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Abstract

This paper is devoted to the identification and reconstruction of un-
balance distributions in an aircraft engine rotor with a nonlinear damping
element. We have developed a rotor model that takes into account the non-
linear behavior of a squeeze film damper between the engine’s shaft and
casing for large oscillation amplitudes. Based on the Tikhonov regulariza-
tion for nonlinear ill-posed problems, we provided a three—step algorithm
that enables us to identify and reconstruct single and distributed unbal-
ances from data measured at the casing of the engine. In view of practical
capability, the algorithms were accelerated to meet the requirement of tol-
erable computation time for larger models, too. !

Keywords: Rotor unbalance, nonlinear damping, nonlinear inverse problem,
Tikhonov regularization
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1 Introduction

Weight reduction efforts in aeroengine design lead to flexible casing structures,
sensitive to vibration excitation from the main rotors. However the market de-
mands the smallest possible level of vibrations transmitted to the aircrafts, in
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Figure 1: Engine interior and mechanical model with squeeze film damper

order to maximize passenger comfort. This holds especially true for the market
segment of long range business aircrafts, where engines are generally mounted
directly to the fuselage, and low cabin noise and vibration levels are essential in
meeting customer expectations. Lowering vibrations caused by unbalances in the
rotating parts may also help to increase safety and lifespan of aircrafts through
reducing material fatigue. Since low pressure turbine synchronous vibration lev-
els can be reduced with standard trim balancing methods with relatively little
effort and expense, the focus is on reducing vibrations excited by the unbalance
distribution on the high pressure (HP) rotor (compressor, turbine and coupling).
The HP shaft is not accessible after the engine is assembled, which enforces the
principle of 'right first time’ on balancing and assembly. A direct measurement
of HP vibrations in the assembled engine is impossible, due to narrow space, high
forces and temperature, therefore we have to rely on indirect measurements and
hence have to solve an inverse problem.

First results on the inverse reconstruction of distributed rotor unbalances from
measurements at the casing were achieved in a feasibility study by Rienacker
et. all. [12] from the BMW Rolls-Royce GmbH, and in a cooperation project
between Rolls—Royce Deutschland and the AG Technomathematik of the Univer-
sity of Bremen (part of the CERES project, [2]). Both treat the task as a linear
problem using a linear whole engine FEM model developed at the BMW Rolls—
Royce Group and programmed in NASTRAN for the forward computation and
the construction of the inverse problem operator. In both cases it was possible
to reconstruct continuous unbalance distributions like bend or wave deformation,
but they failed in the identification of point unbalance positions. It was only
possible to give hints in which part of the HP rotor the unbalance was situated.
One possible reason for the failure of this first attempt seemed to be the linearity
of the NASTRAN model since it did not take into account nonlinear damping
effects arising from squeeze film dampers at the bearing of the rotor (see Figure
1). Hence it was our aim to develop a nonlinear model and check if it provides
better reconstruction and identification results. Since it was to complicated to
change the NASTRAN model, we employed a phantom turbine model based on
finite element methods for flexible shafts. The parameters of the model were



trimmed to meet the characterizing properties of a high pressure rotor of an air-
craft engine, like dimensions, eigenforms and resonance frequencies.

The solution of the forward problem, i.e. the computation of the vibration of
the engine for a given unbalance distribution can be found by solving a nonlinear
differential equation. As the forward problem is nonlinear, the inverse problem
of identifying unbalances from data measured at certain sensor positions at the
housing is nonlinear, too. For its solution, we have used Tikhonov regularization.
Based on our model for the rotor, we employed a three-step algorithm which
enables us to identify and reconstruct continuous as well as discontinuous un-
balances like single point unbalances or combinations of point unbalances. All
reconstructions were done in presence of about 15% data error. Our approach
could also help if we are not specifically interested in the unbalance position but
in a good balancing result with three given positions for balancing masses (like
usual in practise). It allows to compute balancing recommendations (mass and
angle) for the admitted balancing positions.

The paper is organized as follows: In Section 2 we introduce the above mentioned
phantom gas turbine. Details like the organization of the matrices appearing in
the model equation, and physically properties are carefully derived. This part is
probably more interesting for the engineers among the readers. Section 3 gives a
brief introduction to inverse ill-posed problems and their solution. The Tikhonov
regularization as one possible solution technique will be introduced. Section 4 is
devoted to the forward problem. Starting from the model equation, we construct
a nonlinear operator equation of the form A- f = g describing our problem. Here
f denotes the unbalance distribution and ¢ the data measured at the casing of
the engine. The solution of the forward problem, i.e. computing ¢ from given f,
is contained in this section, too.

Section 5 is concerned with the inverse problem of determining f from given
(possibly noisy) data g. In particular the derivative of A and its adjoint are
computed, which is necessary to apply Tikhonov regularization. Moreover we
present an idea how to accelerate the minimization of the Tikhonov functional,
and derive the reconstruction algorithm in this section. Finally, Section 6 contains
the results of our test computations and the final three—step algorithm arising
from the interpretation of the first reconstruction results. We demonstrate how
single and distributed unbalances can be identified and reconstructed, and how
the data error influences the reconstructions. We also show how the algorithm
works for balancing suggestions if balancing positions are previously fixed.

2 Gas turbine model

In this section we want to establish a gas turbine model based on flexible shafts.
Usually such a system is described by an equation of the form

Mu" + Su=Q°p (1)



with M being the mass or inertia matrix, S the stiffness matrix, u the vector of
the degrees of freedom, p the unbalanced load vector, and €2 the frequency. In
the presence of damping, and assuming an unbalance f as the causing load, the
equation has the form

Mu" + Du’ + Su = Q*Pf. (2)

Here D is the sparse damping matrix, f the vector of unbalances, and P is a
matrix that assigns the forces caused by f to the degrees of freedom in the FEM
model.

2.1 Modelling of a flexible shaft using Finite Elements

The usual technique for calculating the dynamic behaviour of flexible shafts is
the Finite Element Method (FEM). To get an equation of the type (1), the rotor
is divided into similar elements (see Figure 2). For each node the chosen de-
grees of freedom have to take into account all geometric boundary and transition
conditions.
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Figure 2: Flexible shaft, finite Figure 3: Finite beam elements,
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Each finite beam element is treated separately. The motion of the element is

described by shape functions (Figure 3).

Their scaleable amplitudes are the



degrees of freedom Wy, (1 of the left node and Wg, Br of the right one. They
are ordered by

ul =W, B Wr Bkl (3)
From this ordering results the order of external forces and moments
p. =[F, M; Fr Mp). (4)

The characteristics of the beam element are given by its stiffness matrix S, and
its inertia or mass matrix M, . The influence of a continuous load is described
by the element load vector p.. The element matrices and the element load vector
are derived by an energy formulation (see [4]). As mentioned in the introduction
the model parameter are chosen such that the model is very close to the high
preasure rotor of an aircraft engine. Thus the stiffness matrix was derived as

12¢) —6Ly —12¢) —6Ly
g _Fda | —6Ly L*(1+3y) 6Ly L*(~1+39) 5
¢T3 —12¢) 6Ly 129 6Ly ' ®)

—6L) L*(—1+3¢) —6Ly L2(—1+ 3u)

E is Young’s modulus, for steel we have F = 208G Pa. For round beams the axial
moment of inertia is given by

ad  —d
[axIW‘W (6)

with d,,; for the outer diameter and d;,, for the inner diameter of the shaft. The
length of the element is represented by L. The shear parameter is given by ([7])

1

- - 7
v 14 1257 0 (7)
where G is the shear modulus
FE
G= 2(1+v) ®)

with Poisson’s ratio v. For steel v equals 0.28. For round beams the effective
shear area

Ay =A-k, (9)
is derived from the area of the cross section

—d,) (10)

out

m
A=—(d
1
and the shear coefficient [1]

B 6(1+v)(1+m?)?
ke = (7T+6v)(1 +m?)2 4 (20 + 12v)m? (11)
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where

din

m= o (12)
The matrix of inertia is superimposed of two parts
M. = Me + Mpge. (13)
The first part corresponds to the translatorial mass per length
p=o0A (14)

where o is the density of the material. For steel o = 7850kgm . We have (see

[4])

wL
M, = — X 15
He 840 (15)
280+428)+41)2 —L(35+T+2¢2) 140—28y—49? L(35—T1p—24)?)
—L(35+T+2¢2) L2(7+4?) —L(35—T1p—24)?) —L2(7—4?)
140—28tp—4a)p> —L(35—=T—2¢2)  2804+28+4p?  L(35+Th+242)
L(35—T1p—21)?) —L2(7—4?) L(35+T+22) L2(7+4?)
The second part takes respect to the rotational mass per length
/1 =0 Iamv
[
My, = — X 16
He30L (16)
3692 L(15¢—182) — 3692 L(159%—18%2)
L(15¢9—18¢%?) L2(10—15¢+9¢92) —L(15%—18y2)  L2(5—15¢+9¢%?)
— 362 —L(15¢)—181)2) 362 —L(15¢)—181)2)

L(15¢—18¢2)  L2(5—15¢+9%2%) —L(15¢—18¢2) L2(10—15¢+9%?)

The element load vector due to continuous load results in

40 + 21 20 — 21
120 20 — 2 40 + 29 PR
LGB —v)  LB+1Y)

where p;, denotes the force per length at the left node and pg the force per length
at the right node.

Pe =

To build the system matrices S and M, the element matrices S, [see (5)], M. [see
(13)-(16)] resp., are combined by superimposing the elements affecting the right
node of the ith element matrix with the ones belonging to the left node of the
(14 1)st element matrix (Figure 4). The load vector p is build by superimposing
the element load vectors p, [see (17)] in an analogous manner.
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Figure 4: System matrix, superimposed element matrix

2.2 Gas turbine

The gas turbine shown in Figure 5 is modelled as a system of flexible shafts by
44 finite beam elements. Each of the eight disks is modelled by one element, the
coupling between the compressor and the turbine consists of two elements. The
remaining 34 elements are distributed over the shaft.
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Figure 5: Flexible shafts (gas turbine)

Figure 6 shows the first three elastic eigenforms derived from this model. The
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corresponding eigenfrequencies are 199 Hz (11940 rpm), 392 Hz (23520 rpm) and
652 Hz (39120 rpm).
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Figure 6: Elastic eigenforms and eigenfrequencies, free—free

These free-free eigenfrequencies and eigenforms are modified by the turbine’s
elastic bearings and the housing which is supported elastically too. To keep the
calculation simple, also the housing is modelled as a flexible shaft (Figure 7).

A
S1=130.0 MN/m
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Figure 7: Turbine, housing and elastic bearings

The bearings are assumed to be isotropic, and gyroscopic effects are neglected.
Modelling the system this way, the equations of the horizontal plane are decoupled
from the ones of the vertical plane.



Figure 8: Block diagonal matrix structure, non zero off diagonal elements due to
elastic bearings (black squares)

Since the forces of the turbine’s elastic bearings are proportional to the relative
displacement of the turbine’s node and the node of the housing

FTurb =S5 (wTurb - wHous)7 (18)

the bearing’s stiffness s appears in the row of the related turbine’s degree of
freedom at the columns of both envolved nodes. Due to Newton’s principle of
actio and reactio,

FHous = _FTUTb7 (19>

it has to be invented in the related row of the housing’s degree of freedom too.
The four coefficients make up a rectangle with positve elements s at the corners
on the diagonal and negative elements —s at the off diagonal corners. The elastic
bearings of the housing are supported by a rigid founding. So the stiffnes appears
on the diagonal elements only. The structure of the resulting stiffness matrix S
is shown in Figure 8.

The eigenfrequencies and eigenforms which result from the model in Figure 7
are shown in Figure 9. Assuming a maximum speed of 17000 rpm (283 Hz) the
turbine crosses two critical speeds at 6060 rpm (101 Hz) and at 8280 rpm (138
Hz). The third critical speed at 17940 rpm (299 Hz) is not crossed but approached
by 95%. The forth eigenfrequency is found at 22980 rpm (383 Hz). It is above
the range of operating speed. The fifth eigenfrequency at 35700 rpm (595 Hz) is
dominated by movements of the housing.

2.3 DModel including a nonlinear squeeze film damper

Damping elements are added to the model in the same manner like the elastic
bearings. But since the forces of a damper are proportional to the relative veloctiy
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Figure 9: Eigenforms and eigenfrequencies

of the envolved turbine’s and housing’s nodes the related force on the turbine is
given by

FTurb =d- (wTurb - wHous) (20>

with d being the damping coefficient. The related damping matrix from (2) is
very sparse. The only non-zero entries make up a rectangle of four entries for
each damper like the elastic bearing does for the stiffness matrix.

At the nearly undamped aircraft engines, squeeze film dampers are used to reduce
the vibration. They fit for the reduction of unbalance induced vibration especially
due to their increasing damping rate at higher vibration. Figure 11 from [5] shows
a schematic of a squeeze film damper. Detailes shown in Figure 12 are taken from
[6]. The damping arises from the shaft’s vibration in a narrow oil filled gap.
The rolling contact bearing is used for separation of the rotating shaft from the
non rotating oil film only. It does not take any static load.

The squeeze film damper is a pure damping element. The damping characteristic
of a squeeze film damper is nonlinear, when the strength of the damping increases
by the level of vibration. In the theory of journal bearings parameters for a
general description of the damping behaviour can be given in order to avoid
time wasting time step integration of the differential equations. Unfortunately
no specific parameters can be given for squeeze film dampers. Only in the special
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Figure 13: Damping characteristic of a squeeze film damper

case of circular shaft orbits the equations of motion can be linearized. In the
case of infinite vibration the damping is a function of the oil’s viscosity and
the bearing’s geometry only. For higher vibration the damping coefficent of the
squeeze film damper can be calculated from Figure 13 as a multiple of the one
related to infinte vibration [5].

3 A short summary on ill-posed inverse prob-
lems

In recent years the theory of treating nonlinear ill-posed problems was well es-
tablished. For an overview see [3, 8]. For the following, let A be a linear or
nonlinear operator between real Hilbert spaces. With given data g, we want to
find a solution f of the equation

Af =g. (21)

The problem is called ill-posed, if the solution f does not depend continuously on
the data g. In fact, if we only have noisy data with noise level ¢, i.e. ||g°—g|| < 9,
then (provided the inverse A~! exists) fo = A~'g° might be an arbitrarily bad
approximation to a solution of (21). To obtain a stable solution, one has to use so
called regularization methods. The general idea is to approximate the discontin-
uous inverse operator by a family of continuous operators T,,. The regularization
parameter a has to be chosen such that lims_o a (6, f°) = 0 holds. For nonlinear
operators, equation (21) might have several solutions. Thus we choose the con-
cept of a f-minimum norm solution, i.e. we are looking for a solution closest to
an a priory given function f.

12



A prominent example for a regularization method is Tikhonov regularization.
The regularization operator is defined by

T.g’ = £} = axgmin J,(f) 22)
with the Tikhonov functional given by
Jo(f) = 1l9° = AfI* +allf = FII*. (23)

For the determination of the regularization parameter «;, we can use the so called
Morozov’s discrepancy principle where « is chosen s.t.
§<lg® = AfaI* < ed (24)

holds [13, 9]. For linear operators, the minimizer of the Tikhonov functional
can be computed by solving a linear system. In case of a nonlinear operator,
optimization methods have to be used additionally to compute a minimizer of
(23). A classical approach to minimize the functional J,,(f) is the use of gradient
methods. The gradient of the Tikhonov functional is given by

%wam = A(f)(Af — ¢") +alf — ), (25)

where the linear operator A’(f)* is the adjoint of the derivative of A at the point
f [10].

4 The forward problem

As we consider a model with nonlinear damping provided by a squeeze film
damper, equation (2) changes to

Mu” + D(u)u’ + Su = Q*Pf, (26)
where D is a function of the solution u. This is due to the fact that the damping of

a squeeze film damper depends on the amplitude of the oscillation. The damping
is modeled by (see Figure 13)

D(u) = D-o(lh(w)*) (27)
with ¢(s) = (1-— %>_§ ) (28)
h(u) = iy — Uow- (29)

Here H is the maximal gap width in the squeeze film damper, h is the actual gap
width which is the difference between u;,, the degree of freedom of the damper
position at the shaft, and wu,,;, the degree of freedom of the damper position at
the housing. Clearly equation (26) is nonlinear in u, and the solution can not
be computed directly. To simplify the problem, we want to assume that we only
have a squeeze film damper at one bearing and constant damping at the other
one, hence

D(u) = Dy + Dy - p(|h(u)[?). (30)

13



4.1 Construction of the forward operator

The solution of (26) with (27)-(30) are the degrees of freedom of every knot of
the model. However, measurements can only be taken at certain sensor positions.
We want to modify the solution operator of equation (26) in such a way that it
maps the causing unbalance vector to the oscillation vector of the knots at the
sensor positions. In the following we assume that we have

® 5 Sensors
e /N sources of unbalances
e [ degrees of freedom

e K frequencies {2, -+, Qx}.
The solution operator

Inserting the ansatz

u(t) = ute™ fue ¥ (31)
f(t) — erez'Qt + ffefiQt

in (26), we get the following solution

ut = [-M+ 9*25 +iQ 1Dy Q7 Dy (| h(w)[?)] T PEE. (32)
Ca Dq

As h = h(u), this is a fixed—point equation for u®.

Real notation

Up to here we have used complex notation in all formulae. Now we want to
shift to real notation. The main reason for the shifting is that for Tikhonov
regularization, which will be used for solving the problem, a convergence analysis
is only available for the real case. To that end we use the representation

u(t) = ucos(Qt) + iu’sin(Qt),
¢ = 2R(u"),

= =2G(ut).

£ =

This means that we only need ut. Denoting

Cq = —M+Q28 +iQ ' Dy, (33)
Dq = iQ'Dy, (34)

14



(cf. (32)) we get

W = 2R(Co+ Dag(h?)] ' PEY)
w = —93([Ca+ Dag(|h)] " PEY).

With the additional abbreviation
Ho(p(|h]*)) = Ca+ Dawp(|h[?) (35)
and the notation
f. = (R(E7), I(E4))",

where the superscript T stands for the transpose, we arrive at the real notation
for the solution u of (26):

C(w\ L ( RHae(RR)P) —S(Ha(o(|hP)P)
“r‘(us) 2<%<Hg<so<|h|2>>1P> R(Ha(o(|h[?) "' P) )f"' (36)

The measurement process
We will denote the real formulation of the measured data g € €' at frequency {2
and the real formulation of A by

g () = (R(g(®?)),
h() = (R(A(Q)),

(8())" € R*, (37)
(R(QNT € IR*. (38)

R
R

Thus we have for the unbalance vector f, € R?*" and u, = (u,u®)’ € R*".
Further we assume that

e ()1 is the matrix that extracts u at the sensor positions:
0
( %1 Ql )ur:gr-
e () is the matrix that extracts h from u,:
Q2 0
= h.
( 0 Q)"

Inserting these definitions in (36), the forward problem can be written for a fixed
frequency 2 as

R(Q1 Ho((|h2) ™ P) =S(Q1Ha(w(|)~' P)
(grm)) _ | S@uHa(e(h)P) R@QuHa(A(A)P) |
B(Q) ) oo R(QaHo(p(h) " P) ~S(QaHalp(hP) " P) |
S(QeHolp(h?)'P)  R(QaHa(p (k)™ P)
(39)

15



For better readability we will use the abbreviations

0y o R(@uHa(P(RP)P) ~S(Q:Hole(h) " P)
HeAa(p(Inl)) = 2(S<Q1HQ<¢<|h|2>>—1P> R(Q, Ho(io([h]?) ' P) )

) o ( R(@Ha(o()P) ~S(Q:Hale(h) " P)
Mndale(Inl) = 2( S(QuHalp(h]?)'P)  R(QuHalp(h) ' P) )
AatenP) = (el ). (a0

We remark that for fixed h the above terms are matrices which have the following
sizes:

Ha(p(|[*) € ¢**
Ql c ]RSXL
Q, € R (41)
P € RLXN

Aa(p(hP)) € Res¥N,

We only have to store the real and imaginary parts of Q Ho(p(|h|?)) P € RSN
and QoHq(¢(|h]?))"1P) € IRVN. An example for those matrices for a specified
frequency and h— sample can be found under www.math.uni-bremen.de\ ramlau'
unbalancematrices.

Theorem 1 Let g,.(€2) be the real data vector containing the degrees of freedom
at the sensor positions, h as defined in (29) and (38), and £, the real notation
of the unbalance vector. Then the data vector g, for a given unbalance can be
computed by

gr(Q) _ 2
(%)) = antetin . (12

where Aq(¢(|h|?)) is defined by (40).

4.2 Numerical solution of the forward problem

From now on we omit the index r denoting the real notation when no confusion
is possible. Solving ¢(Q2) = IgAq(¢(|h|?)) £ for given f would be easy if the
correspondin h(f) is known. Finding h requires to solve

h(Q) = Iy Ao (p(|2*))f, (43)

which is a fixed-point equation for h. (We refer to (38) for the use of h and
h.) If we have found h with (43), the matrix IIgAq((|h|?)) and thus g can be

16



computed immediately. In a first attempt, we have used the classical fixed—point
iteration

hiy1 = IaAa(e(|hel)) £

for solving (43), but found it rather time consuming, since for each hj the matrices
Q2Ho(p(|h]?)) "1 P have to be computed. Moreover, this process has to be done
for each frequency. As for inverse problems the forward problem has to be solved
quite often, this is not practicable. Instead, we found the following approach
more suitable:

As we have seen above, Aq, (¢(|h]?)) is a matrix for every given h. Thus, we can
precompute for a sample of |h|%, {|h|?, ..., |h1,..|*}, the corresponding matrices

and store them in advance. Now for a given unbalance f we only have to pick the
matrix which fulfills (at least approximately)

h; = Iy Ag, ((hil*) £ (44)
A promising fixed—point candidate for (44) is a zero of the real valued function
p(hi) = [hif* — [T Aa(o(|hal))E]*. (45)

For finding such a zero h, of p, the function fzero of matlab was employed. It
interpolates p and computes an approximative zero of the interpolated function.
Thus the algorithm for the forward computation reads as follows:

e Given f, {|l|*,...,|h1,..|°} and Q
o p(hi) = [hif* — [MuAa(e(hil*) [

e h, = fzero(p(h;)) (46)
e Compute [z Ag(p(|h.|*)) as Lagrange interpolation of TlgAq(¢(|hi|?)) at k.,
o g(Q) = MgAa(o(|h:)) - £ (47)

In all our test computations, the zero of p(h;) was unique, which means that we
had |h|? correctly identified. In general, the found zero |h.|? is different from our
samples |h;|?, thus we have used Lagrange interpolation of order 2 to interpolate
the matrices Ag, (¢(|hi|*)) and finally compute Ag, (p(|h.]?)). We have imple-
mented both the classical fixed point method and the above described method
for the solution of the forward problem. Several test computations assured us
that they both give the same results, but our approach was much faster.

In view of (39) we only have to store the matrix

< R(Q1Ha, (p([hil*)) 7' P) I(QuHo, (¢(|hil?) ' P) ) c REHIx2N
R(Q2Ha, (p(|hil*) ' P) I(QaHoy (¢(|hil?)) ' P) ’

17



(see (41)) for each Q, k =1,---, K and each |h;|?, i = 1, -, [,hap. Doing this
the entire matrix to be stored is of size K- (s+1) X 2N - I, Thus we can handle
the forward problem with maintainable amount of time and storage. Figure 14
shows the movement in the squeeze film damper caused by a real unit unbalance
at the third disc.

Gapwidth in the squeeze film damper
35 T T T

30 7

251 b

20 7

2
b

15f b

10 T

I )

0 50 100 150 200 250 300
Omega in Hz

Figure 14: Forward model: Oscillation in the squeeze film damper. We pass two
resonance frequencies at 101Hz and 138Hz, and approach a third one at 299Hz.

5 The inverse problem

Knowing the measured data g°(f2) at the sensor positions for each frequency €,
the inverse problem consists in finding f with

g’'(Q) = TgAo(p(lh*) (48)
and  h(Q) = IaAa(p(|h?) £. (49)

It is well known from the theory of linear damped systems, that the reconstruc-
tion of the causing unbalance from measured oscillation data is ill-posed. Thus
we have to use regularization methods. A widely used algorithm to solve ill-posed
inverse problems is Tikhonov regularization which we have briefly described in
section 3. Tikhonov regularization requires to use an algorithm for the minimiza-
tion of the Tikhonov functional. For iterative algorithms, the gradient V.J_(f)
(see (25)) of the Tikhonov functional with nonlinear operator A plays a central
role. For steepest descent methods, V.J_(f) is used as a search direction, and for
fixed point or Newton’s method, a function with

VJ.(f)=0

is searched for. According to (25), the computation of VJ_(f) requires the know-
ledge of the Fréchet derivative A’(f) of A and its adjoint A’(f)*. For our problem
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we have

f = fe R,
g’ ()
¢ = : c R>K
8’ (Q)
Ag,
A= Tg| : |:R*» — R*", (50)
Aq,
A,
A =T | : |:RB* — R*",
A

A(f) = T (A, (£)*... Ay, ()" ) : R*F — R*Y.

Here we have shorten the notation of Ag, (¢(|h]?)) to Ag,.

5.1 Derivative of the forward operator and its adjoint

To find a formula for the derivative we have used the Implicit Function Theorem
(IFT) which states the following: Provided a function y = y(z) is implicit de-
fined via F(z,y) = 0, and F'(z,yo) exists and F,(zo,yo) is invertible, then y is
differentiable in zy and

y' (o) = —F, (20, y(x0)) ' Fr (20, y(0)).

Theorem 2 FEach component of the Fréchet derivative A'(f) of A given in (50)
15 computed by

<h, HhAQV>

Hedp(f)v = Tedav — 2/ (b)) g e

I, Bof. (51)

Proof: We set
Fle.y) = P8, (5.0) = (& ) =~ Aa(e(b) £ =0
To extract the derivative of Aq(¢(|h|?)), we concider
g = IgAa(p(/h*) f,
and conclude from the IFT

Org = TlgAg(p(|h*)(f)
- Hg[_a(gyh)p(ﬁ (g7h>>]718fF(f7 (g>h>>'
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The partial derivatives were computed as follows

O F = —Ao(p(h]*)),

_ IdRQs
= ()
For 0 F' we have to use Appendix A and the fact that

Ha(p(|h[*))" = (Ca + Dap(|h|*))" = Da 2 ¢'(|h]*) (b, ) R

and

holds.
R(Q10nHa(o(|h[*)'P) —S(Q10nHa(e(|h]?)) ' P)
O F — (0R2s )_2 S(Q1onHa(p(h[*))"'P)  R(Q10uHa(p(h]?)) ' P) £
Id - R(Q20nHo(p(|h[*)) ' P)  —3(Q20nHa(w(|h]?) "' P)
%(QQ&HQ(w(\hP)) 'P)  R(Q20nHqo(p(|h]?))"'P)
RQHy HLH, P) S(Ql o HLHG'P)
B 0 5| S(@ Ho'HLHL'P)  R(Qy 1HQH P) ¢
= (Id)+ RO HLHP) —3(Qolls HY 2 P)
Q. Ho'HLHL'P)  R(Q.H,, 1H' P)
EQl 1DQH ng —s((QlﬂnggHgll?
0 Q. Hy'DoHy'P)  R(Q H,'DoHG'P
= (Id)+4<h >R290 (|h|) %( 1DZH 1P) —%(ng'zsll;)g)]%;lp) f.
3(Q2 1DQH 'P)  R(Q:Hy'DoHg'P)
We abbreviate
mBae(nf) = 2( S@Rp ) et el D)) o
oy 9%( 1DQH 1P) —\S(QQH DQH 1P)

Ba(p([bf) = <gi Z( EIEI %3)

and arrive at

0 /
— OwF = Ha (1)) 2002 Balo(h2) £

As stated in the theorem we have to determine (9gn)F)~'. We use the identity
from Appendix B and get

<( E ) ) > 2¢(|h[?) Ba(p(|h)*)f
)yl=1d - |
1+ 2¢'(|n[2) (h, I Bo(o(|b[2))f)

(a(g,h)F
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So we have Iz Af (f) = Hg(9(gn F) *Aq and

<h, HhAQV>

Mg Ap(f)v = MgAqv — 2¢/(|hf?
g A (f)v gAov —2¢(| ‘>1+2@/(|h|2)<h,HhBQf>

MgBof. O

Next we want to compute the adjoint of the derivative.

Lemma 3 Fach component of the adjoint A'(f)* of A'(f) given in (50) is com-
puted by

[, Ag)*h
T+ 2¢/(h/2) {1 Bof, )

g AQ(f)]" = [lgAa]" — 2¢(|h[*) (Mg Bof,-).  (53)

Proof: We have

(HgAq(f)]"w, v)
= (w, HgAq(f)v)
o ’ 2 <h, HhAQV>
- <W7 HgAQV> - 290 (‘h‘ ) <W7 1+ 2¢I<‘h‘2)<h, HhBQf> HgBQf>
<HgBQf, W>
1+ 2¢/(|h|?) (Il Baf, h)

= ([[IgAq]*w,v) — 2¢'(|h[?) < [T Aq] h, v> : O

We remark that in order to compute A’(f)*, we also need to table the matrices

( R(QuHa (¢ (i)™ DaHa(¢'([hif*) 7 P) S(Q1Ha (¢ (|hs]?) ™! DoHa(¢'(hsf*)~' P) )
R(Q2Ha(¢'(|hi*) " DaHo(¢'(|hi*) 7' P) S(Q2Ho(¢'(|hil*) ™' DoHa(¢' (b))~ P) )

%Y

1=1,--+, I 14z, from which we construct the matrix Bg otherwise the computa-
tion of A’(f)* would be impossible.
If the derivative is known, gradient based methods are easily implemented.

5.2 On the minimization of the Tikhonov functional

For the numerical realization of the Tikhonov regularization the minimizer
Jo = argmin Jo(f)

has to be computed. For a linear operator A, this is simply done by solving the

linear system -
(A*A+al)f = A*¢° + af .

For nonlinear operator A this demands more. At first, the minimizer of the
Tikhonov functional might not be unique anymore, and there might be even only
local minimizers. Secondly, the Tikhonov functional is no longer convex. This
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means in particular that classical algorithms like the steepest descent method
can fail to converge to a global minimizer. In [10, 11] the so called TIGRA
(TTkhonov—GRAdient)—algorithm was proposed. This method is a combination
of Tikhonov regularization and a gradient method for the minimization of the
Tikhonov functional. The basic algorithm is as follows:

e Given ¢° with ||¢° —g|| <0
e Choose ap, ¢ <1,

e Repeat
k=k+1
Q= koéo

Compute fgk = argmin J,, (f) with the gradient method
until [|[Af) — ¢°|]° < ¢6”

Under slight restrictions to the nonlinear operator A it has been shown [11]
that this algorithm reconstructs a good approximation to a f-minimum-norm-—
solution f* of A f = g, provided oy and ¢ are chosen appropriately and

f-r=Af)w
with ||w|| small enough holds. In this case, an error estimate of the form
Ifa, = /7l = O(V5) (54)

holds. We have used the TIGRA-algorithm for several reconstructions, but found
the algorithm rather slow in convergence, which was mainly due to the high
number of iterations for the gradient method required for the minimization of
the Tikhonov functional for each aj. Thus, our focus was on a replacement of
the gradient method by a faster algorithm. First, we want to show that every
minimizer of the Tikhonov functional can be characterized as a fixed point of the
mapping ¢ defined in the following Lemma.

Lemma 4 FEvery minimizer of the Tikhonov functional fulfills the fized point
equation

fo= o) with (55)
o(f) = Tl (A +af). (56)

Proof: The necessary condition for a minimum of J,(f) reads (see (25))

alf = f) =A() (" - Af) .
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which is equivalent to

(A (fyA+al)f=A(f)¢ +af. (57)

According to (50), A'(f)* is a (2N X 2s - K)-matrix. By (42) we find that the
data g = Af are given by

Ag, ((|h[?))
Af =TI, s £, (58)
Aq, (([h]?))
with i = h(f). Looking at (50), we see that for given |h|?, Aisa (2s5- K x 2N)-
matrix, and A'(f)*A(p(|h[?)) is a (2N x 2N)-matrix.
By the methods presented in Section 4.2 we can compute
Ag, ((|h]?))
A(f) Ale([h*)) f=TIg ( Ag, ()" ... Ag, (£)" ) g : f
Aq, ((|h]?))

for every given f = f, and thus the matrix

To(f) = A'(f) Ale(h]*) + ol (59)

is well defined, and equation (57) is equlvalent to

f=0(f) =T/ (L) +af) . O

We remark that the belonging iteration fr.; = ®(fx) converged very fast to a
minimizer of the Tikhonov functional.

5.3 Reconstruction algorithm

Applying Morozov’s discrepancy principle, our resulting algorithm reads as fol-
lows:

e Given ¢ with ||¢° —g|| <0
e Choose ag, ¢ < 1, tol and fo, fi with || fi — foll*/||fil|* > tol, k=0

e Repeat
k=k+1
k
Qp = (¢

While || f — foll*/[| f1l]* > tol
findA(fo) for fo by computing the zero of (45)
fr= (A (fo) Afo) + al) (A (fo)* 9" + awf)
end
fo=h
until ||A(f0)f0 — géHz S 52

23



A reconstruction of an unbalance distribution from noisy data with the above
algorithm needed in average less than two minutes (Matlab implementation, on
a PC with 1.33 GHz AMD processor). In comparison, the TIGRA-algorithm
needed about an hour for a full reconstruction. As we will see in the following
Section, the above algorithm did always converge. A convergence analysis of
the algorithm is not the scope of the present work but will be the topic of a
forthcoming paper.

6 Reconstruction results

We have performed a large number of test computations using the following model
parameters:

e s = 5 sensor positions at the housing [squeeze film damper(1), bearing with
constant damping(5), and (2,3,4) equidistantly distributed between (1) and

(5)]

e N = 10 sources of unbalances (compressor: eccentricities at the discs 1 to 6,
turbine: eccentricities at the discs 7 and 8, coupling: run out 9, and swash

10)
e K =60 frequencies [5,10,15,...,300]Hz
e a sample of I,,,,, = 30 values for |h|?/H?*

[0,0.01,0.02,...,0.08,0.1,0.15,0.2,...,0.95,0.99,0.999, 0.9999]

Given an unbalance or an unbalance distribution, the data g’ were produced by
forward computation and disturbed with a random additive error of 5% and a
random multiplicative error of 15%. For f we have always chosen the zero vector.

6.1 Reconstruction of a single unbalance

First, we have tested our program for several single given unbalances f, namely
for an eccentricity at the 2nd disc in the compressor (f(2) = 0.05mm), one at
the 7th disc in the turbine (f(7) = 0.05mm), and a run out of the coupling
(f(9) = 0.02mm).

6.1.1 First reconstruction results

We have plotted our reconstruction results in the Figures 15 to 17. The first
picture (top left) always shows the reference unbalance f, the second (top right)
its vibration impact at the damper sensor position. In the third picture (lower
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Figure 15: Unbalance at 2nd disc (compressor): reconstruction results

left) the reconstructed unbalance distribution f,.. is plotted, and finally picture
four (lower right) shows the vibration at the damper sensor position after balanc-
ing, i.e. we imagined to place balancing masses according to the reconstructed
distribution, meaning we did a forward computation with f — f,....  Although
the results give a hint where the unbalances are situated, the algorithm fails to
reconstruct the original unbalance. The reason lies in the following facts. Due to
the nature of the measurement process we are working with incomplete data. It
is a well known fact from the linear theory of rotor dynamic systems that most
information is contained in the resonance frequencies. There are the same num-
ber of resonance frequencies as the number of knots in the model, but usually
only first the ten to fifteen of them are physically reasonable. Using a frequency
interval containing all reasonable resonance frequencies, we expect the inverse
problem to have a unique solution. However, in practice it is impossible to ob-
tain measurements for all reasonable resonance frequencies and we had to restrict
ourselves to an interval that contained two and approaches a third resonance fre-
quency. Different unbalance distributions may produce different vibrations at the
sensors within an interval containing all resonance frequencies, but may coincide
on the considered subinterval. Thus we have lost the uniqueness of the solution
of the inverse problem. Tikhonov regularization with a given f reconstructs then
a solution closest to f. In our case with f = 0, this means that we end up with a
reconstruction for the cause of the unbalance with minimal mass, as can be seen
in the Figures 15 to 17. Although the balancing results are very good, in practice
we want to have as less balancing positions as possible due to the costs of the
balancing process. Hence the computed reconstructions are not satisfying. To
achieve a reconstruction that coincides with the given unbalance we want to locate
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Figure 16: Unbalance at 7th disc (turbine): reconstruction results
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Figure 17: Run out in the coupling: reconstruction results
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Figure 18: Residua ||A;f2 — ¢°||? for compressor, turbine and coupling part, indi-
cating the location of a causing unbalance

its position first. To this end we have defined an operator Ay, . ;.1, im € (1, N],
which is a restriction of A to the unbalance positions indicated by iy,...,%.,,
i.e. this operator allows only an unbalance reconstruction at the given positions.
These operators can be obtained by extracting the corresponding columns of the
matrices A in (50).

6.1.2 Locating of unbalances in compressor, turbine and coupling

As stated above we want to identify the part of the engine (compressor = [1, ..., 6],
turbine = [7,8] or coupling = [9, 10]) where the causing unbalance is located.
Since we assume that we have single unbalance causes, we can only expect rea-
sonable reconstructions with one of the operators Acomp, Apury and Acoyp. Accord-
ing to the theory of Tikhonov regularization, a necessary condition for a good
reconstruction is that the residual ||AfS — g°|| is of the same magnitude as the
data error . As we can see in Figure 18, we equal the data error level only with
one of the restricted operators while the residua of the others stagnated on a
higher level, and conclude that the unbalance can be located only in the part of
the engine where the residual with the restricted operator approaches 9.

6.1.3 Locating of a single unbalance position

Once the unbalance causing part of the engine is located, we scan through the
possible unbalance positions in order to find the positions where the residuum
||A[i}f£7[i] — ¢°|| equals §. For example, for the 2nd disc unbalance we did recon-
structions with Apy, -+ -, Ajg. Only by using A the residuum equals 4, indicating
that the unbalance position has been found. With the belonging reconstruction
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Figure 19: Identification of unbalance positions in the parts of the engine; residua
for the single positions (top), and original and reconstructed unbalance (lower)

f5

oj2» the relative reconstruction error ||f5 2 — EI/NIE]l was about 5%. Similar
results hold for the other single unbalances see Figure 19.

6.1.4 General reconstruction approach

The results of the preceding subsections suggest the following general approach
to reconstruct a single unbalance:

1. Do a minimum-norm reconstruction according to subsection 6.1.1 in order
to check the magnitude of the residuum and possible balancing results.

2. Identify the part of the rotor where the unbalance is located choosing the
part for which the residuum equals § (cf. subsection 6.1.2).

3. Scan through the identified part allowing only single unbalance positions for
the reconstruction. Again choose the position where the residuum equals §
(cf. subsection 6.1.3).

6.2 Reconstruction of an unbalance distribution

To reconstruct an unbalance distribution we have also used the above suggested
approach. During this section we have chosen an eccentricity of 0.05 mm at the
third disc in the compressor and a run out error of 0.02 mm in the coupling. We
made a minimum norm reconstruction first in order to get an impression which
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Figure 20: Reconstruction residuum (lower left) and balancing result (lower right
compared to upper right) for an unbalance distribution (upper left)

reconstruction and balancing accuracy is possible (Figure 20). In a second step
we compared the residua of the iteration process restricted to the three single
parts and combinations of two parts of the engine (Figure 21). As a conclusion
of Figure 21 we presume our unbalances either in the compressor and the turbine
or in the compressor and the coupling. It is not very surprising that we can not
identify only one combination since, for instance, the 7th disc in the turbine is
close to the coupling and a balancing weight there will probably have a satisfying
effect on the considered frequency interval.

This time the third step is parted. We first allow only single potential unbalance
positions and compute the residua (Figure 22). We can see that non of the residua
comes near 0. But when we are looking for a combination of the compressor and
one of the other parts, Figure 22 recommends to try the positions of disc 1, 2,
3 and 6, since there a decreasing of the residuum is visible. Thus we checked
the residua for the restricted operators Ay 7,---, Ap0,7 = 1,2, 3,6 and plotted
the results in Figure 23. Though some of the combinations residua came close
to 4, only the right combination residuum ||Ajzg £2 — g°|| undercut the d-level
and the iteration stopped. The other residua remained static at a slightly higher
level. For the last iterate of the most recommended combinations, we have the
following residua (6% = 2.68):

| A3 £ — g°[|* = 2.66
|Apq £ —g°|)? = 3.87
|Apn £ —g°lI* = 4.29
|Aig £ — g’ =3.17
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Figure 22: Residua squares for the 10 single potential unbalance positions
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Figure 23: Residua squares for combinations of two potential unbalance positions;
disc 1,2,3 and 6 from the compressor with the remaining positions 7 and 8 from
the turbine, and 9 and 10 from the coupling

We have to remark that in our case J is exactly known. For reconstructions
with real data, 6 has to be estimated. Therefor it is possible that more than
one combination undercut the estimated d-level. But due to the regularization
theory, the residuum for the right combination tends to zero if a tends to zero.
As we can see in Figure 23, the wrong combinations remain almost static. The
reconstructed unbalance distribution and the balancing result for Ajzg can be
seen in Figure 24. The relative reconstruction error ”fg,[g,g] —f1|/||£]] is about 7%.

6.3 Balancing at three fixed positions

Sometimes one is not or not only interested in the identification of an unbalance
distribution but in good balancing results. In practice one often has three fixed
positions where balancing weights can be placed. We assumed disc 1, 5 and 8
as such fixed positions and computed the corresponding solution fg,[175,8] and the
balancing result (see Figure 25) for the data generated by the above unbalance
distribution [3,9]. We can see that the residuum || A5 fg,[LS,S] —g°||? equals §
much faster than the residuum of the A g-reconstruction (see Figure 24). Also
the balancing results are much better. For our three-point balancing we got a
remaining oscillation in the squeeze film damper of less than 0.3%.
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6.4 Data error and reconstruction quality

Surely an important item for the unbalance identification accuracy is the quality
of the available data. Since we did not have access to real data, we had to
revert to simulated data. We have used a reference unbalance at the third disc
(f(3) = 0.05), produced the corresponding data by forward computation and
disturbed the data with equally distributed random numbers normed to the error
level. We varied the error level from 0% to 50%, and applied our three-step
algorithm. There was no difficulty to identify the engine’s unbalanced parts and
finally the unbalance position. The reconstructed solution f,.. was computed
using the operator restricted to the 3rd unbalance position Afs. We defined two
measures for the accuracy. The first one is the identification accuracy.

”f - freCH

* 100%.
£l )

Identification accuracy = (1 —

Its dependence on the data error level is plotted in the left picture of Figure
26. For exact data, the unbalance is exactly reconstructed. The second accuracy
measure considers the balancing effect. We compared the oscillation |h]? in the
squeeze film damper caused by the reference unbalance with the oscillation after
balancing with the reconstructed solution |h,..|? (i.e. forward computation with
f — f...). The balancing accuracy was defined by

hrec 2
Balancing accuracy = (1 _| |h|2| ) * 100%.
The right picture of Figure 26 shows the dependence on the data error level. For
exact data we have 100% accuracy, i.e. no remaining unbalance after balancing.
For 50% data error we have less than 15% remaining unbalance.
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Figure 26: Identification and balancing accuracy versus noise level
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7 Summary

We have developed a nonlinear turbine model oriented on the characteristic pa-
rameters of a real engine. It has enabled us to compute the oscillation behavior of
the turbine from given unbalance distributions. Based on this model and on the
Tikhonov regularization for nonlinear ill-posed problems, we have introduced a
three-step algorithm to reconstruct unbalances in the engine from noisy data mea-
sured at certain sensor positions on the engine’s casing. For the first time, point
unbalances and discontinuous unbalance distributions could be exactly localized
and reconstructed with satisfying accuracy. Additionally, if balancing positions
are previously fixed, the step algorithm enables us to compute balancing masses
with very good balancing results.

The treatment of model errors and a comparison of the linear and the nonlinear
model were also under investigation and are topics of a forthcoming paper.
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A Derivative of an inverse matrix

Suppose we want to determine [B(p)~!]". We use the Taylor expansion of B(p +
£)7! to determine the derivative from

B(p+e)™' =B(p)™ +[Blp) " |'e + R(e?).
First we have
B(p+¢)™" = [Blp) + [B(y)'e + R(e)] .

Here [B(p)]'e = Ee¢ is a small term and R(g?) is 'very small’. We have to deter-
mine (B +eE + R(¢?))~!. This can be done by the following chain where we use

the Neumann serie (Id — A)~t = Y A*,
k=0

(B+eE+ R(*))™ = [B(Id— (=B 'E) + B 'R(s%)]!
= [Id— (—eB'E) + Ry(e?)] 'B™!

= Y (=eB'E+ Ry(e?)" B!
k=0
= B! —eB'EBT' + Ry(£%).
It follows that
B(p+e) ' =B()™ —eB(p) ' [B(p) Ble) ™" + Ra(e?),

hence

B

We want to proof

—1
(Id+ {q,)w)™" = 1d — m(q, Hw.
Since (¢, )w = wq' and wq'wq' = wq'{q, w) we have
(Id +wq")(Id — cwq") = Id+wq — cwq' — cwqg'wg'
= Id+wq' (1 —c—clg,w))
= Id
& 1—c—c(qw) =0
& =
1+ {(q,w)
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