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Abstract

The kinetics of phase transformation in steel under continuous
cooling is considered. The aim is to find a model precise as possible
for pearlite transformation in 100Cr6 steel comparing different known
equations with some extensions. Here we consider only the stress free
dilatometer experiments with continuous cooling. The Leblond model
is compared with an Johnson-Mehl-Avrami-type equation taking the
temperature history into account.
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1 Introduction

The classical Johnson-Mehl-Avrami equation [JM39]

p(t) =1—exp (— (T(;))H(T)> (1.1)

is in a good agreement with experiment in case of isothermal phase transfor-
mation, however it gives only a qualitative description in the non-isothermal
case. Here 7 and n are two temperature dependent parameters, p is the
product phase fraction, ¢ is time and 7T is temperature. To achieve the high
accuracy in simulation of the diffusion phase transformation a lot of attempts
have been undertaken in the last decades. The motivation is to have a bet-
ter control of the additional distortions due to phase transformation during
thermal treatment of workpieces. In general stresses affect the phase trans-
formation and the elasto-plastic problem is coupled with evolution of phases,
we refer to [DAG102] and [ABMO02]. In this paper we consider the simplest
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case (no temperature gradient, stress free) of austenite-pearlite transforma-
tion as a starting point for further investigations of a coupled problem. This
paper can be considered as a supplement of [BHSW03| where the comparison
of five different procedures for kinetic simulation was considered. We used
the same experimental data as in [BHSWO03] and two kinetic equations. One
of them takes into account the history of the temperature evolution, another
is the model of Leblond. There are many kinetic equations based on the
differential form of the JMA-equation

T =5
=0 -p 2 (~wa ) (1)
combined sometimes with the additive Scheil rule, see [RHF97], [BHSWO03],
[Hom95], [LD84] and [BDH'03] for plenty of examples.

We are going to compare some of these methods for pearlite transformation
in 100Cr6 steel. The evaluation of five procedures (JMA-equation, Denis
model [FDS85],[DFS92], [DAG™02], Hougardy model [HY86] and two gener-
alizations [HLHM99], [SYS00] of JMA-equation with additional factors) has
been presented in [BHSWO03|. In that paper the best accuracy was obtained
with the Model B, which is an extension of (1.2) with a factor

dT

=, (1.3)

(1—g(T))
where the function ¢(T) is to be fitted. In the current paper we are going
to continue the evaluation and compare two other procedures with the five
mentioned above. For this purpose we consider the same steel 100Cr6 and use
the same set of continuous cooling experiments with different temperature
rates.

2 Phase transformation models

In this paper we concentrate on the transformation of austenite to pearlite
under a non-isothermal cooling process free of stresses. The full transforma-
tion to the product phase at the end of the process is assumed. The first
equation we are going to consider is the equation proposed by Leblond and
Devaux in [LD84]

dp _1-p(t)

dt — u(T) "’
where T'(t) is a given temperature variation, p(¢) is the pearlite fraction and
u(T) is a temperature dependent parameter representing the characteristic

u(T) > 0, (2.1)



time of the transformation. The initial condition is p(0) = 0. We remark
that for a single experiment with strictly monotone 7'(¢) one can always find
such a function p(7(¢)) that the simulation performs a prescribed accuracy.
However it is desired to find a universal u(7) for a range of temperature
rates.

The second model is the following. We are going to take the history of
the temperature evolution into account. For this purpose we introduce the
averaged temperature 6(t) by the following formula

t
0(t) = a(1 — e~alt—to))~1 / T(s) et ds, t>t5,  (22)
to

a > 0 is the parameter of the weight function. Then we use the classical
differential equation (1.2) with 6(¢) on the place of T'(t). The advantage of
this approach is that we can use the same material parameters 7 and n ob-
tained in isothermal experiments. We remark that for constant temperature
we obtain the same JMA differential equation (1.2).

3 Experimental data

We consider the exponential cooling curves with different rates starting from
850°C to 100°C. The duration tgsg/100 Of cooling is respectively 2000s, 1000s,
500s and 300s. The method of calculation of the pearlite fraction from the
dilatometer test is described in [BHSW03] and we used the same result from
this paper. We confine the consideration on the temperature interval from
800° to 500° as in [BHSWO03]. It corresponds to the durations tgg 500 of 413s,
206s, 103s and 62s. We use also 7(T') and n(T') from the same paper:

7(T) = 79 exp (%) exp (ﬁ), n(T) =no +nT, (3.1)

with 7y = 0.0018s, Q = 7000K, P = 1.3-10"K3, Tp = 760°C, ny =
—16.04, ny = 0.0324+.

4 Simulation results

The mean square error (or Le-norm of the deviation) scaled by the length of
the correspondent time-interval was used to compare the models (the same
as in [BHSWO03]), see the Table 1. Here time intervals correspond to the
cooling from 850°C to 500°C.



4.1 Leblond model

For the Leblond model we assume the following form of u(7T)
w(T) = a(850 — T)?, (T in °C) (4.1)

where a > 0 has to be fitted from the experimental data. For this simple
model we found that the optimal a for these experiments is a = 8.8 in
the sense of the Lo-norm of the deviation between the simulation and the
experiment.

1 e, 1

0.9 \“\."_ . 1 o9} ‘

0.8 1 o8t \'*-.4_.

0.7 1 o7t

0.6t 1 06l

0.5f : ."'=.‘ {1 05

0.4f Y 1 o04f

0.3 B 1031

0.2 B 107

01 1 oaf -

ol ‘ ‘ o e ok ‘ ‘ ‘ ]
550 600 650 700 750 550 600 650 700 750

Figure 1: (Leblond model) The dotted line represents the experiment, the solid
line corresponds to the simulation. Left — #g50/500 = 2000s, right — tg50/500 = 1000s
(Vertical is volume fraction of pearlite, horizontal is temperature in °C.)

We see that the result is qualitative good, but the Lo-norm deviation be-
tween simulation curves and experimental curves averaged over four pro-
cesses was found to be 0.177. That is bigger as in the simulations performed
in [BHSWO03]. For more accuracy one needs to use better parametrization of
the function u(7T) in the Leblond equation.

4.2 Simulation with averaged temperature

Now let us proceed to the second method (1.2), (2.2). The optimal « was
found as o = 0.713% and the corresponding results are presented on the
Figures 3-6. We see essentially a better agreement with the experiment in
comparison with the Leblond model. The average Ls-error
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Figure 2: (Leblond model) The dotted line represents the experiment, the solid
line corresponds to the simulation. Left — #g5/500 = 500s, right — 2g50/500 = 3005
(Vertical is volume fraction of pearlite, horizontal is temperature in °C.)

k 1
(% 2315]2) *,  (here k = 4), where the sum is taken over all considered pro-
]:

cesses and J; are the L, norms of the difference between the correspondent
experimental curve and its simulation curve, for this model is 0.032, that is
better in comparison to the JMA-simulation presented in [BHSW03]. In the
first line in the following table we quote results from there. The second and
the third line show the Lo-error for each single experiment with the same o
(or respectively a) for all processes. In the last line we quote the results for
the Model B (see (1.3) from [BHSWO03]

We would like to remark that equation (1.2) with initial condition p(0) = 0
has two solutions, one of them is trivial. Hence for simulation one have to
use p(0) = ¢ with a small e. Then one has a unique solution, but of course
it depends on €. We chose ¢ small enough so that for smaller values of ¢ the
difference between the simulated solutions is negligible, so we took ¢ = 10~".

Table 1: JMA, JMA-« and Leblond models: Mean square errors.

2000s | 1000s 200s 300s

JMA || 0.0375 | 0.0271 | 0.0627 | 0.0877
JMA-« || 0.0417 | 0.0306 | 0.0283 | 0.0225
Leblond || 0.1781 | 0.1681 | 0.1711 | 0.1934
Model B || 0.0313 | 0.0198 | 0.0164 | 0.0078
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Figure 3: tg50/500 = 2000s - the dotted line represents the experiment, the solid

line corresponds to the simulation (Vertical is volume fraction of pearlite, horizon-
tal is the temperature in °C).

5 Discussion and conclusions

The advantage of these two methods considered above is the simplicity of
the equations, where only one additional parameter has been introduced.
The results performed here yield a qualitatively good agreement with the
experiment, however the Leblond model with only one parameter remains to
be quantitatively imprecise. One has to find some better formulas for the
time-scale parameter p(7") to reach a better agreement with experiments.

The second method has better average approximation than the JMA-equation.
For higher cooling rates it yields essentially better precision than JMA, but
worse for lower ones. It could be probably improved by a more sophisticated
functional taking the history of the temperature evolution into account. We
conclude that both methods can be used for the kinetic simulation of the
pearlite phase transformation, however some improvements of (4.1) are still
needed in case of the Leblond model. We also remark that due to essentially
higher freedom in fitted parameters (function g from (1.3) in comparison to
one parameter a or « from (2.1) or (2.2)) the Model B has a better accuracy
then both models discussed above, see Table 1. With reference to [BHSW03|
we can also conclude that for a given material and a short range of tempera-
ture variation one can always find some extension of the classical models to
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Figure 4: tg50/500 = 1000s - the dotted line represents the experiment, the solid
line corresponds to the simulation (Vertical is the volume fraction of pearlite,
horizontal is the temperature in °C).
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Figure 5: g50/500 = 500s - the dotted line represents the experiment, the solid
line corresponds to the simulation (Vertical is the volume fraction of pearlite,
horizontal is the temperature in °C).
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Figure 4: g50/500 = 300s - the dotted line represents the experiment, the solid

line corresponds to the simulation (Vertical is the volume fraction of pearlite,
horizontal is the temperature in K).

achieve the desired accuracy in simulation. However one has to change the
obtained model drastically in case of a different variation of temperature or
in case of some changes in composition of material. That is why we believe
that some new approaches for the kinetic modeling are still needed.
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