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Abstract. The numerical simulation of all steps of the production of a steel workpiece is nowadays a widely used
tool for understanding and optimization of such processes. The transformation of austenite into ferritic phases is an
important feature of heat treatment of steel. Good models for the non-isothermal phase transition are a necessary
prerequisite for various other modeling steps. We evaluate some of the existing algorithms based on the isothermal
Johnson-Mehl-Avrami model and compare their performance in the case of non-isothermal phase transitions with
experimental data for steel 100Cr6 with exponential and linear cooling. The investigations presented here are part of
a special research project on distortion engineering (SFB 570 at University of Bremen).

1. INTRODUCTION

The transformation of austenite into ferritic phases is an important feature of heat treatment of steel. In the
literature various models for a large variety of cooling curves can be found. We consider here models based
on the Johnson-Mehl-Avrami equation. While originally describing an isothermal transition, modifications
exist for the description of the phase transition during a heating or cooling process. Commercial finite element
packages for the simulation of problems with thermo-elasticity and -plasticity with phase transitions need
such models for the description of the (then local) evolution of phase fraction distributions. Unfortunately,
there is not yet a satisfactory model for a general cooling process, but parameters have to be adjusted for each
special cooling. In practice, cooling curves might differ essentially from exponential ones. Oil-quenching
serves as an example for this behaviour, where the heat-transfer coefficient exhibits a distinctive maximum
at 400-600°C. In this article, we want to investigate the possibility to use adjusted parameters at least for a
range of cooling conditions.

We evaluate some of the existing transformation models for steel 200Cr6 (SAE 52 100) under various
cooling conditions. We want to consider here only the case of a single phase transition from austenite to
pearlite, by restricting ourselves on the temperature range above 500°C. The transformation to martensite
will not be considered here, because it is usually well described by the Koistinen-Marburger equation [8].
Further references can be found in [13, 14].

The investigations presented here are part of a special research project on distortion engineering (DFG
grant SFB 570 at University of Bremen), where different production steps of steel workpieces are closely
investigated for a number of model applications [4]. The steel considered here, 100Cr6, is one of two steels
examined in the SFB research projects. Good models for non-isothermal phase transitions are a necessary
prerequisite for various other modeling steps.

2. PHASE-TRANSFORMATION MODELS
The isothermal diffusion controlled transformation of austenite, e.g. formation of pearlite and bainite, can

be well described by the Johnson-Mehl-Avrami (JMA) equation, introduced by Johnson and Mehl [7] and
Avrami [1], which gives a formula for the average phase fraction p(t) at time ¢,
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Here, p is the equilibrium phase fraction (of pearlite, e.g.), 7 is the time scale, and the exponent n determines
the phase transition rate. All these parameters depend on the temperature 7", where the phase transition takes
place. For fixed T, these parameters can easily be determined, for example from isothermal dilatometer
experiments, with a relatively high accuracy.

The same phase transition rates are described by the differential version of the JMA equation, an
ordinary differential equation (ODE), where the transition rate does not explicitly depend on the time ¢ but
only on the current phase fraction p(t)

p(t) = Frmalp(t),T) 1 (2)
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p(to) = po.

For an arbitrary initial value 0 < py < p, the solution of (2) fulfills p(¢) € [0, p] for all ¢ > ¢y. For py = 0,
the solution is constant p(¢) = 0. A transition of phases is reached only for an initial value p(¢¢) = py > 0.
A choice of p(0) near 0 leads to a good approximation of the JMA solution (1).

On a large time scale, phase transition describes a relatively fast transition between two stationary states
p = 0and p = p. Such a problem is called ‘stiff’, and special numerical methods are needed for a stable
approximation of the solution, usually methods with implicit time discretization. Here, we are interested in
a time scale, where not only the asymptotic behaviour but also the transition itself is accurately resolved.
On this scale, where time steps of the discretization are small enough, also explicit methods are stable and
can be used to solve the ODE problem. We use here the classical routines of Shampine and Gordon [11] for
the solution of ODE initial value problems.

2.1 Models for non-isothermal phase transitions

While the JMA equation was originally derived to describe an isothermal transition, it is often also used for
non-isothermal phase transitions in a cooling environment. Especially, commercial finite element packages
employ this model. Besides that, different approaches exist which are not based on the JMA equation, for
example by Leblond and Devaux [9], but will not be considered here.

The simplest possible treatment of the non-isothermal case just uses the differential IMA equation (2)
with a given time dependent temperature 7°(¢),

p(t) = Fimalp(t),T(), t>to, (3)
p(to) = po,

with temperature-dependent parameters p, 7, n given from the corresponding isothermal transition. For very
slowly changing temperatures, this approach describes reality relatively well.

A slight modification is needed in case when the equilibrium phase fraction p(7'(¢)) may be decreasing
in time. Then it may happen that the current phase fraction p(t) is already larger than p(7'(¢)), and the
formula (3) does not make sense because the argument of the logarithm is negative. In this case, set p(¢) = 0.
This choice is appropriate for a monotone phase transition in a decreasing temperature environment, where
no inverse transition, back from pearlite to austenite, is possible.

A numerical method for the approximate solution of this problem was described by Hougardi and
Yamazaki [5]. During small time steps, the temperature is considered locally constant, allowing the use
of the explicit formula (1) for the solution on the small time interval. Thus, the method works even with
an initial value p, = 0. When the time step size converges to zero, the solution of Hougardi’s algorithm
converges to the solution of equation (3). A modification of this algorithm, introduced by Denis [3],
combines Hougardi’s algorithm with Scheil’s rule [10] for incubation, nucleation and initial growth of
grains in a non-isothermal environment, by determining a time ¢, for the generation of an initial phase
fraction pg > 0 by Scheil’s rule, and using Hougardi’s algorithm (and thus equation (3)) for time ¢ > t.

Unfortunately, the simple approach (3) does not give satisfactory results in the case of high cooling rates.
Experiments show that the transition rates are different than predicted by this model. In order to describe
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such a situation in a phenomenological way, it is assumed that a more correct model for the non-isothermal
phase transition is an ODE like

p(t) = F(p(t), T(t), T(t)). (4)
with

F(p(1),T,0) = Fyaa(p(t), T). (5)
As such a function F' is not known explicitly, different multiplicative approaches for linearizations of F
around F'yyr4 are applied in order to get simple variations of the JMA equation. In the commercial finite
element package SYSWELD [12], a linearization

Ar F(p(t),T),T1) = f(T(t) Frualp(t), T(t)) (6)

can be used. For compatibility with (5), the condition f(0) = 1 follows. Hunkel et al. [6] introduced a
linearization

B:  F(pt),T),T)=1-gTW)T{) Frualp(t), T(t)). (7)
For both approaches A and B, values of functions f or g are not known explicitly, but have to be determined
by comparison with experimental data. _

For a single cooling experiment with strictly monotone temperature 7°(¢) and cooling rate 7°(¢) (like in
the case of an exponential cooling), a one-to-one correspondence of time ¢ and temperature (and cooling
rate) is given. Thus, it would be possible to calculate values of f or g when the phase transition rate p(¢) is
known. Such a direct experimental evaluation of parameters is not possible when the cooling rates are not
strictly monotone (for example in case of constant cooling), or when a model for the application to different
cooling rates is needed.

Additionally, simple expressions with only few parameter values for f or g are most welcome, in order
to compare functions for different (or a range of) coolings or even different materials.

3. EXPERIMENTAL DATA

We base our investigation on data from dilatometer experiments with exponential or linear cooling profiles.
Data sets from the dilatometer consist of discrete times ¢; and corresponding measured sample lengths L;
and temperature values 7;. The temperature is considered to be prescribed by the experimental setup, so
the release of latent heat by phase transitions is neglected here. In order to derive experimental values of
the phase fraction, we assume a linear mixing rule for the thermal expansion for pure austenite and pearlite
materials. Let L4(7T) and Lp(T") denote the corresponding length of a sample of austenite or pearlite at
temperature 7', then the mixing assumption for a pearlite fraction p (and austenite fraction 1 — p) reads

L(T) = pLp(T) + (1 = p) La(T), (8)
and the pearlite fraction can be calculated by

_ L(T) — La(T)
T Lp(T) ~ La(T) ?

For a purely thermo-elastic material without phase transitions, the length varies linearly with temperature
changes by thermal expansion. Such a behaviour could be assumed for the pure phases austenite and
pearlite, and the thermal expansion coefficient could be calculated from the experiments by investigating
only the temperature ranges, where no phase transition takes place. Unfortunately, the experiments do not
show a purely linear behaviour, and additionally do not give the same coefficients for different samples
(of the same material). Thus, is is not possible to use a common coefficient for different experiments.
Figure 1 shows relative length changes (in percentage of the initial sample length at room temperature)
over temperature from two dilatometer experiments, together with 1st and 2nd order fits to the single phase
thermal expansions. In the right part, the austenite phase fraction 1 — p is shown, evaluated as shown above
with formula (9).
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Figure 1: Data from two different dilatometer experiments with exponential cooling, ¢g5,100=1000s (top) and 500s (bottom).
Left: Experimental expansion (measured in pm) over temperature (in °C) and fits to pure pearlite and austenite expansions.
Middle: Zoom to transition. Right: Austenite phase fraction over temperature.

Parameters 7(7") and n(T") for the JMA equation were determined from isothermal dilatometer exper-
iments with samples of the 100Cr6 steel under consideration. Usually, this can be done only for a few
isothermal experiments with different temperatures, giving only a few discrete values of 7 and » which have
to be interpolated in an appropriate way. Here, we use a representation by functions

B Q P B : .
7(T) = 79 exp (f) exp (T(T—T)?)’ n(T) =no+nT (piecewise), (10)
with T" in °K, where the numbers 7y, P, Q, Tp, ng, n, Were chosen to fit a set of isothermal experiments. The
formula for 7 reflects the idea that the time scale is reciprocally proportional to the density of nuclei and to
the diffusion coefficient. In the essential temperature range between 580°C and 720°C, the parameters lead
to an isothermal TTT diagram with 1% and 99% lines as shown in Figure 2.
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Figure2: Isothermal TTT diagram with lines of 1% and 99% pearlite phase fraction.

4. RESULTS

We compare the experimental data with phase fractions calculated with five different models, the original
time dependent JIMA model (3) approximated with an ODE solver, Houagardi’s discretization, Denis’ model,
and the two JMA modifications described above, model A (6), and model B (7).

For the two modified models A and B, the parameter functions f(7") and ¢g(7') are generated by an
optimization process over several experimental data sets. Both functions are given by interpolation of
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discrete values f(Ti),z' =1,...,Norg(T;),i =1,..., M. These values are optimized such that the sum
of squared errors between experimental and numerical phase fractions for relevant time intervals over the
set of experiments is minimized. For the optimization, we use the classical minimization routines of Brent
[2]. As such methods are only able to find local minima near the start point, some appropriate initial values
have to be chosen by hand.

4.1 Exponential cooling

First, we present results for exponential cooling conditions. We consider four experimental data sets with
coolings from 7" = 850°C to T" = 100°C in tg50/100=2000s, 1000s, 500s, and 300s. These correspond to
ts00/500 durations around 413s, 206s, 103s, and 62s. The corresponding austenite phase fraction curves over
temperature are given in Figure 3 (because of different time scales, phase fraction curves over time would
not give comparable information).
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Figure 3: Experiments: Austenite phase fraction a = 1 — p over temperature for four different exponential coolings with
t850/100 :20003, 10005, 5005, and 300s.
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Figure4: JMA model (3): Austenite phase fraction over temperature.
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Figure5: Denis’ and Hougardi’s models: Austenite phase fraction over temperature.

Without any correction, the JMA model (3) applied to the exponential temperature data leads to
austenite fractions as shown in Figure 4. While the unmodified model is able to predict the general
temperature range (and time) where the transition takes place, usually the experimental phase transitions
start earlier than predicted, at higher temperatures, and finish later, at lower temperatures. Figure 5 shows
results of Hougardi’s and Denis’ algorithms. As expected, Hougardi’s discretization gives nearly the same
result as a general ODE discretization. As the constant ‘low’ temperature 7T°(¢,,) is used during the time



step (¢, — 1,t,), the transition starts a bit ahead of the ODE model. As result of using Scheil’s rule for the
incubation time, Denis’ algorithm delays the transition for a short time, but then gives a similar shape for
the transition profile like the JMA ODE model and Hougardi’s algorithm. Mean square errors for the three
approaches are listed in Table 1.

Table 1: JMA, Denis’ and Hougardi’s models: Mean square errors.

2000s 1000s 200s 300s
JMA || 0.03751 | 0.02709 | 0.06265 | 0.08768
Denis || 0.03726 | 0.02678 | 0.05714 | 0.07918
Hougardi || 0.03185 | 0.03731 | 0.07353 | 0.09983

A useful modification of the JMA model should increase the transition rate in the beginning and slow
it down near the end of the phase transition. For model A this would mean that f(7') > 1 during initial
transition (while the cooling rate |T°| is larger for an exponential cooling), and f(7") < 1 for smaller |T'|.
Similarly, for model B, (1 — g(7")T") > 1 initially and (1 — ¢(7")T") < 1 later, or, as 7" < 0 during cooling,
g(T') > O initially and ¢(7") < 0 later. When the optimization procedure is applied to a single experimental
data set, it returns parameters as expected, at least generally speaking. As the cooling rates during the phase
transition for the four experiments do not overlap, the f parameters are given on separate 7" intervals. On
the other hand, the temperature ranges for g do overlap, as is clear from the previous pictures. Table 2
gives mean square errors for a reasonable small number of parameters (around 10) for each experiment.
As expected, both models give similarly reduced errors. The experimental data from slowest cooling is
especially hard to model. The left part of Figure 6 shows resulting austenite phase fractions for both models.

Table 2: Modified IMA models A and B, parameters optimized for single experiments. Mean square errors.

2000s 1000s 200s 300s
Model A || 0.01166 | 0.00174 | 0.01160 | 0.00441
Model B || 0.01273 | 0.00287 | 0.00612 | 0.00385

Table 3: Modified JIMA models A and B, parameters optimized for full set of experiments (first two lines), all but first (middle
two lines) and two fastest experiments (bottom two lines). Mean square errors.

2000s 1000s 200s 300s
Model A, opt 2000s-300s || 0.02751 | 0.00785 | 0.01002 | 0.01011
Model B, opt 2000s-300s || 0.03126 | 0.01983 | 0.01643 | 0.00779

Model A, opt 1000s-300s 0.00710 | 0.00999 | 0.00949
Model B, opt 1000s-300s 0.01966 | 0.01627 | 0.00652
Model A, opt 500s-300s 0.00966 | 0.00856
Model B, opt 500s-300s 0.01011 | 0.00680

Next, we try to derive acommon set of optimized parameters for all four experiments, by minimizing the
square errors over all four curves. We used 16 parameters values for model A and 15 parameters for model
B. The right part of Figure 6 shows resulting austenite phase fractions. Again, especially the slowest cooling
experiment is hard to model, see top two lines in Table 3. For the case that this experiment is not considered,
but only the other three, results are shown in the middle two lines. Finally, when only the two fastest
experiments are considered, results are shown in the bottom lines. For each reduced set of experiments,
the optimization was started with initial values taken as the optimal ones from the optimization with one
more experiment. We see that model A is always performing better, mainly because the cooling rates from
different experiments separate, as mentioned before. Model B is performing worse, as temperature ranges
for different experiments overlap. But model B is improving when less experiments are used, indicating the
fact that optimal parameters for experiments with similar cooling rates do not differ very much.
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Figure6: Modified JMA models A and B with separate parameter sets (left) and common parameter sets (right): Austenite phase
fraction over temperature.

4.2 Linear cooling

Additional to the exponential cooling, we want to consider experiments with a constant cooling rate 7,
which results in a linearly decreasing temperature over time. We use dilatometer data from three experiments
with linear cooling from 850°C to 100°C in ¢g50,100=1000s, 500s, and 200s. Figure 7 shows the experimental
austenite phase fraction over temperature, Figure 8 the results from simulations with the unmodified JIMA
model. Again, as in the case of exponential cooling, the results from Denis’ and Hougardi’s algorithms do
not differ very much. Table 4 presents mean square errors from the three models in the top three rows.
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Figure7: Experiments: Austenite phase fraction over temperature for three different linear coolings with g5 /100 =2000s, 1000s,
and 200s.
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Figure 8: JMA model (left) and modified JMA models A and B with parameters optimized for single experiments (right):
Austenite phase fraction over temperature for three different linear coolings.

Again, we try to optimize parameters for the two JMA modifications, models A and B. Now, for the
linear temperature profiles, the cooling rates are constant for each experiment. As a consequence, there is
only one free parameter f(7') for model A for each experiment. For model B, the range of temperatures
is similar to the one from exponential cooling. It is clear that model B should be able to approximate
the experiments better, because of the availability of more free parameters. Mean square errors from both
models are presented in the bottom half of Table 4.



Table 4: Various models: Mean square errors for linear cooling experiments. Middle lines: Modified JMA models A and
B, separate parameters optimized for single experiments. Last line: Modified JIMA model B, parameters optimized for all
experiments.

1000s 200s 200s
JMA || 0.11457 | 0.05988 | 0.06710
Denis || 0.10738 | 0.05266 | 0.06112
Hougardi || 0.09112 | 0.03909 | 0.04484

Model A || 0.03817 | 0.02153 | 0.01500
Model B || 0.00310 | 0.00079 | 0.00166

| Model B || 0.08385 | 0.01351 | 0.00588 |

4.3 Summary

The results presented above show that the application of the “ordinary” JMA model to non-isothermal
phase transition does not lead to good correspondence with experiments. The same holds for Denis’ and
Hougardi’s algorithms. Modifications to the isothermal JMA model are necessary. Both modifications A
and B are able to approximate single non-isothermal experiments quite well, especially in the case of an
exponential cooling. For constant cooling rates, the results are not so well. Especially model A does not
have enough degrees of freedom in order to handle such situations.

A more thorough investigation is needed for more general cooling situations, for example oil quenching,
when the heat transfer coefficient varies substantially during the cooling process.
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