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Abstract

We examine a class of symmetric collocation schemes for the solu-
tion of nonlinear boundary value problems for unstructured nonlinear
systems of differential-algebraic equations with arbitrary index. We
show that these schemes converge with the same orders as one would
expect for ordinary differential equations. In particular, we show super-
convergence for a special choice of the collocation points. We demon-
strate the efficiency of the new approach with some numerical exam-
ples.

1 Introduction

In this paper we discuss the numerical solution of nonlinear boundary value
problems (BVPs) for systems of differential-algebraic equations of arbitrary
index. There are many possibilities to design numerical methods for the
solution of BVPs. We concentrate here on symmetric collocation methods.
For shooting methods, see [12] and references therein. Collocation methods
are well studied for ordinary differential equations, see [1], and also for
special classes of systems of differential-algebraic equations (DAEs), see [2,
3]. A well-known software for differential-algebraic BVPs is COLDAE [3], but
it is restricted to semi-explicit problems of index at most two.
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In this paper we study general nonlinear differential-algebraic BVPs

(b)  r(a(t),z@) =0, (1.1)

where F : [t,{] x D, x Dy — R?, 7 : D, x D, — R? with D,,D; C R?
open and d the number of differential components of = (we give a precise
definition below).

Currently no collocation methods for such general differential-algebraic
BVPs are available, but in the linear case (i. e., linear F' and linear r), a
new class of symmetric collocation methods was recently presented in [13]
that exhibit the same convergence behavior as collocation methods for or-
dinary differential equations including superconvergence. The main idea
in [13] is based on the fact that by index reduction techniques we can dis-
tinguish between differential and algebraic equations and combines two sets
of collocation schemes, a GauB-like scheme for the differential part and a
Lobatto-type scheme for the algebraic part.

Here we generalize the results of [13] to the general nonlinear case. The
paper is organized as follows. In Section 2, we recall some preliminaries on
the theory of DAEs including the index definition that we are using. We
then formulate the collocation equations and show solvability for sufficiently
fine meshes in Section 3. Section 4 discusses how to realize the collocation
method and exhibits the results of a number of numerical experiments. We
then give some conclusions in Section 5. In the appendix we analyze a gener-
alized simplified Newton method that presents the basis for our convergence
analysis.

2 Preliminaries

For differential-algebraic equations, it is well-known that the solution may
depend on derivatives of (1.1a). In particular, differentiation of (1.1a) may
lead to hidden algebraic constraints on the possible states of the solution. It
is then clear that for a theoretical and numerical treatment of (1.1) we must
know the number of differentiations we must perform to obtain all algebraic
constraints that are present in the system. Assuming in the following that F'
and r are sufficiently smooth, we first introduce the so-called derivative array



functions (see [4, 5])

F(t,z, 1)
#F(t,z, &)

Fyt,z,&,...,z)) = , (2.1)

(4)F(t,z, )

obtained from (1.1a) by successive differentiation with respect to ¢. Note
that F, is treated here as a function from some subset of RET2n+1 ingo
REFD™  where the independent variables are denoted by (t,z,%,... ,a:(é"'l)).
In addition, we need partial derivatives of F; and other functions. We will
denote these by subscripts as in

_ 9 _ 0 el
Fyp = %Ffa Fé;i,...,m([+1) - [ %Fe WFE ] .

The following hypothesis will play a central role in the design and inves-
tigation of the collocation method that we present, see [9].

Hypothesis 2.1 There exist integers p, a and d such that for all values
(t,z,@,..., ) € L, with

]L,” = {(t,iE,i, . ,.’IJ(H+1)) € R(N+2)n+l | Fu(t,a;,w', o ’.,L,(/,L+1)) — O} 75 0
(2.2)
associated with F the following properties hold:

1. We have
rank F ;i) (7,25 W) = (u+ 1)n — a,

such that there exists a smooth matriz function Zs on L, with or-
thonormal columns and size ((u + 1)n,a) satisfying

ZAgFu;i,...,;c(#'H) =0 on L/,L-
2. We have
rank ZgFli;m(t’ €z, ‘fba . 7$(N+1)) = a,

such that there exists a smooth matriz function Ty on L, with or-
thonormal columns and size (n,d), where d = n — a, satisfying

2;Fu;$T2 =0 onlL,.



3. We have
rank Fy15(t, z, &, ..., z#+D) = d,

such that there exists a smooth matriz function Z1 on L, with or-
thonormal columns and size (n,d) satisfying

rank ZAmeflA”g =d onl,.

The minimal number x4 (if it exists) such that Hypothesis 2.1 is fulfilled
is called the strangeness index of F'. The numbers a and d denote the size of
the algebraic and differential part of (1.1a). See [9] for a detailed discussion
of this hypothesis and the strangeness index.

As usual in the investigation of computational methods for boundary
value problems, we assume that there exists a sufficiently smooth solution
of the given problem. In the context of (1.1) we therefore assume that there
exists a sufficiently smooth z* € C*([t,?], R") with

(a) F(t,z*(t),2*(t)) =0 for all ¢t € [¢,¢],
(b) F,(t,z*(t),P(t)) =0 forallt € [t,1], (2.3)
(€)  r@@*(1),2*(2) =0,
where P : [t,7] — R#+D" is some smooth function that coincides with &*
in the first n components. Sufficient conditions for the existence of such a
function P(t) can be found in [10, Theorem 3].
Since (¢,2*(t), P(t)) € L, for all ¢t € [¢,¢], Hypothesis 2.1 implies the
existence of matrix functions

Zy [T = R, Zy: [t 7] —» ReHDne oy g 7] — R (2.4)
as restrictions of Z1, Zy and Ty to the path (¢,z*(t), P(t)). These satisfy
() Zot) Fys (6,2 (1), P() =0 for all £ € [1,7],
(b)  Zo(t)TFup(t, z*(t), P(t))T2(t) = 0 for allt € [t,2], (2.5)
(c)  rank Z ()T Fy(t,z*(t),2*(t))To(t) = d for all t € [¢,1].
In addition, there exist smooth functions

Zé . [z’ﬂ N ]R(H-I—l)n,(u—l—l)n—a’ Ty : [Lﬂ N R(u—l—l)n,a’

TZI : [L ﬂ — Rn,a’ T{ : [Lﬂ — R(NH)%(MH)”—G, (26)

such that the matrix valued functions [Z}, Z], [T}, T1] and [T4, T5] are square
and pointwise orthogonal and, furthermore,

Zé(t)TFu;w',___,z(y.+1) (t,z*(t), P(t))T1(t) =0 for all ¢ € [t,1]. (2.7
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Using these functions we now consider the nonlinear system of equations
H(t,z,y) = 0 given by

(a)  Zy(t)" Fu(t,z,y) =0,

2.8
(b) Tt (y—P()=0. (%)
We then have that H(¢,z*(t), P(t)) = 0 and

! T z*
rauk H, (2" (1), P(9) = rauk | 200 Tt 67 (0, P10)

In particular, it follows from (2.7) that H,(t,z*(t), P(t)) is nonsingular.
Thus, (2.8) locally defines a function K according to

y = K(t,x).
Introducing the functions

(a) Fi(t,z,2) = Z1()T F(t,z,2),

2.9
(b)  Fa(t,z) = Zo(t)T Fy(t, w, K (t, 2)), %9
we have that the given solution z* of (1.1) also solves the DAE
F t’ 9 L = O’
(a) 1(t 2, &) (2.10)

(b)  Fy(t,z) =0.

Conversely, using the definition of K, it follows that every z € R" in
a neighborhood of z*(t) with F5(¢,2) = 0 not only satisfies the relation
Zo(t)TFy(t,z, K(t,z)) = 0 but also Z,(t)TF,(t,z,K(t,z)) = 0. Hence,
F,(t,z,K(t,z)) = 0 and = satisfies all algebraic constraints at point ¢ im-
posed by the DAE (1.1a). Equation (2.10b) therefore represents an explicit
formula for all constraints of (1.1).

If we linearize (2.10) along the given solution z*, then we obtain a linear

DAE y
0] 48] e
where
(a)  Ei(t) = Zi(t)" Fa(t, z* (1), 2*(1)),
(b)  Ai(t) = —Zi ()T Fy(t, z*(t),2*(t)), (2.12)
(€)  As(t) = —Z2(t) Fuw(t,2* (1), P(2)).



Here (2.12¢) follows from (2.5a). By (2.5¢) and the definition of T4, we have
that (omitting arguments)

By ] _ * ZIF:T, | _
rank [ A, ] = rank [ _ZIF,.T) 0 = n. (2.13)

It follows that the DAE (2.11) has differentiation index at most one. In
particular, it satisfies the assumptions of [13].

In this section we have given a brief introduction to the basic theory of
nonlinear systems of differential-algebraic equations as it was developed in
[9, 10]. In the next section we generalize the collocation scheme of [13] to
the case of nonlinear DAEs.

3 Collocation discretization

In the previous section we have derived in (2.10) a new representation of the
differential-algebraic system (1.1a). This representation has the advantage
that differential and algebraic parts are well separated. This allows, as in
the linear case of [13], to treat the differential and the algebraic part in a
different way.

For the development and analysis of collocation methods, it is convenient
to write the given boundary value problem as an operator equation. For the
choice of the correct spaces, we must not only observe that (2.10a) and
(2.10b) have different smoothness properties but also that the collocation
solution is supposed to be piecewise polynomial but globally only to be
continuous.

Consider a mesh

Tit=tg<t1<---<ty_1<ty=t, NEN,
hi=tiy1—t;, h ?:01,1.1.?1)\(17}3"’ h < J\leomllgiihlu (3.1)
where M > 0 is some fixed constant when we consider A — 0. We define
the spaces

(a) X=Cut,1,R")NCO[t, 1], R),

(b) Y= OURI,RY x O 1), B) N OO, B0) xRE,

where the subscript @ denotes that we have the stated smoothness only
piecewise with respect to the mesh with one-sided limits. This leads to an
ambiguity of the corresponding function values at the mesh points, which,
however, is not crucial in the following analysis.



If we equip the spaces in (3.2) with the norms

a z||x = max ||z + max max ||z(t
(a) =zlx temll ()l oo i nax 1{te[t“tm]ll oo}

(b) |[(f1, f20)lly = max { max ||fi(t)]lec} +

1= O N 1 te [tth—l

+ max 4+ max max S (¢ + 19|00,
max oD+ _gmae { max o0} + 0]
(3.3)

where #(t) with ¢ € [t;,%;4+1] and similar quantities denote one-sided limits
for t = t;,t;+1 taken within [¢;,¢;+1], then the spaces X and Y become Banach
spaces.

The BVP (1.1) takes the form of the operator equation

L(z) =0, (3.4)
with

@) L:X-Y,
Fi(t,2(t),2(t))
(b) z— Fy(t,z(t))
r(z(t), (1))
Since z* solves (1.1) according to (2.3), we have L(z*) = 0.
For the construction of a Newton-like method we will later need the
Fréchet derivative DL[u] of L at u € X, which is given by

(3.5)

(a) DL[u]: X =Y,
Fig(t,u(t), u(t))z(t) + Fuie(t, u(t), 4(t)2(t)
(b) =z~ Foua (b, u(t))z(?)
o (u(t), u(B) () + 7, (u(t), u(®) (D)

For linear DAEs, it has been suggested in [13] to use two different types
of collocation schemes for the differential and algebraic parts of the DAE.
In a similar fashion we introduce a Gauf-type scheme for the differential
equations and a Lobatto-type scheme for the algebraic equations. These
schemes are given by nodes

(3.6)

(@) 0<po < - <<,

(b) 0=o09<:--<or=1, keN, (37)
respectively, and define the collocation points
(@) tij=ti+hioj, j=1,...,k, (3.)

(b) sij =t +hijoj, j=0,...,k.
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Let P41, denote the space of piecewise polynomials of maximal degree k
(order k + 1) and introduce the finite dimensional spaces

(a‘) Xp = ]P)/H—l,ﬂ N CO([L ﬂa Rn)a

3.9
(b) Y, = RENd « Rk+1)Na o R ( )
Observe that dimX,; = Nkn + Na +d = dim Y.
Then we apply the collocation discretization given by
L.(zz)=0 (3.10)
with
(a) Lp:X->Y,,
Fi(tij, o(tij), #(ti5)) (3.11)

(b) T — FQ(Sij,.T(Sij)

r(z(t), z(t))
and we seek a solution z, € X,. For ease of notation in (3.11b) we have
omitted that the indices ¢ and j must run over all possible values, i. e.,
1=0,...,N—1,7=1,...,k in the first component and : = 0,...,N — 1,
7 =0,...,k in the second component. We will use this kind of abbreviation
in the remainder of the paper. We will also need the Fréchet derivative
DL[u] of the discretized operator L, at u € X, which is given by

(a) DLgu] : X — Y,
Fuyo(tij, u(tsy), iltig))z(ti;) + Fria(tiy, u(tiz), a(ti;)) (ki)
(b) =~ Fo(sij, u(sij))z(sij)
Ta (u(t), u(£))x(t) + ray (u(t), u(t))(?)
(3.12)
Note that we have defined L; on the larger space X and not only on X; C X.
Because of this inclusion, we use the norm of X also for X;. For Y., we take

the £oo-norm. Finally, we need the restriction operator

(a) Rp:Y— Y,

fi fi(tiz)
o [ £ e R | (3.13)

Observe that L, = R;L and DL,[u] = R;DL[u].

The aim of the following discussion is to show that if z* satisfies some
regularity condition that guarantees that z* is locally unique, then equation
(3.10) is solvable in X, at least for sufficiently small h. We will also show



that we obtain the same orders of convergence with h — 0 as in the linear
case [13].

To do so, we follow the lines of [1, pp. 222-226] where a corresponding
result is shown in the case of ordinary differential equations. In particular,
we consider the iterative process

g™ = g™ _ DL [2*] ' L (2™) (3.14)

and prove that under suitable assumptions it generates a sequence {z"}
in X; that converges to a solution of (3.10). Note that the iteration (3.14)
is only a tool for the theoretical analysis. It cannot be used as a numerical
method, since the value of the Fréchet derivative at the exact solution z* is
not available.

A typical convergence result for an iteration of the form (3.14) is given
by Theorem A.1 of the appendix. In the present context, however, we are
interested in properties of (3.14) for h — 0. Thus, we must consider families
of iterations (3.14) with the maximum mesh sizes tending to zero. For these
we must show that certain constants are independent of h. Unfortunately,
in the standard formulation of Theorem A.1 and its proof this does not hold
for the constants 8 and . The main task of the following considerations is
to replace the standard definition of 8 and -y by more appropriate quantities
and to show that then the crucial estimates in the proof of Theorem A.1 still
hold. Since the modified quantities will play the same roles as the original
constants [ and «y, we will keep the same notation.

We start our analysis by investigating DL, [z*]. For this we introduce
the linearization (cp. (2.12))

By (t) = Fip(t, 27 (), 27(t), O =rg,(a7(2),2"(1)),
Ai(t) = —Fi(t,2*(t),2*(t)), D =rg,(z*(1), 2" (1)), (3.15)
A2(t) = _F2;:v(ta$* (t))7
and hence we have that

(a) DL[z*]: X =Y,
Ey(t)o(t) — Avr(t)=(t)

0z | ) (310
Cz(t) + Dz(t)
and DL;[z*] = RyDL[z*]. Since we have assumed sufficient smoothness

of F, r and z*, all assumptions of [13] are satisfied for linear boundary value
problems that involve DL[z*]. To make use of the results developed there,
we need the following regularity property of z*.



Definition 3.1 A solution z* € X of (1.1) is called regular if the boundary
value problem
DL[z*|z =0 (3.17)

only possesses the trivial solution.

Throughout the remainder of the paper, we assume z* to be regular in the
sense of Definition 3.1. For linear systems in [13, Prop. 2.2] a character-
ization of regularity in terms of the data Fy, A;, A3, C and D has been
given.

The first step of our analysis of the iteration (3.14) is to construct a
suitable initial function 70 € X, to start the iteration. Note that due to [13]
the operator DL[z*] is invertible for sufficiently small h when we restrict
it to X,. Thus, there is a well-defined inverse

DL [z 'Y, - X, CX (3.18)

that satisfies
DL [z*]"'DL,[z*] = idx, . (3.19)

Lemma 3.2 For sufficiently small h, the linear collocation problem
DL;[z*|zr = DLy[z"]z* (3.20)
for z; has a unique solution ac?r € X, with
a2 — a*|x < CHF, (3.21)
where C is independent of h.

Proof. The operator equation (3.20) is the collocation discretization of the
linear boundary value problem

DL[z*|z = DL[z"]|z"

which possesses the solution z*. Applying the results of [13] shows that
(3.20) has a unique solution z € X, with
max ||z*(t) — 27 (t)]lo < Ch*
te(tf]
for sufficiently small h with C independent of h.
Due to the definition of || - ||x we also need an estimate for the derivative
@*(t) — #2(¢) on [t;, ;1] in order to prove (3.21). Observing that

™

By (tig) (&% (ti5) — £9(ti5)) = A1(tsg) (@* (ti5) — 29(ti)),  j=1,...
0= Az(sij)(«*(sij) — 29(si)), 7=0,...,k,

10



and applying Lagrange interpolation of z* — z0 at the points sij = ti + hioj
gives

k
z* Z( (i) Szl))Ll( ) + O(h*),
1=0
where i
T—0m
L = .
o(7) ml__[() p——
m#l
Since (di) = 0 on [t;,t;+1] it follows that the constant involved in
O(RF+1) does not depend on h. Thus, with L(7) = & L;(r), we have

= Aa(tij) Yo (" (su) — 2%(sa) ) Li () s + O(WF) =

[

)
)
= Sk (Aalsi) + O)) (" (su) 2<su>)L'<p])h +O(h) =
(0+0(m) - O(*)) - O(1) - O(h™) + O(1F) =

where all constants do not depend on h. Combining the estimates for z
and z, we have

E1(tij) | (. _
[ A;(t;) ] (" (ti;) — 32(ti5)) = O(R*).

Property (2.13) says that the leading matrix is invertible and has a bounded
inverse. Hence,

1% (57) — 2% (ti7) | < CHE,

possibly increasing the constant C. Lagrange interpolation of £* — 20 at the
points #;; gives

k
(0 - a0 =3 (¢ (4" () = #2(t) ) Li(55) + O(h¥),
with i
o= 115
=



Again, since (4)k3% = 0 on [t;, #;11], it follows that the constant involved

in O(h¥) does not depend on h. Thus we finally have

max _||&*(t) — &5 (t)]lo < ChY,
tE[ti,tH_ﬂ

possibly increasing again the constant C. O
The next lemma gives estimates for higher derivatives of z*(t) — 29 (¢).

Lemma 3.3 Suppose z* to be sufficiently smooth and that

max ||Z*(t) — Zx(t)||co < ChF (3.22)
tE[ti,tH_l]

for z, € X; with C independent of h as h — 0. Then,

max ||(%)l(w*(t) —T7(t))]l0o < ChRE M 1=1,... .k (3.23)
tE[ts,t541]

with possibly increased constant C. In particular, £, has bounded derivatives
of arbitrary order on [t;,ti+1] as h — 0.

Proof. This result only depends on the properties of the space X, which is
in the DAE case the same as for ordinary differential equations. Hence the
result follows as in [1, Th. 5.75]. O

The second step deals with an appropriate modification of the constant 3
of Theorem A.l. In the present context, this contains a stability property of
the collocation discretization.

Lemma 3.4 The linear collocation discretization given by DL [z*] is stable
in the sense that
IDLA[z*] " Re||xev < B (3.24)

with B independent of h.

Proof. Let g = (f1, f2,v) € Y and consider the boundary value problem
DL[z*|z =g

and its collocation discretization

DL;[z*|z; = Rrg.

12



Although the inhomogeneity g does not have the smoothness properties
required in the proof of the corresponding stability result of [13], the same
proof as given there shows that the discrete problem is uniquely solvable in
X, and that

max ||z (t) |0 < Bllgllv
e[t

for the solution z, with  independent of h. To get the estimate for the
derivative Z,(t) on [t;,t;11], we observe that

By (tij)dr (tij) = Ar(ti)za(tiy) + filty),  §=1,....k,
0= As(sij)Tx(sij) + fa(sij), §=0,...,k.

Since z; € Pg41 4, we can write T, as

k
Tr(t) =Y zr(sa) Li(5E

=0

cp. the proof of Lemma 3.2. Hence,

Ag(tiy)in(tig) = Sp_g Aot m)msu)L'(%,;l)hi =
_Zl 0(A2 si1) + O(h )xﬂ si)Lj(p4) h =
= 10 O() - 2 (si) T (pi) 3= = Lig folsi) Ti(ps) 7 =
= 20 O) - wn(su) Lip3) = = S (Falsu) = o) ) Li(o)
where the latter identity follows, since for all ¢

k
D L) =

=0

Because of fo € C'([t,?],R?), there are points 6;; € [t;, #;11] which satisfy
Fa(sit) — fa(t;i) = hioyfal 0;;)- Possibly increasing the constant 3, we therefore
have that

[ A2(ti5)x (ti5)llo0 < Brllglly + B2 jhax 1f2(®)lloo < Bllglly-

1 z+1

Together with
1B (ti5)ax (i) |0 < Bliglly,

it then follows as in Lemma 3.2 that

& (£i5) lloo < Bliglly-

13



Using again Lagrange interpolation of #, at the points ¢;;, with INIJ- as in the
proof of Lemma 3.2, we have

7

k
() = Y @ (ta) L(45E).
=1

Thus we have

max ||z.(t <
i (Ol < Allals

and finally
oz llx < Bllglly

with possibly increased constant 3. Observing that the choice of 8 does only
depend on the problem data involved in DL[z*], but not on the selected
inhomogeneity g € Y nor on h, the claim follows. DO

In the third step, we give a suitable replacement for the Lipschitz con-
stant v of Theorem A.1. In the present context, this means that we must
consider the dependence of the operator DL[u] on u. Recall that we as-
sume all data including the functions F; and F, as defined in (2.9) to be
sufficiently smooth in a neighborhood of the solution z*.

Lemma 3.5 Let L from (3.5) be defined on a conver and compact neigh-
borhood D C X of x*. Then there exists a constant v independent of h such
that

|E(z) - L(y) - DLz = )llv < 37lo —llx (llz = 2lx + 1y — 2lx ) (3.25)
for all z,y,z € D.

P’I"OOf. Let z,y,z € D, set g = (flan,U) = L('T) - L(y) - DL[Z](.’I,' - y),
and introduce the convex combination u(t;s) = y(t) + s(x(t) — y(¢)) with
s € [0,1]. For the first component f; we have

[f1(8)lloc =



= | / Fiia(t,ults ), it 8)) — Pua(t,2(), 2(0))) (@(0) — y(0)) +
+(Fiia(t, ults o), it ) — Fusa(t, 2(8), 2(1)) ) (5(2) = 9(2)) | dslloo <

< [ [(uluteso) = 2@l +ulits ) - 500 ||oo)||w Y(O)lloo +
+(llutt; s) = 2(0)lloo + yalli(ts ) = 2W)lloc ) 12(8) = 5(8) o] ds <

1
< Allz —ylix /0 (-5 5) — llxds

with all constants being independent of ¢, z, ¥y, z and h. Analogously, we get
for the second component fo

1 f2(®) oo

[1F2 (8, 2(t)) — Fa(t, y(t)) — Faw(t, 2(2)) (x(t) — y(t))]loo =
s=1
— IR ultio)| |~ Faalt. 2A0) (@) ~ y(0) oo =

1
= I (Pualtou(t ) = Paalt,20)) o(0) = p(0)ds]x <

1
< Az - ylix /0 lu(-5s) — 2llxds,

possibly increasing . Furthermore,

A 1
150l = 1 [ [(Patoltu(t )+ Pt 0t ) 059)) -
~Foga (1, 2(1)) — Fasaa(t, 2(0) (3() ) (2(8) — y() +
o (Boat,u(t59)) = Paalt, 2(1)) ) (5(2) — ()] dsllow <
1
< /0 [ (rilluts ) = 2(B)lloo + 2llults 5) = 2(B)]loo +
st s) = 20)lloo ) 10(8) = y(t) oo +
Fyallutt: s) = 20)llsoll#(8) — §(8)]loo ds <
1
< Allo =yl [ lu-35) = sl

again possibly increasing . Finally, for v we get
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e (2(8), 2(0) (2(2) = y(8)) — 7, (2(2), 2(0) (2(F) = () |ow =
~ | / roo(u(t5), u(Fs 5)) — i (2(2), 20) ) (a0) — y(0) +
+(rm,, (ults ), u(E: 8)) — 72, (2(2), 21)) ) (w(F) = y(@) ] dsl|ow <
/0 (lutts) — #0)e + 72l 5) ~ 2Bl hot) ~ 9D +
+(1slluts 8) = 2(0) oo + pallulEs 5) = 2@lloo ) 16E) — y(@) oo | ds <

< Allz - ylix /0 lu(-;5) — llxds,

IA

and thus we have (again possibly increasing )

1
lglly < Alle - ylix /0 ly + s(z — ) — 2llxds =
1
= yllz - yllx / (2 —2) + (1 — )(y — 2)|xds <
0
< $lla—yllx(llo = 2llx+ lly - 21lx).

Remark 3.6 With the same technique as in the proof of Lemma 3.5, we
can show that DL[u] and therefore also DL,[u] = RyDL[u| are Lipschitz
continuous with respect to u, i. e.,

IDL[z) - DLlllvex <llz —ylx forallz,yeD  (3.26)
with v independent of h. We therefore omit a proof.

An immediate consequence of Lemmata 3.4 and 3.5 is that, although
they define modifications of the constants S and 7 of Theorem A.1l, the
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crucial estimates in the proof of Theorem A.1 still hold. In particular, we
have

Iz — 2l =
= |IDLxla*)  [La (o) = La(a™") = DLg ") (o} — 2777 )]llx =
= |[DLg[z*] " Ra[L(2}") — L(z7™") = DLz*)(2} — 277 H)]llx <
< 38l — ok (lle — ol + ot - 2
as long as z0,...,2™ z* € D, and similarly (for an z}* € X; N D with

L (z7) = 0)
ozt —23llx < 3Blar — oyl (llof — o*llx+ 23 — o*llx),
cp. also Remark A.3.
Thus, to get the claims of Theorem A.1 it only remains to discuss the

assumptions of Theorem A.1 concerning the quantities « = ||z1 — 22 |x and
t = —||z% — z*||x. Because of (3.21), we can choose h so small that

(3.27)

cp. Corollary A.2. Moreover, because of

2y —29x = [IDLa[z"]"" La(2d)llx =
= || DLz[z*] 'Ry L(z* + (2 — 2¥))|Ix <
< BIL(z*) + DL[z*](z) — z*) + O(|z) — z*[[%)[x <
< BIDLzlyex ||z — =*|lx + O(||=) — =*[1%),
we have

2% — 2% < CR* (3.28)
with C independent of h, and we can choose h so small that

1

Ox < 55 (3.29)

a=|z -z

and that S(z2,4a) C D. It follows then inductively as in the proof of
Theorem A.1 that (3.14) generates a sequence {z"} with

™ € §(29,4a) N X,. (3.30)
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Since X; C X is closed, the sequence converges to an =} € S(z2,4a) N X,
with L;(z%) = 0. Local uniqueness follows since (3.27) and (3.29) imply
that p_ < p,. Finally observing that now

lz* — a7llx < llz* — 23llx + [|2% — 2} |x < CR* + 4CR*
utilizing Corollary A.2, we have arrived at the following result.

Theorem 3.7 Let z* € X be a regular solution of L(xz) = 0. Then, for suffi-
ciently small h, there ezists a locally unique solution =} € X of Ly(z,) = 0.
In particular, the estimate

|z* — zX||x < Ch* (3.31)
holds, with C independent of h.

In the remainder of this section, we show superconvergence of the collo-
cation method when we use special schemes in (3.7). From

L(z7) = L(z" + (z7 — 2)) = L(z") + DL[z*)(z} — 2) + O(|z; — 2*[[%)
and
0= Lq(z7) = ReL(z;) = DLy[z"|(z; — 27) + ROz}, — 27[%),
it follows with (3.31) and DL, [z*]z = DL,[z*]z* that
DL,[z*|z} = DL;[z*]z* + RyO(h**) = DL, [z"]z° + R,O(h?),

where again the involved constants in the remainders are independent of h.
Application of (3.19) and (3.24) yields

zi = 12 + O(h?). (3.32)
In particular, we have
y(t) — 2*(t) = (2}.(t) — 23(1)) + (a3 (t) — 27 (1)) =
= 22(t) — 2*(t) + O(h*) (3.33)

for all t € [t, t].
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Theorem 3.8 Let the assumptions of Theorem 3.7 hold and let o1,..., 0
and 0y, ...,0k of (3.7) be Gaufy and Lobatto nodes, respectively. Then

(a)  max_[a*(t;) — 25 (ti)llo = O(R**),

1=0,...,N

() max [la*(si) = 5 (si) oo = O(RF*2) fork>2,  (3.34)
.]: b

() max|lz*(t) — z3(t)]leo = O(KFT),
te(t ]

with constants independent of h.

Proof. Applying Theorem 3.3 and Corollary 3.1 of [13] to (3.20), we get the
estimates (3.34) for z*(¢) — 22 (¢). Because of (3.33), they carry over to the
corresponding estimates for z*(t) — z%(¢). O

Remark 3.9 Observing stability of DL;[z*|"'R; and Lipschitz continu-
ity of DL;[u] = R;DL[u] with respect to u according to Remark 3.6, the
Lipschitz constant being independent of h, we can conclude ezistence and
stability of DL.[u] 'R, for u in a sufficiently small neighborhood of * and
thus of DL[z:] 'R, for sufficiently small h.

4 Numerical realization and experiments

In the previous section, we have shown that the collocation system (3.10)
has a (regular) solution z} near the exact solution z*, provided that h is
sufficiently small and some (standard) regularity condition holds. But there
are a number of problems to deal with (3.10) directly in order to actually
compute z. First, the function Z; used in the definition of F} is not known,
and second, the function F5 is implicitly defined and also includes with Zo
and K further functions that are not known. Since z* is unknown, the
iterative method (3.14) cannot be applied. Moreover, iterative processes of
this kind have too poor convergence properties.

The function Z; must only guarantee that the overall system has differ-
entiation index at most one. Thus we can use (sufficiently good) approxi-
mations Z7;; to its values at the points ?;; without changing the solution
and its regularity. Concerning F», we must go back to the original defining
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equations via F),. This leads us to the underdetermined system

(a)  ZL,F(tij, wr(ti), x(tig)) = 0,
(b)  Fu(sij, zr(sij), Zig, - - - J%ﬁl)) =0, (4.1)
() r(zr(t),zx(t) =0
for the unknowns
(s Bigy - -, 2 T) € Pryr e N CO([L, T, RY) x RVEFDGADn - (4.9)
withi=0,...,N—1,5=0,...,k. For convenience, in the following we use
the abbreviations

Tij = Tr(8if),  Yij = (Zij, - - - ,xz(-;-ﬁ'l)). (4.3)

Suitable matrices Z;;; can be obtained from (sufficiently good) initial
guesses (mgj,y?j) by perturbing Fu;i,...,x(u+1)(3ij7$gjaygj) to a matrix with
rank deficiency a in order to get an approximate evaluation of 7 along the
lines of Hypothesis 2.1. Recall that rank F, ; 0 (s,7,y) = (p+1)n—a
if (s,z,y) € L,. A second possibility is to project (sij,w?j, y?j) onto L, and
to use the corresponding Jacobian there. For sufficiently small A, it is also
clear that we may choose 71 ;; independent of j.

The equations (4.1b) guarantee that the discrete solution obeys all alge-
braic constraints at least at the collocation points s;;. In particular, recall
the discussion at the end of Section 2 on the equivalence of (4.1b) with
F(sij, zx(sij)) = 0, cp. also [9].

The iteration process of choice for the numerical solution of (4.1) is a
GauB-Newton-like method of the form

Zm+1 = Zm — Ajn,j:(zm)a Zm = (.’L'Zl,y:?), (44)

when we write (4.1) as F(z) = 0. Here A, denotes the Moore-Penrose
pseudoinverse of A,,,. In contrast to the ordinary Gaufl-Newton method, we
replace the Jacobian F,(z,) by a perturbed matrix A,, in order to get a
more efficient procedure. In particular, we determine A,, from F,(z,) in
such a way that we replace the block entries Fu;i"_"’w(p+l) (si5, SII%L, y{?) by ma-
trices of rank deficiency a (e. g., by ignoring the a smallest singular values).
This decouples the determination of Ay{? = yg-H—l —y;; for each 7,7 from
the other corrections and leaves a linear system, representing the collocation
discretization of a linear BVP, for the corrections concerning z7* only. Thus,
we can use the techniques of [13] with solving first a number of local systems
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and then a global system of a structure that is known from multiple shoot-
ing methods for ordinary differential equations [1]. Having then computed
the corrections for z7, it remains the solution of the decoupled underdeter-
mined linear systems for the Ay;”. Taking the Moore-Penrose pseudoinverse
to select a solution realizes the Moore-Penrose pseudoinverse of the overall
system due to the decoupling. Since the applied perturbations tend to zero
when z,, converges to a solution, we expect a superlinear convergence rate,
see [6]. Compare also with [12] where similar techniques are used in the
context of multiple shooting.

The GauB-Newton-like procedure (4.4) has been implemented in MATLAB
[15] as a research code. We compute an initial solution profile zy = (acgj, y?j)
by solving the initial value problem corresponding to a given initial value
(z00,Y00) at t =t with GENDA [11]. Iteration (4.4) is terminated as soon as
| Zms1 — Zm||2 < tol]||zm]||2 using an appropriate tolerance tol = 1078.

Example 4.1 In order to illustrate the convergence orders of Theorem 3.8,
we consider the following semi-explicit problem with known solution from [3]:

1(t) = (e + w2(t) — p2(t))za(t) + P1(2),

Choosing the boundary condition

z1(0) =p1(0) +&, z3(0) =1, z2(1) =p2(1),
the exact solution of the BVP is given by

7 (1) = (eexp(t) +p1(2), p2 (1), exp(t), exp(t) ).

In this case, Hypothesis 2.1 is satisfied with 4 =0, d = 3, a = 1. As param-
eters, we chose p1(t) = sin(4nt), po(t) = sin(t), e = 3, and the integration
for computing an initial solution profile was started with zoo = (—1,0, 0, 2),
Zoo = 0. In Table 1, the errors
erti(N) = max |[2(ti) — zill2,  errij(N) = max max [[2(sij) — il

are given, together with corresponding orders log, (err;(N/2)) —logs (err;(N))
and logy(err;;(N/2)) — logy(err;j(IN)). We clearly see that the convergence
results (3.34a) and (3.34b) hold for this example.
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Table 1: Errors and orders according to uniform meshes for Example 4.1

k N err; order err;; order

1 50| 0.265D-02 0.265D-02
100 | 0.662D-03 2.0 | 0.662D-03 2.0
200 | 0.166D-03 2.0 | 0.166D-03 2.0

2 20 | 0.348D-04 0.977D-04
40 | 0.226D-05 3.9 | 0.613D-05 4.0
80 | 0.141D-06 4.0 | 0.387D-06 4.0

3 10 | 0.196D-05 0.578D-04
20 | 0.294D-07 6.1 | 0.177D-05 5.0
40 | 0.478D-09 5.9 | 0.566D-07 5.0

4 5 | 0.108D-05 0.148D-03
10 | 0.352D-08 8.3 | 0.232D-05 6.0
20 | 0.132D-10 8.1 | 0.381D-07 5.9

5 5 | 0.482D-08 0.961D-05

0 0

10 .391D-11 10.3 .769D-07 7.1

Example 4.2 In [7], the model of a periodically driven electronic amplifier
is given. The equations with n = 5 for the unknowns (Ui, ..., Us) read

(Ug(t) — U1)/Ro + C1(Uz — Uh) =0,
(Up — U2)/Ry — Uz /Ry + C1(Ur — U2) = 0.01f(Uz — Us) =0,
f(Uz = Us) — Us/Rs — CxU3 = 0,
(UB — U4)/R4 -|- C3(U5 - U4) — 0.99f(U2 — U3) =0,
—Us/R5 + C3(Us — Us) = 0,
with
Ug(t) = 0.4sin(2007t), Up =6,
F(U) = 10~%(exp(U/0.026) — 1),
Ry =1000, R;=---= Rs=9000,
C;=10"% Cy=2-1075 C3=3-1075.
The problem is known to satisfy Hypothesis 2.1 with 4 = 0, d = 3, and
a = 2. If we ask for the periodic response of the amplifier, we are led to the
boundary conditions

U, (0) = U;(0.01), 1=2,3,5,
thus ¢t = 0 and ¢ = 0.01. We used the initial value
(xOOa-'I:‘OO) = (0,‘/1,‘/1, UB,0,0,0,‘/Q,0,0) € L,ua
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_ R —__W
where V1 = Up I and Vo = TG

For different k£ (the number of collocation points within a subinterval)
and different meshes 7, the presented collocation method successfully com-
puted a periodic solution. The convergence behavior for kK = 5 and a mesh
with five uniform subintervals is given in Table 2.

Table 2: Convergence behavior for Example 4.2

m [2m+1 — Zml|2 m |2m+1 — Zmll2
0 0.212D+04 5 0.832D+01

1 0.280D+04 6 0.388D+00
2 0.153D+04 7 0.760D-03
3 0.325D+03 8 0.282D-08
4 0.531D+02

Example 4.3 A pendulum in two space dimensions is modeled by

P1 =01, U1 =2p1A,
P2 =2, U2 =2pa\—g,
pi+pi=1

with the gravity constant ¢ = 9.81. The unknowns are (p1,p2,v1,v2,A).
In [14] this problem together with the boundary conditions

v2(0) =0, p1(0.55) =0 (4.5)

was used to test an implementation of a multiple shooting method for DAEs
with g4 = 1. Since for the above formulation we have y = 2 together with
d = 2 and a = 3, in [14] it was necessary to replace the constraint by its
differentiated form

2p1p1 + 2pape = 2p1v1 + 2pava =0

and to add a further boundary condition due to the introduced additional
dynamics. Here we can solve this problem in its original formulation. Instead
of (4.5), we also used the boundary conditions

’02(0) = ’02(2.5) = 0, (4.6)

thus seeking a periodic orbit. Observe that we must fix the phase of the
solution since the problem is autonomous.
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Starting in both cases with the initial value

Too = (1’0'370507 _1)5 Zop = (O’Oa 0, _970)7
‘;I}OO = (07 _gaoa()ao)a .’L'(()?())) = (0,0, 0,0,0),

using k = 5 collocation points per subinterval and a uniform mesh 7 with
five subintervals, we obtained solutions according to Table 3.

Table 3: Results for Example 4.3

Boundary condition (4.5) Boundary condition (4.6)
m | zm41 = 2mll2 m | Zm+1 = Zmll2
0 0.287D+03 0 0.256D+04
1 0.149D+03 1 0.136D+04
2 0.816D+01 2 0.178D+03
3 0.348D-01 3 0.407D+01
4 0.161D-05 4 0.320D-02
) 0.104D-05

Example 4.4 In [16], the model of a (two-dimensional) truck is given. It
has the form of a standard multibody system

b=,
My = f(p,’U,’U/,a) - gp(p)T)‘a
g9(p) =0,

where p are the (generalized) positions, v the corresponding velocities and A
the forces introduced by the constraint g(p) = 0. In the truck model, p
and v have eleven components and A is scalar. Hypothesis 2.1 is fulfilled
with g = 2, d = 20, and @ = 3. The (scalar) function u models the road
profile and is chosen here to be

u(t) = 7 sin(207t).

Asking as in the linear case [17] for the periodic response of the system for
7 = 0.05, we require the boundary conditions

m(0) =p(0.1), 1=1,...,9,11,
v(0) =v(0.1), [=1,...,9,11.
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Figure 1: Road profile u --- and response driver seat — for Example 4.4

This problem suffers from an extremely bad scaling and high nonlinearity.
Therefore, we applied a (fixed) scaling to get reasonable condition numbers
and used classical homotopy according to

7 € {0.01,0.02,0.03,0.04, 0.05}

to get the desired solution. The homotopy was started with the equilibrium
state for 7 = 0. The course of the iteration procedure for ¥ = 5 and a
uniform mesh with five subintervals can be found in Table 4. Figure 1
shows the computed response of the driver’s seat (i. e., py) in comparison
to the road profile u.

Table 4: Values ||zp,+1 — 2m||2 for the homotopy of Example 4.4

7=10.01

7 =10.02

7=10.03

T =10.04

7 =10.05

S w N = o3

0.102D+05
0.276D+04
0.303D+03
0.172D+01
0.754D-04

0.111D+05
0.801D+03
0.524D+01
0.190D-02
0.268D-08

0.114D+05
0.829D+03
0.924D+01
0.218D-02
0.751D-08
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0.117D+05
0.920D+03
0.121D+02
0.194D-02
0.147D-07

0.119D+05
0.114D+04
0.122D+02
0.139D-02
0.193D-07



To summarize the numerical examples, we have demonstrated that the
presented collocation methods are able to solve differential-algebraic BVP
with different values of the index and different structures. Apart from [12],
there are no other numerical methods that can deal with such general prob-
lems. Moreover, looking at the convergence results in Tables 1-4 we recog-
nize the very good convergence properties of method (4.4), which cannot be
distinguished from quadratic convergence.

5 Conclusions

In this paper, we have developed symmetric collocation methods for the
solution of nonlinear differential-algebraic boundary value problems. No re-
strictions on index or structure are necessary. As in the linear case [13],
GauB-type schemes for the differential part and Lobatto-type schemes (with
one more node) for the algebraic part are used. We showed that the conver-
gence results known for ordinary differential equations also hold in the case of
differential-algebraic BVPs, including superconvergence. A Gau-Newton-
type method for the numerical solution of the underdetermined collocation
systems has been implemented and used to demonstrate the applicability
for several challenging examples.
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A A generalized simplified Newton method

In this appendix, we consider the solution of a nonlinear system of equations
F(z)=0 (A.1)

with F : D — R*, D C R” open and convex, by the iteration method
Tyl = T — F'(&) 7 F (2,,) (A.2)

for given Z,z9 € D. For such iterations the following convergence result
holds, cp. [8, Ch. XVIII].

Theorem A.1 Let F € CY(D,R") and &, z¢ € D such that F'(%) is invert-
ible. Furthermore, let constants a, 8,7 be given such that

(@) [F'(&) ' F(zo)ll <o,
b) |[F(&) 7 < B,

(

() IF"(z) = F'(y)ll < vllz —yll for all 2,y € D, v #0,

@ Joo—i < A "
(e) 2apy < (1+pvyt)° witht=—|zo— 1

(f) S(.T(],p_) C D,

pr = 5o (1 + Byt £ \/(1 +pyt)? - 204/37)

for some vector norm and the associated matriz norm. Then, (A.2) defines
a sequence {zm} of points in S(xo,p_) which converges to a point x* in
S(zo, p—) satisfying F(x*) = 0. There is no other solution of (A.1) in

S(w0, p-) U (S(x0,p+) N D).
In particular, for p_ < py the solution =* is locally unique.

Proof. If zg, ...,z € D, then we have

|1 = Tl = | F'(&) 7 F ()| =
= ||F"(&) [F (2m) — F(@m-1) = F'(&)(@m — Tm-1)]|| =
= ||F"(&) M F(@m-1 + 8(@m — Tm-1))|Z5 — F'(&)(@m — Tm-1)]l| =
= [|F" (&) [y [F'(zm 1 + $(@m — Tm 1)) — F'(&)](@m — Tm1)ds|| <
< BYlzm — Tmotll fy |@m-1 + 8(zm — Tm_1) — &l|ds =
= BYl|zm — Tm-1ll fy |5(zm — %) + (1 = 5)(@m-1 — &)||ds <

< 582m — sm-1ll(lzm — 2] + lEm-1 — 2))-
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Considering the quadratic polynomial ¢ : R — R with ¢ € R given by

o(t) = 37> — Byt + 1)t +

and observing ¢(f) = —1, we define a sequence {t,,} via
t
tro =t — 20—y o), to =0,
(1)
Setting = —||z¢ — ||, we find that

||.’131 —.’I,‘()H <a= t1 — to-

By induction, it follows that

[2m = 2| < ll#m — Em-all + - + [l21 = zol| + [0 — 2| <

~

< (tm = tm—1) + -+ (t1 —to) + (to — 1) =t —
and
|Tmi1 — Zm|| < %/BV(tm —tm1)((tm — f) + (tm—1 — ﬂ) =
= 3B7(tm — tm—1)(tm + tm—1 — 2t) =
= 3872, — 5821 — Byi(tm — tm—1) =
= %ﬁ'ytfn — (tm — tm—1 + (ﬁ'yf + Dtyp1 — ) — ﬂfyf(tm —tmo1) =
= @(tm) = tmt1 — tm.

Since p+ are the two zeros of ¢ it is obvious that the increasing sequence
{tm} converges with t,, = p_. Hence, we have

||Im - IOH St —to=tm < p-,
i. e, the sequence {z,,} is well-defined and stays in S(z¢, p_). Since {¢,,} is

a converging majorizing sequence, {z,,} converges to some z* € S(zq, p_)-
By the continuity of F, the limit z* satisfies F'(z*) = 0.
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To show the claimed uniqueness, let z** € S(zg,p_) U (S(zo, p5) N D)
with F(z**) = 0. Then, we have the estimate
[zms1 — || = llom — F/(2) 7 F(2m) — o™ =
= |F'(&)" [F(z™) — F(zm) — F'(2)(&™ — 2m)]|| =
= |F'(2) "M F(@m + s(@™ = 20)) 520 — F'(2) (2" = zm)]|| =
= |F'(@)7" [y [F" (@m + s(2** = 2n)) = F'(&)])(2"* = zn)ds]| <
< BYlwm = 27 o Im + (2™ = 2m) — | ds =

< 58N zm — 2| (lem — 2| + |lz** — 1))
Defining a sequence {s,,} via

S
Sm+1 = Sm — Sog tn) = Sm + <P(3m), S0 = ||ZI?0 -z
¢(t)

it is obvious that the decreasing sequence {s,,} converges with s,, — p_,
because of sg < p4. Starting with ||zg—z**|| < s¢ —to, we have by induction
that

?

A

|Zm+1 — 2| < %ﬂ'}'(sm —tm) ((tm — ﬂ + (8m —tm) + (tm — 1)) =
= %67(37” —tm)(Sm + tm — 2t) =
= %/873271 - % Vtgn - ﬂVf(sm —tm) =
= (p(sm) + 8m — @) — (p(tm) +tm —a) =

— 3m+1 - tm—‘f-la

and therefore ||z, — z**|| = 0 or z,, — z**. Hence, z** = z* due to the
uniqueness of limits. O

Corollary A.2 If in addition to the assumptions of Theorem A.1

L

o — Il < 55

holds, then
|lz* — zo|| < 4a.
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Proof. Theorem A.1 yields

lo* — zoll < p_ =
2ce <
1= Byllwo — || + /(1 = Byllwo — 2[)%2 — 28y —

e
— < 4au.
1= Byllzo — &

Remark A.3 Theorem A.1 holds almost verbatim in the case of an infinite
dimensional Banach space problem. To avoid the argument in the proof
using integration, we can simply replace (A.3c) by the assumption

IF(@) - Fly) = F'(2)@ — )l < $vllz = oll (Il — 2] + ly — 21))

for all x,y,z € D.
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