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A Two-Reaction-Zones Moving-Interface Model for
Predicting C'a(O H )o-Carbonation in Concrete

Michael Bohm * Jérg Kropp T Adrian Muntean

Abstract: Corrosion of steel reinforcement in concrete is essentially controlled by the
change of pH near the steel bars. One of the major contributions to a drop in pH is the
carbonation of Ca(OH ), and of other substances near the bars caused by atmospheric CO,
diffusing in the dry parts and reacting in the wet parts of the concrete pores. In this note
we propose a prediction model for Ca(OH )s-carbonation. The model is a system of coupled
partial differential equations with a moving interface at the carbonation front. It is supple-
mented by appropriate boundary and interface conditions and allows the prediction of the
position of the carbonation front as well as of the concentrations of COs, rest-Ca(OH ), and
of CaCOs3. Special emphasis is laid on the discussion of the reaction near and remote from
the carbonation-reaction front. The main tool is the introduction of two separate reaction
regions. The formulation of the model allows for 1D to 3D concrete objects. Comparison
with penetration curves based on accelerated carbonation experiments as well as with sim-
ulated curves show that the model is appropriate for a wide range of concretes.

Key words: Concrete corrosion modeling, carbonation, moving carbonation layer, two-
reaction-zones model, coupled partial differential equations, moving-boundary problem.
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1 Introduction

One of the most appreciated features of reinforced concrete structures is their durability,
which is endangered by the corrosion of the reinforcing steel. Initially the steel bars are
covered by a thin oxide layer which is formed and maintained via its surface by a high
alkaline neighbourhood with pH between 12 and 13. The major contributor to the high pH
is Ca(OH),. Depassivation of the steel happens when Cl~ reaches the bars or if the amount
of Ca(OH), near the bars is reduced by reaction with CO, - the carbonation, leading to
pH well below 9. At a very general level, the C'l”- scenario is pre-dominant under marine
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conditions, whereas carbonation is dominant under atmospheric exposure and humidity
between 0.4 and 0.7. Moreover, there is some interaction between the two mechanisms -
with respect to chloride threshold levels and chloride ingress.

This note is a continuation of Ref. [9], in which the concept of a moving carbonation zone
and a moving carbonation interface has been introduced and discussed. In the present note
we introduce the concept of two reaction zones - one near or at the so-called carbonation
front, the second one behind from the first, following the carbonation front.

The aim of this note is to show that this way of modeling captures the typical features
of the Ca(O H)y-carbonation process such as the experimentally verified reaction zone and
the fact that after some initial carbonation (in a possibly very narrow reaction zone) the
carbonation degree increases gradually until it reaches its maximum.

Experimental results of an accelerated carbonation experiment (ace) will be used for veri-
fication of the model.
The main results are summarized in section 5.5.

2 The two-reaction zones model. Introduction

2.1 Generalities

Experimental observation yields the following two typical phenomena during carbonation
processes in concrete samples: The concrete sample, 2, can roughly be divided in three
regions - the uncarbonated part {2y, a partially carbonated part €, and an (almost) com-
pletely carbonated part 2;;. The first part is characterized by the complete lack of carbon-
ated substances, the last part contains up to the maximally possible amount of carbonates
and in the middle part the concentration of carbonated substances might increase over time.
The bulk of the initiating carbonation reaction seems to take place in a very narrow layer
Q. C Q2 adjacent to the uncarbonated part 5. In most cases this initial reaction does
not consume all carbonatable products due to the fact that there may not be a sufficient
amount of C'O, to carbonate everything or because some of the carbonatable products are
initially encapsulated (which is just a synonym for not yet being available for reaction) and
become available for carbonation only after some time. Fig. 1 depicts the geometry of the
situation. Fig. 3 depicts possible choices for modeling areas 2 in the sample in Fig. 1.

Fig. 5 shows possible scenarios for the advancements of the carbonated zone, the reaction
zone and the uncarbonated zone.

Note: In Fig. 5 proportions do not correspond to reality - which is more like

width of Q(t) < width of Qy(t) < width of Q(t).

In this note we choose the time scale such that ¢ = 0 corresponds to some time 7 > 7 in
Fig. 5, i.e. in the present situation there is initially a (possibly very small) carbonated part
21(0). The reference figure, depicting the initial geometry, is Fig. 6.
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Figure 1: Cross section of a circular cylindrical concrete sam-
ple & undergoing carbonation. Atmospheric COs and water
(humidity) enter & and react with the carbonatable products
in &. A relatively sharp reaction zone €, divides the uncarbon-
ated part Q9(¢) and the rest 4 (¢) of &. Carbonation continues
in Q(t) and, to a lesser extent, in Q4(¢). I'(¢) is a curve in
the center of Q. which might serve as a substitute for the reac-
tion zone 2 (cf. Ref. [9]). All regions change with respect to
time ¢. In particular ;(¢) grows and I'(¢) moves inwards. The
geometrical proportions are exaggerated.

2.2 Specifics

COy enters 2 from the outside through the exterior bounadry I'c,;, moves in the air-filled
parts €2, of the pores, enters the water-filled parts €, of the pores and reacts there with
Ca(OH)y(agq). The reaction is simplified as

Ca(OH)y + COy ¥ CaCOs + Hy0 (1)

and is modeled by two (possibly) different reaction rates - a volume rate 7g,, concentrated
on €;(t), and (a possibly different) volume rate ngr. concentrated on Q.(¢). No CO, enters
the zone Q(t) which is assumed to be untouched by COy. Some Ca(OH)s(aq) is initially
present to establish a saturated pore solution. It is consumed by the reaction (1) and can
be re-produced by dissolution or other mechanisms. Once CaCOj is produced by (1) it
precipitates instantaneously - in particular it is assumed that there is no CaCOs3(aq)-flux.
Water is initially present in entire concrete sample €. Its concentration is changed due to
exterior in- or outflow through I, as well as by the reaction (1). Once CO; reaches the
boundary T, (cf. Fig. 2 (b)) of Q, it ’tries’ to diffuse into €2;(¢). Ultimately one can this
consider as the cause of the forward motion of the reaction zone.
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Figure 2: Disproportionally magnified box B from Fig. 1 with
carbonation zone Q.(¢) and two candidates for the definition of the
"carbonation front interface’ I'(¢) (center-lined surface or inner sur-
face of Q(t)). (b) matters most here. The width of Q.(?) is e.

2.3 Notations

Dy, - effective diffusion coefficient for moisture in Q4 (¢),k = 1,2, ¢

Dy, - effective diffusion coefficient for COs(ag),

Dy, - effective diffusion coefficient for CO4(g),

Dy, - effective diffusion coefficient for Ca(OH)s(aq),

¢x - volumetric porosities in Q(t), k = 1,2, with ¢gs = 1 — ¢y,

Ow, Ga - water and air filled, respectively, fraction of the pores in Qi (t), ¢g + ¢y = 1,

Ner, Nere - L'(t)- and €. (¢)-concentrated surface- and volume-reaction rates for the reaction
(1),

Py - mass-transfer coefficient in Henry’s law, Qi - exchange factor in Henry’s law,

P aiss - factor in the dissolution law for Ca(OH),, @ ,Ekeq - equilibrium concentration
of Ca(OH)9, k =1,2,€ (cf. 3.2.3),

MGa0myy(s) (%) - initial (i.e. before dissolution starts) concentration at = of Ca(OH )(s)
which is awvailable for dissolution,

Shraiss - SWitching factor in the dissolution law,

K, k1 - rate constants arising in Arrhenius’ law.

hkdiss

3 The Model. Balance equations, interface, boundary
and initial conditions

3.1 Balance equations in Q(t),k=1,¢,2
The geometrical situation is depicted in Fig. 3, Fig. 4 and in Fig. 6. Formally, we attribute

to each region Q(t), k = 1,¢,2, individual source and sink terms (by reaction, dissolution,
precipitation and by exchange between wet and dry parts of the pores). These individual



Figure 3: On the left: Fig. 3a, on the right Fig. 3b. Cross sections of con-
crete samples. The modeling area () is a rectangle or an interval, respectively.
Interactions with the parts on top and below the bottom of 2 are neglected,
vertical changes are considered as constant. The whole setting is 1D. On the
right: The whole cross section of the sample is the modeling area €2, i.e. the
setting is 2D.

terms will be specified in section 3.2.

e Transport of CO, in the air phase of ;(¢) U Q. ()

od . :
a + d’lU(]a) = faHen'ry m Ql(t) U Qe(t)

e Transport and reaction of C'O, in the wet phase of Q4 (¢) U Q.(%)

oc
_C + d’LU(]E) = fEHem‘y + fE’reac in Ql (t) U Qf(t)
ot ——

small!

e Transport, reaction and dissolution of Ca(OH), in the wet phase of €2

oh . . :
E -+ dZU(jﬁ) = fﬁdiss + fﬁreac in €.

concentrated onQy (£)UQe (%)

e Transport, reaction, loss by precipitation of CaCOj in the wet phase of 4 (t) U Qc(?)

a(blwl_)w
ot

+ div(ji)w) = waprec + wareac on Ql (t) U Qf(t)'
=0

e The precipitated amount of CaCOj3 in Q(t) U (t) is obtained from

(4)

(5)
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Figure 4: Another way of choosing the modeling area Q for the cross section
of a cylindrical domain. Geometry of the carbonation process: () :=
reference modeling area section (Compare with Fig. 3). 5 := uncarbonated
part, Q¢ := carbonation-reaction zone adjacent to 1, I' := middle line (or
middle surface) of Q., ', and I'; - right and left boundary of Q¢, €1 and
Q19 are completely carbonated part and not yet completely carbonated part,
Q1 := Q91 U Qq9. All regions, except €2, are time-dependent.

8d)ls[;s
ot

+ div(jl_)s) = fl_)sprec in (4 (t) U Q6(t)' (6)
————

=0

e The total CaCOjs-content in €2 (t) U Q(t) follows from

b
a = fl_weac in Ql (t) U QE (t) (7)

e Transport and generation of HyO in 2

ow o .
wn + div(jz) = freac in Q. (8)

concentrated on 1 (t)UQ.(t)

3.2 Specification of reaction, exchange between dry and wet
parts of the pores, dissolution and precipitation

3.2.1 Reaction rates

The major purpose of this note is to study the influence of variations of the reaction-rate
setting for reaction (1) with respect to the model output (cf. section 5.4). As shown in
Ref. [9], the structure (not that much the size!) of the reaction rates influences the output
in a significant way. The fact that there is a (possibly very narrow) reaction zone, €2, does
not require two different reaction rates - one on €2, the other one on €2;. There is some



. Reaction Uncarbonated
Time

Zone part
e
a)0st<1, |
Qe Q1)
byt=r1, |
Q) Qu(ty)
Carbonated Reaction Uncarbonated
part zone part
e L |

() Q1) Q,(x) |

.
P

0 s(z) s(x)+ &2 L

Figure 5: (a) Initially the reaction zone €, is in direct
contact with the surface of the sample. (b) After some time
7o it reaches its maximal width e. (c) Q. advances into the

uncarbonated zone €23. Note: I'cyy=x = 0, I'1=s(1) — 5.
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Figure 6: Specification of the initial layers. €2, := 2(0),
Quo := D (0), k=1,2.

information available for the proper choice of a reaction rate - it is based on the analysis
of carbonated samples. To our knowledge there is no such information available which
refers exclusively to the carbonation-reaction zone €2.. The common approach is to use one
reaction rate for all of {2; and €).. ’One’ means in particular that all the constants entering
the rate formula are the same on {2; and €2, respectively. The tacit justification for this
is that the reaction mechanism (expressed by the structure of the formula) is the same.
Without that assumption one might be tempted to use different rates.

What is the ’right’ reaction rate for (1)? Basically, besides doing something completely
different, one has three options:

(a) Use reaction rates found by experiment;

(b) Use mass-action law type rates;

(c) Use variations of the mass-action law type rates.

We are not aware of a rich literature with respect to (a). Some authors use (b) - for
academic purposes. There are (at least) two more or less common variations as in (c): One



modifies the mass action law by changing the exponents on the concentrations (cf. (12)
below), another one (cf. (9)) tries to take the fact into account, that the humidity plays an
important role on how fast reaction (1) happens. Using separate rates has its price: One
needs more (experimental) a priori information to determine the corresponding constants.
The gain is more flexibility, in particular when one deals with very narrow 2.(¢) for which
we are not aware of experimental data.

In this note we employ the following two reaction rates ((9) and (12)):

Vfifafsfa  (on Q4(2)), 9)

FE,
volume reaction rate for (1) :=: ng, = a4 exp(—R—JO1
(cf. Refs. [41, 21] also cf. Ref. [46] e.g.), where o > 0 is a material constant, T is the
absolute temperature, Fy is an activation energy and A is a mean-collision number arising
in Arrhenius law, see details in Ref. [2], e.g. fi is a scenario-switching factor describing the
influence of relative humidity c,, := RH on the reaction

07 if 0 S Cw min
fl(cw) = g(cw - Cwmin)a lf Cyw min < Cy S 097 ) (10)
1, if09<e,<1

where ¢,min & 0.5. In the accelerated test described in Ref. [45], the relative humidity is
fixed to ¢, = 0.65. The other factors defining ng, are:

f2(b) == 1— (—E )Tl, r1 = const. > 0. bpa=const.!> 0. Cf. Ref. [41], one usually

bmax

considers r; = 1.
f3(¢) := 25 with cmax > 0.

fa(h) := " ry €]0,2] is the newly introduced factor. We remark that if r, = 0, then (10)
is the ansatz used by Wittmann et al (Ref. [21]), Saetta et al (Refs. [41, 42] ) and Steffens
et al (Refs. [46, 47]), e.g.

This implies the following production rate by reaction in §2;(¢):
Joreact = fwreact = —fereact = fhreact = Xay, () MRo (11)
For the reaction in the layer Q.(¢) we propose a simplified ansatz:
e—layer reaction rate for (1) :=: ng. = krr?®h’,p,q >0, Kgre:= rate constant, (12)

where Krpre = K A exp(—%). The case p = ¢ = 1 corresponds to the usual mass-action-
law hypothesis. This implies for the production rates by reaction in Q4 (¢) :

fgreace = fwreace = — [ereace = fﬁreace =X NRe- (13)

2:10)
The main reason for introducing p and g is the following: In section 4 we look into the limit
case € — 0. The mass-action law based rate is formally derived for reactions taking place
in volumes of dimensions ezceeding the mean free path length of the particles by a factor

'Within this frame we consider émax = AcO,out and Dmax = 0.08324(gcm 3).  bmax represents the
maximum amount of COs which may be consumed by reaction (the degree of hydration is supposed to be
about 0.8). Cpax is taken to be the concentration of CO5(g) from the carbonation chamber.



essentially bigger than 1. Clearly this is not the case if € is sufficiently small. Having no
theoretical alternative, we try to adapt to the situation by allowing p, ¢ # 1.

In order to study the influence of the reaction in Q(¢) vs. the one in Q.(¢), the total
production by reaction (1) will be a weighted sum of the individual production rates:

fEreac = 51X fE'reacl + 55X fEreacs 7E = E, c, E, w, 51@ > O,k = 1a€a

2:1() Qe () (14)
—_—— ——
concentrated on € (t) concentrated on Qc(t)

where a and k', (cf. (11), (13)) are experimental parameters (cf. Refs. [42, 46, 29])
available only in a certain range. Varying d; (k = 1,¢€) can be understood as varying d;«
and 6.k, respectively. In section 5 we will study the cases g—i < 1 and g—i > 1.

3.2.2 Exchange between dry and wet parts of the pores

In some approaches the reaction (1) is considered as taking place at the interface between
the water-filled parts of the pores and the dry part. Then there is no need for an extra
pde for COs(agq), since the interface approach leads at the pore level (!) to a sink term
for CO4(g) which can directly be coupled with the reaction rate (cf. Refs. [35, 43]). The
corresponding result is a modified production-by-reaction rate (at the macroscopic level)
incorporating reaction and the idea that the reaction takes place at the interface between
Qpy and €,,. If one thinks of the reaction (1) as taking place in (some part of) €2, then
one has to take the exchange of COy(g) = COy(aq) into account. Here this will be done
by Henry-law-type exchange terms:

faHenry = _fEHenry = _PH(QHE - E) on Ql(t) U Qg(t) (15)

3.2.3 Dissolution and precipitation

Dissolution of Ca(OH ), takes place in all of {2 as long as there is dissolvable Ca(OH ). If at
time ¢ = 0 all dissolvable Ca(OH ), is in solution, then the corresponding dissolution source
[hydiss» & = 1,2 vanishes. Otherwise, the simplest assumption is that of instantaneous (or
constant) dissolution, i.e. fg, 4iss = Qf, 4555 = const. In this note we model dissolution by
the deviation from equilibrium, i.e.

fﬁkdiss = Pﬁkdiss(ﬁk - Eeq), k=1,2, (16)

(cf. Ref. [28] for a thorough discussion about dissolution in concrete) as long as there is
material to dissolve. In order to simplify the notations, we consider that fj 455 = f.4iss ID

Q4(t) U Qe(2).

It is reported (cf., e.g., Ref. [11]) that precipitation of CaCOs(aq) is very fast. We simplify
this to instantaneous, i.e.

fgwpreck = _fgspreck = _fﬁreac in Qk’ k= 1’ €. (17)

Therefore, the net precipitation rate is

prrec = 51XQI(_)fEreacl + 56X fﬁreace in Ql(t) U Qf(t)' (18)

QE()



3.3 Transport

Transport is modeled by Fick’s law, i.e. if ug:=[F], denotes the concentration of species F,
then the flux of E is

Je = —DgVug, (19)

where Dy is the effective diffusion coefficient of species E in concrete. See, e.g., Refs.
(35, 36, 37]. We note that the effective diffusion coefficient D¢p, might be expressed as
Dco, = Do, faiff, where Do, is the effective diffusion coefficient of Oy in concrete and fgff
is a correction factor taking the influence of porosity, temperature and carbonation degree
into account (cf. Refs. [3, 46] or Ref. [42] for a simpler setting).

3.4 Two inner-interface conditions at I',(¢)

The uncarbonated area is separated from the rest of 2 by I',(¢). This is the place where CO,
might suffer a drop. Furthermore, we assume no COs-influx into 2,(¢) - since otherwise
there could be carbonation going on in €2(¢). This yields the following Rankine-Hugoniot
type boundary condition at x + $n(zx) € I',(¢) (cf. Ref. [9]):

jn(z + %n(m),t) n(z) = Bz + %n(x),t)é(ac,t) forall z € T(¢),t>0,E=¢,d  (20)

The time derivative $(x,t) denotes the speed of progression of the carbonation-reaction
layer Q(t) in the direction of the normal n(z) at x € I'(¢), measured at the middle line (or
surface) I'(t).

We note that, depending on one’s definition of the reaction zone €2, the choice

E(z + %n(aj), t) =0,¢,d (21)
might be reasonable, as opposed to ¢(z,t) = 0 for = € ['(¢) in the limit model (¢ = 0), where
the boundary condition (21) is not reasonable, since it implies that there is no reactant
available for carbonation at I'(t) = Q._o(¢). Relation (21) simplifies the flux condition to

€

Jje(r+ én(x),t) -n(z) =0forallz € I'(t),t > 0,E =¢,d (22)

A further condition will be needed to complete the model, since the position of I'(¢) is
simultaneously to be determined. Balancing the amount produced by carbonation and the
amount used for carbonation one obtains (cf. Ref. [9]):

s(t) =

€
— € (z + =n(x),t)dx for all x € I'(¢),t > 0. 23
Jo. @ e+ 5n(z), )dz /ne(t)nRF( 5"(®):?) () (23)

10



3.5 Boundary conditions at the exterior boundary, I'.;;, and at
x =1L

Boundary conditions on I';,; are needed for all species governed by a pde involving second
space derivatives, i.e. for ¢,d, h and W, respectively. If there is an oversupply of substance
(like for CO4(g) in accelerated carbonation experiments or for H,O under heavy rain), or
more generally, if one can assume that at a tiny (inner) surface part of the sample the
concentrations (or pressures, where applicable) are the same as outside, then one chooses
Dirichlet boundary conditions, otherwise Neumann-Robin conditions are the right choice.
If D > 1, the following setting covers both situations: We divide the boundary Ty (cf.

Fig. 3) in two disjoint parts ') and T'2) such that for E = ¢, d, h,W:

ext ext

E(z,t) = Agow(z,t) for x € Fgft),t > 0, (24)
je(z,t) - n(z) = pp(E(z,t) — Apout(z, 1)) for z € T £ > 0, (25)

(N)

where pr denotes a mass-transfer coefficient depending on species E' and surface I'y,; .

In the sequel we restrict ourselves to Dirichlet-boundary conditions at I'c;;. By symmetry
one has to require

je(z,t) -n(z) =0, at x = L. (26)

3.6 Initial conditions
The initial position of I'(¢), denoted by I'(0), and the initial concentrations

E(z,0) = Eg(z),z € Q, E=¢,d, h,w, (27)
as well as the initial amount of carbonatable Ca(OH)y(s) (before dissolution starts!),

mga(o H)s(s)» AT€ supposed to be known (cf. appendix).

3.7 The model (P)

Let € > 0. The balance equations in section 3.1, the production terms in 3.2, the interface,
boundary and initial conditions in 3.4 - 3.6 and the flux law in 3.3 will be summarized as
model (Py). The solution vector X := (b, ¢,d, h,w,T") will be called the model output. If the
setting is 1D, then I'(¢) can be identified by its position s(¢). In this case X := (b,¢,d, h, W, s)
will be called the model output.

11



4  The limit case ¢ — 0 (surface-concentrated reaction
+ volume reaction)

This short section is a purely academic digression. In Ref. [9] we discussed the case ¢ — 0,
for the following setting (a)-(c):

(a) There is no Ca(OH), in Q4 (t) and no COs in Qy(t),
(b) The carbonation reaction (1) takes place only in Q.(¢) (as a volume reaction) or
(c) Reaction (1) takes place only on I'(¢) (as a surface reaction).

Loosely speaking it turns out that (numerically as well as theoretically) (a) + (c) provides
the limit case of (a) + (b) as € — 0.

In some way there are two limit cases for ¢ — 0. One models the carbonation reaction as a
process taking place solely in the interior of §2;(¢), the other one considers (1) as a reaction
in ©;(¢) plus a reaction concentrated on I'().

In order to make this more precise, let X, := (b,,¢,d., h.,W;, s.) denote the solution of
model (Py) and assume for simplicity fggr, := 0, keep the structure and constants (with
the exception of €) of all material and process functions (porosities, diffusion coefficients,
the initial concentrations, the initial position of I', I'(0), and the boundary setting at I'ey;
as well as the the source and sink terms fg, with the exception of the reaction terms for
Qea fEreacea fixed.

Let AV be a control volume, S’ := (t,t + At] a time interval. [, fAVOQE(T) fEreacsdxdT
represents the amount of substance associated with the concentration £ which is produced
by carbonation during S’ in AV. Under reasonable mathematical assumptions such as
uniform boundedness of the concentrations entering fgreqcs, it can be shown that there is
a limit function fgreqr verifying

/ / fEreacsdxdT g / / fEreacrdxdr for all control volumes AV.
'+ JAVNQe(T) r JAVAT(r)

Interpreting fgreqer as a surface production density, it means that for small € the production

on 2. (here: reaction (1)) can be approximated by a reaction on I'. Note that, under mild

mathematical assumptions, this implies € fgreqee 20 fEreacr- This fact yields information on

the behaviour of the concentrations near I' of the species entering fgreqce, if one wants to
approximate model (Ps.) by a model with I'(¢)-concentrated reactions. Such an attempt
could be motivated by numerical advantages or others. The two cases mentioned above are
fEreacr = 0 (no production on I') and fgreqr # 0.

Note that the solution output X, := (b_g, ¢, d., h., W;, s¢) also converges to a solution X =
(b,¢,d, h,w, s) of the corresponding problem (Py._q) (with the volume rate fgreqce replaced
by the surface reaction rate fgreqr (cf. Ref. [9]).

5 Simulation results for model (Pz)

5.1 Simulation strategy

In our simulations we will address the following questions:

12



1. How does a change of the structure of the reaction rate (exemplified by p, g, 71,72 (cf.
(13)) affects the output?

2. How does a change of the width € of the main carbonation zone €. affects the output?

3. How does a change of the weight of the reactions in 2; and (), respectively, affects
the output? Recall: A way of weighing is given by the weights ¢; and J, in (15). We
will discuss several cases of § = g—i >1and § K 1.

4. Does the model reproduce some of the characteristics which are standard expectations
for carbonation such as the v/#-law for the penetration depth (for large t) or others?

5. Is the two-reaction-zones model (P,.) capable of reproducing experimental results?
More precisely: Let 1 = 0 in (13), fix all data except p and ¢ in (13) and « in (9).
Are there reasonable p, ¢, a such that the simulation-output of model (P) comes
close to measurement data?

5.2 Outline of the simulation of model (Pz)

Applying a fixing boundary technique [Landau (1950)] we transform the moving boundary
problem (P,) into a problem with fixed boundaries. The price of this transformation is
paid by obtaining space- and time- dependent coefficients in the transformed equations. By
means of the weak formulation of the transformed problem together with a (piecewise linear)
spline-based Galerkin ansatz, we obtain a system of 5n+1 ode’s which we solve. Section 5.4
contains several numerical tests and their evaluation with respect to the chemical-physical
mechanisms that usually appear in the carbonation of concrete-based materials.

5.3 Simulation procedure for (Px)

We make use of the change of variable

ma ifz e [O,S(t) + %]
ooy T elst) =5, L]

to transform the domains Q4 (t) U, (t) and Q(¢) into the intervals [l;, 1] and [0, 1], respec-
tively, where l;, = 1 — m represents the image of the point x = s(¢) — § through the
transformation (28).

After setting c(y,t) = &(x,t) — As, d(y,t) = d(2,t) — A\g, hi(y,t) = hi(z,t) — Mg, ha(y, t) =
ho(z,t) — A4, and b(y,t) = b(z,t) — A;, we homogenize the Dirichlet boundary conditions
(24) prescribed in section 3.5. Using transformation (28), we obtain a system of equations
on the fixed domain 0 < y < 1. Therefore, the model (Ps) (summarized in section 3.7) can
be rewritten as:

D, 5 (¢
Do 5(t)

. mc,yy + Wyc,y + fEHem"y + 51X[0,115)f6reacl + (56X[l16,1]féreacea t> 01 (29)
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Ddl : (t)

dat = 761, + 75?/ ) + f enrys t> 0’ (30)
(S(t) + 5)2 vy (t) + Y dH Yy
D, §(t
hl,t = L B 2h1,yy + ﬁyhl,y + ff_zldiss + 51X[0,l15)fi_urea.cl + 5€X[l1e,1]ff_zlreacea > 07
(S(t) + 5) o 2
(31)
Dy 5(t)
h’2,t = 2 hz, -+ —eyhg’ + f‘2 5583 t> 0, (32)
(S(t)—i-%—L)Q vy S(t)+§—L Y had
b, = 5(t) yby + 01X[0,11)f5 + Xt 1S3 t>0 (33)
it S(t) +§ Y [0,l1¢) Jbreacl eX[lie,1]Jbreaces .

Letting ¢(y,0) = A, d(y,0) = Ag, h1(y,0) = Az, ha(y,0) = A, and b(y, 0) = A, the initial
conditions in 3.6 transform into:

c(y,0) =0, d(y,0) =0, hy(y,0) =0, ha(y,0) =0 and b(y,0) = 0. (34)

The boundary conditions associated to the model (Py) (cf. sections 3.4, 3.5 and 3.6) become

c(0,t) =0, 5(’;16(; (1,8) = 5 () (c(1,8) + Xe) , t > 0, (35)
d(0,t) =0, —s(l;)—‘ﬂ:%d,y(l, ) =$(8) (d(1,8) + A9 ,t >0, (36)
hi(0,1) =0, S(g'iehly(l t) = (tﬁhz —hyy(1,1) and hy(0,t) = 0,¢ > 0. (37)

Interface condition (24) turns into

er(t) Mre(w, t)dz

(5 — |
5(t) L o (n(,t) + Xg,) do

where ¢ > 0, 0 <y <1 and

5(0) = so. (39)

To solve the system (29)-(39) numerically, we use its weak formulation and a (piecewise)
linear-based Galerkin scheme. Let {¢7'}7_, denote the standard piecewise linear splines on
the interval [0, 1] defined with respect to the uniform mesh [0, %, %, ..., 1]. That is, for a
fixed n € N— {0} and j =0,1,2,...,n, we introduce

men  f 1—|ny—j|, ifye[EL ) n(o,1]
s (y) = { 0, elsewhere on [0, 1].
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To obtain the Galerkin system, we set

My, 1) = 225 CP (Y (), d™(y, 1) = 325, D ()¢5 (y),

he(y, 1) =320 Hi;(Ovi(y), " (y,t) =320, B} ()¢} (y)
with £ =1,2,¢t> 0,0 <y <1 where
Cn(t) = [Cr (1), C3 (1), ... Co()]" R, D™(t) = [Dy(1), D3 (t),..., DR(t)]" € R,

(40)

Hp(t) = [Hy (1), Hp(8), - - H,(O)]" € R*, B™(t) = [By(4), B3 (1), - .., By (t)]" € R™.
The superscript 1" stands for transposition.

The Galerkin equations are given by

nemn _ De nem 5™ (t) nem o s™() n \ on
MMCP(t) =~ B KPCM D) + S PO () — ol (CR() + 2o e+

+Py (QuM™D™(t) — M"C™(t)) + Py (QuA% — A%) +

+51fg"eacl (t) + 66 g"eacc(t)’ > 0’

n yn — Dq n n 5™() nn _ 3" (t) n N\ on_
M"D™(t) = (sn(ml%)zK D™(t) + sy ie LED™(1) = 5557 (Dh(®) + Ag) e

—Py (QuM™D"(t) — M"C"(t)) — Pu (QuXj — AZ), t >0,

MPHPMt) = — 2 KTHP(E) + O L Hp (1) —

Dy, n B n
(sn(t)+5) 570+ < (HT, (1) + AR,) €+

(sm(+5)

+51ff_?ﬂeacl(t) + 5€ff?ﬂeace(t)’ t> 0,

. Dny
(sm(t)+5—L)2

Dp,

M"Hp(t) = —t
2(*) (sn(t)+§-L)

K" Hy (1) + D — [rHyp (1) —

s () +=—L (Hgn(t) + /\52) e —

+Shadiss PhadissM™H™(t), t > 0,

M"BM(t) = 5iyte LB (1) + 400 f et (1) + Ot puee(£) 8> 0,

(41)

Where g‘eacl (t) = fl_?ﬂeacl (t) = _fg:"eacl (t) and

Freaa® = e [ (faa = (700,00 + 2)") (0:) +20) (B0 )+ 3s)" 07 1),

maz Crmax

with r, > 0, ro € [0,2] and
& := ade ® f,(RH) (42)

is a material parameter (cf. section 3.2.1).
Also, we set [z uee(t) = [T reace(t) = = fireaee (1), Where

1
Sireace(t) = k/ﬂ ((y, 1) + Ao)” (B} (y, 1) + As,) " 9" (y)dy, t > 0.
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The interface relation (38) becomes?:

_p dn @) ) (B ) + Ai) " dy

§™(t) O+ ) d : (43)
where t > 0,p, ¢ € [0, 2], and
§(0) = so > dio + % > 0. (44)
dio denotes the width?® of the initial layer {2;5. See the reference picture Fig. 6.
The initial conditions are
c"(0) =0,D"(0) = 0,H}(0) = 0, H}(0) = 0 and B"(0) = 0. (45)

Remark 1 The matrices M", K" ¢ R+Ox(n+1) - [n ¢ Rexn apd e, e", A2\ € R,
n € Nyn > 1 are given by

1 1
M), = / S ()dy, (K™ = / S W)y, i, =1,2,. . 1,

1
L] = / PR () dy, 65 = 1,2,
0

and
e'=[1,0,...,0, 0", e=[0,0,...,0 1",
oy L 11T/\n_/\_11 117"
ey o T My o

The stiffness matrix M™ is sparse, symmetric, positive definite and diagonally dominant.
We note that cond(M™) = 3.9938 for n = 32 and cond(M™) = 3.9993 for n = 100. We used
MATLAB routine ode15s to integrate the system of ode’s (41), (43) with the initial values
(44), (45).

2The factor k = ail (k is given in Ref. [29]) accounts for the effect of the variation of exponents p, g on
the carbonation rate constant k. Since we are not aware of experimental data for such effect, a (possible)
threshold value for this parameter is found numerically by variation of the value of an auxiliary parameter
aj; > 0. Once better measurements of carbonation rate constant are available, the parameter a; can be
identified.

3In the simulations we chose so = dio + § with djo = 107"
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5.4 Simulation curves
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Figure 7: (a) Profiles of CO2(g) in Q4(t) U Q(t). One observes that the exposure con-
centration of COz(g) was split via Henry’s law in the initial layer. CO: is strongly con-
sumed in Q(¢). (b) Profiles of CaOHy in Qo(t). (Dg,,k,o1,p,q,71,72,€) = (3.5,5 X

10%,102,2,0.5,1,1, 1) and § < 1.
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Figure 8: Carbonation penetration (in cm) af-
ter 9 weeks of accelerated testing. The graphs
were obtained varying 61 = %Q,%Q,%Q,%Q,%, where
by = 10_5(56. (k,Ddl,p,q,al,rl,rg,e) = (5 X
10%,3.5,2,0.5,10%, 1,1, 135) in the case 3= > 1.
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Figure 9: CaCOj3 concentration in Q4(t) U Q.(t)

after 9 weeks of accelerated testing. One ob-
serves that after each time interval (7 days) some
calcium carbonate is produced. This production
stops when all available Ca(OH)s in Qi(t) U Qc(2)
is consumed. Here (k,Dy,,p,q,01,71,72,€6) = (5 X
10%,3.5,2,0.5,102,1, 1, 135) and 3= >> 1.
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Figure 10: CaCOs3 concentration in 4(¢)
UQ(t) after 9 weeks of accelerated test-
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One can remark smoothing effects produced on the
concentration profiles by the introduction of an artificial
diffusive flux of CaCOj3(aq) with D,, = 10~
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Figure 15: Carbonation penetration (in cm) af-
ter 9 weeks of accelerated testing. The graphs
were obtained varying € = 55,55, 750> 150> 300-  Hlere
(k,Dg,,p,q,01,71,72) = (5 x 103,3.5,2,0.8,10%,1,1)
and g—i > 1. One observes that the bigger the € is, the
faster the speed becomes. € = == leads to numerical
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instability.
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Figure 16:  Carbonation penetration (in cm) after
9 weeks of accelerated testing. The graphs were ob-
tained varying ro = 0,0.5,0.75,1,1.5. The blow up
appears when ro = 1.5. (k,Dy,,p,q,a1,71,€) = (5 X
10%,3.5,1.8,1.5,10%, 1, 135) and & > 1.
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5.5 Summary and conclusions

5.5.1 Interpretations of the simulation results

1. The model shows several general characteristics one might expect:

(a)

(b)
(c)

Penetration-depth curves exhibit a near t'/2-behavior for large ¢ (cf. Fig. 8,
Fig. 13 - Fig. 16). Note: In the context of accelerated carbonation 6 to 9 weeks
is large!

COy-curves correspond to results known from other models.

A large C'a(O H)s-concentration gradient in €2, near €2, can be observed (cf. Fig.

7 (b)).

2. The model shows effects based on the two-zone- and moving-boundary setting:

(a)

(c)

The (example of) Ca(OH )y-concentration profiles over several weeks (cf. Fig. 7
(b)) shows the effect of an accentuated (0 > 1) influence of the reaction in §2..
Although the model provides for an (indefinite) re-production of Ca(OH ), by
dissolution, the consumption due to reaction (1) is much stronger than in €2;.
This effect can be controlled quantitatively by the weighing parameter §.

One of the motivation for the introducing a two-reaction-zones model has been
the experimental observation, that after a fast increase of the carbonation degree
near the front a slow (with respect to time) gradual increase occurs in €2;. This
behavior of the model output is shown in Fig. 9 - Fig. 12, Fig. 17 and Fig.
18. A conjecture is, that the speed of this increase can be controlled by an
appropriate (but not yet known) combination of §; and J. and the size of the
reaction constant for the reaction on €.

The interplay between the two reaction zones is reflected by the (slight) increase
of the CaCOj3 curve in the main-reaction zone Q. if § > 1 (cf. Fig. 9 - Fig. 12).
For § < 1 one obtains a slight decrease in Q. (cf. Fig. 17 and Fig. 18).

3. A classification for the behavior of the penetration-depth curves with respect to p, g, r1
and 75 (cf. introduction of the reaction rates in (9), (12)) is open. In particular, one
needs more information on which of these parameters are the more relevant ones. For
a comprehensive model possibly modeling the carbonation of C'SH-phases, too, an
aproach using too many parameters will be useless due to the lack of data to fit these
parameters.

By a mere variation of p,q,r; and ry, respectively, one obtains a large variety of
carbonation-penetration depth curves and concentration profiles (cf. Fig. 8 , Fig. 13
- Fig. 16).

5.5.2 Conclusions

The two-reaction-zone model presented in this note shows several of the major character-
istics expected from a carbonation-prediction model (shape of the curves, magnitude of
the curves for real-material data). The model output is stable with respect to most of
the parameters. The large variety of penetration-curves under a change of some of the
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reaction-rates parameters indicates the necessity of a reduction of the number of reaction-
rate parameters. Moreover, the introduction of two reaction zones (with possibly but
not necessarily) different reaction rates allows a more detailed analysis of the carbonation
behavior near and far from the reaction front and how this behavior can model-wise be
controlled.

6 Appendix

Quantity  Definition Dimensions Value/range®
Dy,, D, Effective moisture diffusivities, Refs. [46, 26] cm? day™" (0.9, 90]

Dy, Effective Ca(OH )q(aq) diffusivity, Ref. [35] cm? day='  0.864

D, Effective COy(aq) diffusivity, Ref. [11] cm? day™'  [0.62,6.2]
Aw; Initial values of moisture ¢ = 1,2, Table 5 g ecm™3 [0.061,0.123]
g Initial concentration of COy(g), Ref. [45] gcm™3 58.92 x 1074
Ap Initial value for CaCO3 g cm™3 0

Y3 Initial value for Ca(OH)s(aq), Ref. [26] gem 3 775 %1073
S0 Initial position cf. Fig. 6 cm 10°°

2L Length of the observed slab, Ref. [45] cm 10

o1 Porosity of non-carbonated concrete, Ref. [26] - 0.15

b9 Porosity of carbonated concrete, Ref. [26] - 0.13

Qu Exchange term in Henry’s law, Refs. [35, 6] - 0.8227

Py Mass transfer coefficient of COy(g) in pore water, Ref. [6] day ! 35760

kr Mass transfer constant of CO4(g), air to water, Ref. [6] cm day ! 7

Prrgiss Factor in the dissolution law, k£ = 1,¢,2 day™! ﬁ

% Surface area to volume ratio, for air, Ref. [6] em™! 10*

% Surface area to volume ratio, for water, Ref. [6] cm™! 10*

Table 1: Numerical data for several parameters and input variables.

%The threshold values introduced in this table are taken from the literature. We use numerical
ranges and not precise values since we are not aware of measurements for these parameters within the
ace in Ref. [45].

Quantity  Definition Dimensions Value

R Gas constant, Ref. [13] mol~!' K~ atm 8206 x 107°
H Henry’s law constant for CO,(g), Ref. [36] mol m~3atm™!  34.2

Muy,o Molecular weight of water, Ref. [13] g mol™! 18

Mco, Molecular weight of CO,, Ref. [13] g mol™! 44

Mcaco,  Molecular weight of aragonite/calcite, Ref. [13] g mol™! 100.087
Mcaom), Molecular weight of Ca(OH )2, Ref. [13] g mol™! 74

pcaom),  Density of Ca(OH)s, Ref. [13] g cm™3 2.24

PCaCOs Density of CaCOjs (calcite), Ref. [13] gcm™? 2.71

Table 2: Useful physical and material constants.
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Quantity Definition Dimensions Value

w/e Water:cement ratio - 0.60
a/c Aggregate:cement ratio - 5.1429
e Cement density, Refs. [45, 20] g cm™3 3.15
Pa Aggregate density, Ref. [45] g cm™3 2.7
PH,0 Water density, Refs. [45, 20] gcm 3 1

Pep Cement paste density (CEM I 0.60), Ref. [45] gcm™3 1.7439
PCa0 Calcium oxide density, Ref. [13] gcm3 3.34

Table 3: Material characteristics of the concrete sample.

Portland cement (CEM I) RH (%) @ (kg/m?)
Si0; 20 0 0
AlyOy 6 50 42
Fe,0s 3 60 54
CaO 63 70 68
MgO 1.5 80 84
SO 9 90 110
NasO and K,O 1 93 120
Others 1 95 130
Loss on ignition 2 Table 5: Material data for con-

Insoluble residue 0.5 crete showing the relation between

Table 4: Composition (mass frac-
tion %), cf. Ref. [27].

relative humidity RH and moisture
content w, cf. Ref. [1], III-4 . See
also Fig. 4 in Ref. [22].
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