 98| F, z] N TIF, 2]
with z) = z such that, for all k > 1,
zFD = A ) for some ¢, € {1,...,m},
where AW = AW [p(F) € F,1<i<m, and such that, whenever k # h,

z®) £ uz®  for all u € C with |u| = 1.

Proof. We prove the result by induction. Define (') = z. By hypothesis, there exist infinitely
many distinct vectors of the type Qx(l), no two of which are multiples of one another by a
scalar factor of unitary modulus, with Q € X(F) and Qz() € dS[F,z]. Since F is finite,
there exists a matrix A®) for which, with z® = A@zM it holds that z® # uz® for all
u € C with |u| = 1. Moreover, z(?) can be chosen so that infinitely many distinct vectors
of the type Qz®, not proportional to one another by scalar factors of unitary modulus,
exist such that Q € (F) and Qz® € 8S[F,z]. Since (5.7) holds, by Propositions 5.3 and
3.2 we immediately have that z? € dS[F,z]. Now assume that there exist k > 2 distinct
vectors £ #£ z,2®) ... 2®) € S[F, x|, such that () % uz® for all u € C with |u| = 1
if i # 7, such that 20) = A-1z0-1 for some ¢; ; € {1,...,m} and for which infinitely
many distinct vectors of the type Qx(j), not proportional to one another by scalar factors
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of unitary modulus, exist with Q € E(ﬁ) and Qz) e Z(]:") Since F is finite, there exists
another matrix A®) for which, with z**1) = A@)z®) it holds that z*+D £ uz@, for all
u € Cwith |u| =1, j =1,...,k, and infinitely many distinct vectors of the type Qz*+1) not
proportional to one another by scalar factors of unitary modulus, such that Q € E(]:' ) and
Qz**+) € AS[F, z]. Again, by Propositions 5.3 and 3.2, it turns out that 2t e dS[F, z].
This completes the induction step and the result is proved. H

Proof of Theorem 5.2. Denoting by & the set of the leading eigenvectors of the family F, let
us consider

==& OS[F, ).

Since the family F is asymptotically simple and & [.7:' ,x] is the unit ball of a norm, the set =
is finite modulo scalar factors of unitary modulus. On the contrary, by contradiction, assume
that the set X X

OS|F, x| ﬂ'T[]:, ),

even if considered modulo scalar factors of unitary modulus, is not finite, so that can be
applied Lemma 5.3 to obtain the sequence {z*)};>; with ) = z. Therefore, since z(!) €
ENTI[F,z|, there exists j > 1 such that

20 ¢=  and 2@ € ENT[F, 2] foralli <. (5.12)

Since X(F) is bounded, the resulting sequence of normalized matrix products B%®) = A(¢-1) - - A1)
such that 2% = B®zU+D has a subsequence {B*2)} -, that converges to a limit point B

in Z(f') Therefore, also the subsequence of vectors {x(’“s)}szl has a limit point y = BzU+),
Moreover, since 0S[F, x| is closed, we have that

BzU*Y € 9S[F, x]. (5.13)
For each s > 1 there exists a matrix R®) € X(F) such that

Blkes1) — fpls) Blke).

Again for the boundedness of X(F), the sequence {R(*)},5; has a limit point R in ¥(F). By
passing to the limit, this allows us to conclude that

BzUtY) — RBUTD.
In other words, R is an L.s.m.p. of F and
BzUth) e .

Since F is asymptotically simple, the set = is F-cyclic and, hence, there exist a, B € C with
la|-|8] =1 and two (finite) normalized products P, Q € Z(F) such that

BzU+) = qPz0)  and 2V = pQBzUTY. (5.14)

This implies -
pr(J) — (aﬂ)’lxm
and thus, since |(a3)~!| = 1, by Proposition 5.3 and Theorem 3.1 we have that

Pz € 88[F, x].
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Therefore, by (5.13) and (5.14), it turns out that
la| = [B] = 1. (5.15)
In conclusion, we have

B-15G+D) = g1 4t 50) = A& B+,

A A

Now, since A& QB € L(F) and (5.15) holds, we can state that 20U+ is a leading eigenvector

of F, ie.
x(j‘f'l) c =

—

in contradiction with (5.12). B

Remark that, if all the matrices of the family F are real and if also the starting leading
eigenvector = is real, then Theorem 5.2 determines a classical polytope in R*. The next
results are useful for a deeper understanding of the structure of the b.c.p. & [.7:" ,x] obtained
under the hypotheses of Theorem 5.2.

Theorem 5.3 Let the hypotheses of Theorem 5.2 hold. Then each leading eigenvector § of
F in the set = = £ OS[F, x| satisfies one of the following two statements:

(a) € is a vertex of the b.c.p. S[F,z];

(b) there erist s > 2 vertices &,...,&s of the b.c.p. S[]A-', x| such that

£,...,6, €2 and €€ absco({{fl, e ,fs}). (5.16)

Proof. Consider a leading eigenvector { € = and assume that it is not a vertex of the
b.c.p. 8[F,z]. Then there must exist s > 2 vertices &1,...,&s of S[F, x| such that

§= 2/\@
i—1
with
N#0,i=1,...,s, and > |N|=1 (5.17)
i=1

We are left to prove that &,...,& € E.

Since £ is a leading eigenvector of F, there exists an l.s.m.p. (possibly an s.m.p.) P of
F such that P€ = u¢ with |u| = 1. Thus, denoting by || - || the complex polytope norm
determined by S[F, z], for any k > 1 we have

L= [l€]l = 1PFell < 37 Al - 1Rl
i=1
Since || P*&;|| < 1, in view of (5.17) we can claim that |P*&]| = 1, that is

Pke, € OS[F,x], i=1,...,s.
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Denoting by P> an infinite power of P, in the same way as we did in the proof of
Theorem 5.2, we can prove that

P¥¢es, i=1,...,s.

On the other hand, since the set = is F-cyclic and included in 88[.7:' ,x], again in the
same way as in the proof of Theorem 5.2, we can prove that there exist (finite) normalized
products @, R; € X(F) and v, w; € C with |v| = |w;| = 1 such that

xQOﬁ and §=wiR,~l5°°§i,i=1,...,s.

Moreover, since all the vertices of the b.c.p. S[F,z] obviously belong to ’TJ z] (modulo
scalar factors of unitary modulus), there exist (finite) normalized products S; € X(F) such
that

In conclusion, we have
gi = UszzQRZPOOSw 1= 1, <y S,

where |vw;| = 1, that implies
&Le=, 1=1,...,s.

Corollary 5.2 Let the hypotheses of Theorem 5.2 hold and, moreover, let the family F be
absolutely asymptotically simple. Then all the leading eigenvectors of F (in the set = =
ENOS[F,x]) are vertices of the b.c.p. S[F,z].

Proof. Assume, by contradiction, that there exists a leading eigenvector £ € = which is
not a vertex of the b.c.p. 8§ [,7:" ,x]. Then it necessarily satisfies statement (b) of Theorem 5.3.

On the other hand, there exists a unique normalized minimal s.m.p. P such that P¢ =
uf with |u| = 1. Therefore, for each §; appearing in statement (b) there exists a proper
normalized right factor P; of the s.m.p. P such that & = u; P,¢ with lu;| = 1.

Thus we obtain

& € absco ({]31-51, e ]3,{3}) )

Now, since the essential system of vertices of a b.c.p. is unique modulo scalar factors of
unitary modulus (see Proposition 4.2) and since §; is a vertex of S [.7:' , x], it necessarily holds
that, forall j =1,..., s, R

é-i = U]'Pifj with ‘Uj| =1.

In particular, we have that X
& =viPg  with [v] =1,

that is the proper normalized right factor P, is an s.m.p., against the uniqueness of P (mod-
ulo cyclic permutations).
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6 On the necessity of the assumptions in the Small
CPE Theorem

The assumptions of Theorem 5.2 may seem to be somewhat restrictive. On the other hand,
now we present some simple examples that imply their necessity for the finiteness (modulo
scalar factors of unitary modulus) of the set S[F, z] N T[F, z] in the general case. It is just
the case to remark that, for the actual construction of the unit ball of an extremal complex
polytope norm by means of some suitable algorithm, the finiteness property mentioned
above is strongly recommendable. Indeed, one of the aims of our future work will be the
improvement of the currently available algorithms for the computation and approximation
of the spectral radius of a family of matrices by using the theoretical results developed in the
present paper. In the following two examples the considered families are not asymptotically
simple. More precisely, in Example 6.1 the set of leading eigenvectors is not finite (modulo
scalar nonzero factors) and not F-cyclic either. In Example 6.2 it is finite but not F-cyclic.

Example 6.1 Consider the 2 x 2-matrix family F = { A, B}, where

A=) )] me om=|8 T

DO |-

The eigenvalues of A are e and e™ with corresponding eigenvectors [1, —i]T and [1,i]%,
respectively. The eigenvalues of B are % and 0. Tt is easy to see that p(F) = 1, that A is the
unique minimal s.m.p. of F and that all the l.s.m.p. of F are infinite powers of A. Since
the s.m.p. A has two leading eigenvectors, according to Remark 5.3, the identity matrix
is an L.s.m.p., so that all the vectors of C? are leading eigenvectors of F.

It is immediately seen that the family F is not even F-cyclic. As a consequence of the

violation of the hypotheses of Theorem 5.2, now we are going to see that, by setting
z = [1,i]7,

which is a leading eigenvector of the s.m.p. A, the set S[F, z| is not a b.c.p. In fact, it holds
that
Bz =[1,0]" and  AFBz = [cos(k),sin(k)]", k>1.

All these vectors lie on the unit circle C of R and form a set which is dense in C. On the
other hand,

1 .
BA*Bzx = 5e—l’“B:c,
and, hence, we can conclude that
S|F, z] = absco{z,C},

that is not a b.c.p. Finally, note that the infinitely many vectors of the trajectory 7T [F, x|,
namely A*¥Bz for k > 0, which are not proportional to one another, lie on the boundary C
of S[F,z]. ©

Example 6.2 Consider the 2 x 2-matrix family F = {A, B}, where

3—/5 3—v5 3—v5
A= [ 33_\/%5 305 ] and B = l 35 ’ ]
2 2 2 3— \/5
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The matrices A and B have the same eigenvalues 1 and # . It can be seen that p(F) =1,
that A and B are the only minimal s.m.p. of F and that the unique l.s.m.p. of F are just
A® =limy_,o A*¥ and B*® = lim,_,, B*. Therefore, the set of the leading eigenvectors of F
is given by the leading eigenvectors of A and B, namely o[*£5 1], o # 0, and o[1, £/3]T
a # 0, respectively. This set is finite (modulo scalar nonzero factors) but, as it is easy to see,
it is not F-cyclic. As in the previous example, the hypotheses of Theorem 5.2 are violated,

even if to a smaller extent. Now set

bl

[55]
T = 2 ’1 7

which is the leading eigenvector of the s.m.p. A. It can be checked that all the vectors B*z,
k > 1, are distinct and lie on the segment of R? that joins z and

o 14+6V5[ 1+5]
B*z = 1, ,
15+ 75 2

which is the leading eigenvector of the s.m.p. B, and that all the vectors AB*z, k > 1, lie
inside the b.c.p. absco{z, B®x}. We can conclude that

S[F, z] = absco{z, B*z}.
Although S[F, z] is a b.c.p., we have seen that the finiteness property of the set 0S[F, z] N T|F, z]
assured by Theorem 5.2 does not hold. <

In the next example the considered family is asymptotically simple (even absolutely).
Nevertheless, we shall see the substantial potential difference between a trajectory T [F, z]
exiting from a leading eigenvector and from a vector x which is not such.

Example 6.3 Consider the 3 x 3-matrix family F = {A, B}, where

100 5 00
A=10 1 0 and B=|3 00
00 3 5 00

Since both A and B are lower triangular, it is immediately seen that p(F) = 1 and that
A is the unique minimal s.m.p., which has only one leading eigenvector (modulo scalar non
zero factors), related to the eigenvalue A = 1, given by «[1,0,0]", a # 0. Therefore, F is
absolutely asymptotically simple. In view of Theorem 5.2, if we choose

T = [17 07 O]T7

then the corresponding set S[F, x| is a b.c.p. generated by a finite number of points of the
trajectory T[F,z]. In order to verify this fact, we observe that

1
Bz = 5[1,1,1]",  B0,1,0]" = B[0,0,1]" = [0,0,0]",

1

T
aﬁaﬂ] ) kzl

AR 1,17 = [1
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Consequently, it easily turns out that
S[F, z] = absco{x, Bx, ABz, A’ Bz}

and that all the other vectors of the trajectory T|[F, z] lie inside the above b.c.p. Now choose
instead
z=[1,1,1]",

which is not a leading eigenvector. This time S[F, ] is not a b.c.p. In fact, the infinitely
many vectors A¥z, k > 1, which all belong to dS[F, z] and accumulate at [1,0,0]”, are such
that their projections into the plane (xq,z3) of the last two variables lie on the parabola
whose equation is x3 = 2. ©

We remark that, although necessary for the general validity of the finiteness property of
the set OS[F, ] N TF,z], the special hypotheses of Theorem 5.2 seem not to be necessary
for the simple existence of an extremal complex polytope (see the CPE Conjecture). Indeed,
even for the family of Example 6.1, it can be easily verified that a b.c.p. unit ball is given
by

P = absco{[1,i], [1, —i]T}.

We conclude the paper with the following example which shows that, for a family which
is asymptotically simple but not absolutely, not all the leading eigenvectors are necessarily
vertices of the b.c.p. §[F, z].

Example 6.4 Consider the 2 x 2-matrix family F = {A, B, C, D}, where

a=[ii] s=[0] e=[1 ] »=[%3)

It turns out that XY = X and XD = O, the zero matrix, for all X,Y € {4, B,C}.
Therefore, since p(A) = p(B) = p(C) = 1 and p(D) = %, we have that p(F) = 1 and
that A, B,C are all minimal s.m.p. of F. Moreover, the leading eigenvectors of F are
just the three leading eigenvectors of A, B and C, that is «[l,0]%, 8[0,1]" and 7[%, %]T,
a, B,7 # 0, respectively, which are related to the common eigenvalue A\ = 1. This set of
leading eigenvectors is clearly finite and, as is immediately seen, also F-cyclic. Therefore, F

is asymptotically simple, but not absolutely. If we choose

N[00 |
N[00 | —

z=[1,0]",
which is the leading eigenvector of A, it easily turns out that

S[F, z] = absco{z, Bz, Dz},

where Bz = [0,1]" is the leading eigenvector of B and Dz = [%,—2]"
eigenvector of F. Remark that the leading eigenvector of C belonging to 0S8 [.7:' , ], namely
Cr= [%, % T satisfies the convexity relationship Cz = %x + %Baj and, hence, is not a vertex

of the b.c.p. S[F,z]. ©

is not a leading
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