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Chapter 1

Introduction

In scientific computing most computational time is spent with solving systems of
linear equations. They occur for example as subproblems in numerical methods
for the solution of partial differential equations and integral equations. These linear
systems arising in applications are usually of rather large dimension such that solving
them with the standard Gauf}ian elimination method is impossible.

These notes give a short introduction into the basic ideas of a class of iterative
methods for solving large linear systems, which are often called Krylov subspace
methods. They are most popular and frequently used for practical problems, because
they are easy to implement and have low storage and CPU time requirements. This
introduction is based merely on well-known and some new linear and numerical linear
algebra results and allows an easy understanding of general construction principles
and the applicability of the methods.

1.1 Large Linear Systems

Consider the problem of solving
Az =b (1.1)

for A € RV*Y b € RY with alarge dimension N, e.g. N; = 250000 or N, = 700000.

For Gauflian elimination, the standard method to compute the solution z of a linear
system, the storage requirement is N2, e.g. 6.25 x 10'° for N; and 4.9 * 10! for Ns.
The number of floating point operations needed in this computation is essentially
SN?, e.g. 41710 for Ny and 9.15 % 10'7 for No.

If we have a computer which can perform 108 floating point operations per second,
which is a fast computer for today’s standards, then for a system of dimension
N; = 250000 our computer would need a bit more than 13 years full time running to
compute the solution in this way, and for Ny = 700000 it would take approximately
291 years of computing time. Even if we could overcome the problem with the large
storage requirement for our fast computer, we would not live long enough to ever
receive the solution in the second case. Thus we obviously need a different approach
to compute the solution x of (1.1) for large N.

There are two principal ways of solving (1.1), where in all of the following we will
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6 CHAPTER 1. INTRODUCTION

assume that the system matrix A is nonsingular. In a ”direct method” A and b
are transformed stepwise, i.e. they are in general multiplied by elementary matri-
ces, such that after a finite number of operations the method produces (in exact
arithmetic) the exact solution. Gauflian elimination is such a method.

If (1.1) comes from the discretization of a partial differential equation, then the
matrix A is typically large and sparse, which means that in addition to the dimension
of A being large, also most entries of A are zero. Often the number of nonzero entries
in A is then only of order N. The simplest and best known example is the linear
system that results from the standard five point discretization of —Au = f on 2 =
10,1[%]0, 1[ with Dirichlet boundary conditions u|sn = 0 and a regular grid on €,
which stems from equally spaced knots 0 < 15 < 225 < ... < n5 < 1on [0,1]
in both directions. The unknowns in the discretized problem are the values of u
at the n? inner grid points and if we arrange them row-wise in an n? dimensional

vector x of unknowns then the n?-dimensional matrix A is of the form

D -I, O o --- 0
-, D -1, 0 --- 0
o -1, D -I,
A= 1.2
0 0o -I, - ’ (12)
| 0 0 —I, D |
where
[ 4 -1 0 0 ]
-1 4 -1
D= 0 -1 4 "-. 0 |, and I, is the n-dimensional identity matrix.
1
0 0o -1 4

With a reasonably fine discretization, i.e. a big n, we get a large but very sparse
matrix A and the complete information about A is very easy to store. We would
just store the numbers 4 and -1 together with the information about their positions
in the matrix.

The sparsity pattern of a large matrix is often made visible by a “portrait” of the
matrix, which is an N x N dimensional field in which the (j,7) - position is blank
if A(j,7) =0 and is dark otherwise. For our matrix A above we get for example for
n = 10 the left hand side picture in Figure 1.1 below. There are 10 000 entries in
the matrix but nz, the number of nonzero elements, is only 460.
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Ins511 : unsymmetric matrix from linearized Navier—Stokes
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Figure 1.1: Portraits of sparse matrices

A good source for large, sparse matrices for test purposes is the Harwell-Boeing

Sparse Matrix Collection, which one can get access to via
http://math.nist.gov/MatrixMarket /collections/hb.html.

The right hand side picture of Figure 1.1 is a portrait of a 511 x 511 unsymmetric

matrix arising in the discretization of a Navier-Stokes problem, called Ins511, from

the Harwell-Boeing Collection.

If we now transform a large sparse matrix in the Gauflian elimination process, then
nonzero elements will be created in places where A had zeros before. These new
nonzero entries are called ”fill” or "fill-in”. In other words, in the LU-factorization
PA = LU which is computed in the Gauflian elimination process, the matrices L and
U will have many more nonzero entries than the matrix A. For Ins511 the following
figure shows the portraits of the permuted version of L as it arises in Gauflian
elimination with partial pivoting and of U. Note the difference of the number nz of
nonzero entries in Ins511 and its factors.

One approach to solve large, sparse linear systems consists, roughly speaking, in
modifying Gauflian elimination in a sophisticated way, such that the amount of
fill-in is small and an elimination process is possible. For these direct methods for
large and sparse linear systems see e.g. [2], [7]. If N is very large, however, these
methods reach their limits, because even though the fill-in is small compared to N2,
the number of nonzero entries gets too big to be handled.

If the system (1.1) comes from a discretization of an integral equation, e.g. if a
partial differential equation is numerically solved by a boundary element method,
then A is ”"dense”, i.e. all or almost all entries of A are nonzero. Then a direct
method cannot be applied at all. An alternative way to solve (1.1) is an iterative
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Figure 1.2: L U factors of the LU decomposition of Ins511

method, where we start with an initial vector zy and compute vectors 1, Zo, T3, . ..
such that zo+1, zo+Z2, o+2I3, . . . are (hopefully) better and better approximations
of z. The computation of the correction vectors Z; has to be such that the matrix A
is not altered. Only matrix-vector products Aw for given vectors w should be used
to determine the Z;, because this is in most cases reasonably cheap to compute, see
for instance our example (1.2).

It is remarkable that Gaufl himself, in 1823, already proposed an iterative method for
solving linear systems [1]. At his time, however, N = 40 or N = 50 was considered
to be large, because all computations had to be done by human beings. With
the availabiltiy of computers iterative methods became more and more important,
because increasing complexity of practical problems gave rise to larger and larger
linear systems that had to be solved in the numerical methods for these problems.

Early iterative methods, sometimes called standard iterations, were the Jacobi- and
GauB-Seidel Iteration, Successive-Over-Relaxation (SOR), SSOR and Chebychev
Semi-Iterative Method, see e.g. [10], [11] and [5]. The convergence of these methods
is often slow and SOR, Chebychev Semi-Iteration and related methods depend on
parameters that are sometimes difficult to choose. Other newer iterative methods
like the multigrid methods are developed for situations in which knowledge of the
underlying analytic problem can be used.

In this note we will confine ourselves to Krylov subspace methods in which no
parameter determination is necessary and which work for very general problems.
They are very easy to implement and are very frequently used in practice. There
are still many open questions in this area and it is still a field of very active research.
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This text gives a first introduction to the basic ideas of these methods.

1.2 Basic Ideas

Recall that our problem is to solve (1.1):
Az =b,

A e RN b e RY, N large and A nonsingular.

Let xo be an initial guess for the solution, which may come from some additional
information we may have, or which may be the zero vector or a random vector.
With ry = b — Axg, the ”initial residual”, and the solution Z of

Ax = To (13)
we can correct zy to get the exact solution x:
A($0+.’1~?) =A$0+Aj:b—7'0+7"0:b.

A first very general idea for approximating the solution of (1.3) is the following:

Choose a sequence of suitable subspaces I; C R”, for [ = 1,2, 3, ... with increasing
dimension and approximate Z, the solution of (1.3) by suitable elements Z; of ;.
We could think of choosing K; such that

KiCKyCKsC.... (1.4)
In most cases we will study the residual vectors
rp=r9g— AT, 1=1,2,3,... (1.5)

and we want them to be small. Note that this is also the residual for the approxi-
mation xg + Z; to the solution z of our original system, because

b—A(iEo-i-il):b—A.TO—A.fl:TQ—A.il:Tl. (16)

Let us assume that dim(K;) = I.

To compute an approximating vector from the subspace X; we need a ”good” basis
of IC; which is not too expensive to compute. In view of (1.4) it would be useful if
we had one set of basis vectors ¢, g2, g3, . . . such that

span{qy,...,q} =K, forall [ =1,2,3,... (1.7)
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Let Q; € RV be the matrix having the g;’s as column vectors, i.e.

Ql: [QIaQ2a"'aQZ]' (18)

Then any w € K, can be represented as w = ;2 with a suitable vector z; € R.

To choose a 2z € R' such that @,z is a good approximation to & four strategies are
often considered:

1. The Ritz—Galerkin approach:

Compute 2 € R! such that the residual is orthogonal to the subspace K, i.e.

0=Q/r=0Qr— Q AQux.

Thus in this case we have to solve the [-dimensional linear system

Q[ AQuz = Qo (1.9)

to receive z;. We can hope that with increasing dimension of IC; the residuals
become smaller and smaller.
2. The minimum residual approach:

Determine z; € R’ such that the Euclidean norm || r; ||o of the residual is
minimal over I, i.e.

| 71 |l2=]| 70 — AQiz; o= min || AQiz — 19 ||2 - (1.10)
zeR!

To receive z; we have to solve the least squares problem for the N x [ system
matrix AQ); and the right hand side vector 7.

3. The Petrov—Galerkin approach:

Choose z € R! such that the residual 7, = ro — AQz is orthogonal to some
other suitable subspace K; of dimension [. If the columns of Q, are a basis for
K, than in analogy to the Ritz-Galerkin approach we have to compute z; as
the solution of the linear system

QT AQuzr = Q[ ro. (1.11)
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4. The minimum error approach:

Compute z € R’ such that the error || # — Q2 || for a suitable norm || . ||
is minimal.

In the first three cases we aim for a small residual. But note that a very small
residual does not necessarily mean that the error Z — z; is small. || £ — Z; || may be
big even for small || 7 ||z if A’s condition number is large. Here we will not consider
this problem.

Two questions remain:

1. Which subspaces are suitable in the sense that already for an [ which is small
compared to N we get a sufficiently small residual r;?

2. Is there an efficient way to compute the basis vectors ¢i,¢s,qs3,...7 These
vectors are in RY, and if we have to store too many of them and if we need all
q1, 9, - - -,q to compute the next ¢;,; and the z;,; then we run into problems
with the storage and CPU time requirements again.

To understand the interest in Krylov subspaces for this purpose it is useful to recall

d .
that A~! is a polynomial in A. If m(A\) = Y ;N is the minimal polynomial of
j=0

A, then we know that ag # 0, because A is nonsingular, and that 0 = m(A) =

d .
a; A7 + apl,. Rearranging the equation and multiplying by A~ we get
j=1

d d—1
A=) :_%Aj*1 =5 :_%AJ’
o &

and for the solution Z of AZ = rq:

d—1

F= A=Y =St iy, (1.12)
X (7))
J=0

i.e. & €span{ry, Ary, A%rg,..., A% rg}

Moreover, let k£ be the smallest integer such that 7 is contained in a £-dimensional
invariant subspace, i.e. there exists a £ —dim subspace V of R", such that A(V) C V
and ro € V and k is the smallest integer with this property. Then it is easy to see
that A¥rq is a linear combination of ry, Ar, ..., A¥=1r.

Together with (1.12) we get therefore that the solution Z of AZ = ry satisfies

i € span{ry, Arq, A’rg, ..., Amn{dk}=1. 1 (1.13)
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Chapter 2

Krylov Subspaces

2.1 Properties of Krylov Subspaces

Definition 1
The 1-th Krylov subspace for the linear system Ax = b with initial residual
ro = b — Az, is defined as

Ki(A, ro) = span{rg, Arg, A%rg, ..., A" ryl. (2.1)

Krylov subspaces have remarkable properties which are very convenient for the ap-
proximation of the solution x following the general ideas of the previous chapter.
Note that

K1(A,r0) € Ko(A, o) C Ks(A, 1) C ... (2.2)

and as we have just discussed at the end of the last chapter, the maximal reachable
dimension is min{d, £}, where d is the degree of A’s minimal polynomial and £ is
the smallest integer such that r( is contained in a k—dimensional invariant subspace
of A. Also we know that the solution # of A% = r( is contained in Kminar} (A, 10),
such that for the solution x of Az = b we have

T € xy+ K:min{d,k} (A, 7‘0). (23)
Obviously K;(A, o) is also characterized by
K:Z(A, 7'0) = {p(A)’I"O |p € Hlfl}, (24)

where II; ; is the set of real polynomials of degree at most [ — 1. Moreover, for any
p(A)rg € Ki(A, ) the residual r, = 7o — Ap(A)ry satisfies

= (I — Ap(A))ro = q(A)ro, (2.5)
where
g(A) =1-=Ap(N). (2.6)
Note that
gell; and ¢(0)=1. (2.7)

13
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Define
I, := {q € I|q(0) = 1}. (2-8)

Then it is very easy to see that
I, = {1 = Ap(\)|p € ;1 }.
Thus we can reformulate our minimum residual approach as: Find g € ﬂl such that

Ig(A)ro llo=""min || §(A)ro |2 - (2.9)
gell

If A is diagonalizable and A = X 'AX, where A = diag()\y,...,\n), then for any
gell
Fa@roll < [ XTGA)X Nz Irolle < NXT 2 X Ml [1G(A) [l2 [l 7o [le,

such that the minimal ¢ € II; satisfies

Irllz = lTa@rollz < XMz 1 X "l [I7o [z min max [G(N)]-
Ggell; Ae{A,...,; \u}
(2.10)
We see that this upper bound for || 7; ||o depends crucially on the eigenvalues and
eigenvectors of A.

2.2 Arnoldi and Lanczos method

For the computation of an approximation from IC;(A4, ) we still need a good ba-
sis. The obvious basis g, Arg, A%ry, . .. is not suitable for computational purposes.
These vectors are the sequence of the power method for A with starting vector
ro. If we compute them without normalization, then A¥ry will quickly get very
large or very small, depending on the norm of A being larger or smaller than 1.
If we normalize them, then often they quickly tend to the dominant eigenvector of
A and therefore the vectors become almost linearly dependent. An orthonormal
basis would overcome these problems (in exact arithmetic). We could construct
orthonormal vectors qi, ¢a, g3, - . . from the vector sequence rq, Ary, A%rg, ... by the
Gram—Schmidt orthonormalization procedure. This would, however, still force us
to compute the vectors A*ry. In the following we will give a characterization of the
vectors ¢i, go, g3, - . . from the Gram—Schmidt procedure which allows us to compute
them without forming the original sequence rq, Ary, A%rg, . .. explicitly.
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Definition 2
Ki(A, o) := [ro, Arg, A%, ..., A" rg] € RV* is the 1-th Krylov matrix
for A with initial vector ry.

If Q = [q1,---,q], where ¢i,...,q are the results of the Gram-Schmidt proce-
dure for the vector sequence rg, Arg, A%rg, ..., A"y , then there exists an upper

triangular matrix R; = [i” € R such that

KI(A,T()) = QlRl (211)

Define m = min{d, k}, where as before d is the degree of A’s minimal polynomial and
k is the maximal dimension such that ry is contained in a k—dimensional invariant
subspace of A.

Then
Kin(A,0) = Qm R, (2.12)

and because m is the maximal reachable dimension for K;(A, 7o) for all [ =1,2,. ..
K,,(A,rp) is nonsingular and therefore R,, is nonsingular. Because of the maximality
of m we have

m—1
Am’f'o = Z CjAjT'()
=0
for a suitable vector [co, ..., cn_1]T € R™\ {0}.

Theorem 3
Let the assumptions and notations above be given.

(i) The following are equivalent:

(a) Kn(A,10) = QmPRm is the QR decomposition with
Qm € RV™ QT Q,, = I, and R,,, = (ri)ijeqt,m) = [ﬂ} e R™™
and rj; >0 for all j € {1,...,m},

(b)
AQu = QuHom, (2.13)

T _ _ 1
where Q. Qm = I, Qmer = oz 70 and

H,, = (hij)z’,je{l,...,m = [Q] = RmC’R;L1 1s an upper Hessenberg ma-



16 CHAPTER 2. KRYLOV SUBSPACES

triz with hjy, ;>0 forall j € {1,...,m — 1} and

0 Co
1 0 (&1
1 .
C =
1 Cm—2
i Cm—1 |

(i1) If A is symmetric, then H,, in (i) is symmetric and tridiagonal, i.e.
ar B

AQm = Qme, where Tm = BQ &2 - . (214)
e B

ﬂm 8777}

Proof

(i) If AQm = QmHp, and Qpe; = mro, then A*Q,, = A 'Q,H,, = ... =
QuHE for all k € N.

Then

Kn(A, o) = [ro, Arg, ..., A" gl =|| 7o ||2 [Qme1, AQmen, . . ., , A" 1Quer]

-~

N

is the QR decomposition, where it is easily checked that h;;,; > 0 for all j
implies r;; > 0 for all j.

If on the other hand K,,,(A, 7o) = QR is the QR decomposition with r;; > 0
for all 7, then

AKm(A, 7'0) = [A’I'(),AQ’I'(), ceey AmT’O] = Km(A, 7"0)0,

which is equivalent to

A QmRm = QmRmC

Then QT AQ,, = R,,CR, ! =: H,, = [Q] . It is easily seen that r;; > 0 for

all j implies h;y1; > 0 for all j. QP Q,, = I, by construction and Qne; =

mro is obvious because K,,(A,7y) = QmBum-
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(i) If A is symmetric and AQ,, = QumHp, QF Q= I, then

HE = [&] = QT ATQp = QL AQy = Hyp = [Q] |

Therefore H,, is an upper Hessenberg as well as a lower Hessenberg matrix
and thus has to be a tridiagonal matrix, which in addition is symmetric. O

Recall that the QR decomposition @),,R,, always exists and is uniquely determined
because K, (A, 7o) is of full rank and r;j; > 0 for all j. This theorem tells us that we
can compute the orthonormal Gram-Schmidt basis {q,...,q} of K;(A,ry) for all
l € {1,...,m} by computing the matrix @, with Q,e; = Hr—lollro’ which transforms
A to upper Hessenberg form H,, = QT AQ,,. The first [ columns of @,, are the
desired basis {q1,...,q} for IC;(A, o).

Denote H; = (hij)ije{1,..;} € R for | € {1,...,m} then a closer look at (2.13)
yields

AQy = QiH; + hyy1,q1e] foralll € {1,...,m—1} (2.15)

and
QTAQ, = H,for alll € {1,...,m}. (2.16)
Evaluating these two equations stepwise for [ = 1,2,..., m—1, we derive a procedure

to compute ¢1, qo, ..., g, and Hy, Ho, ..., H,, subsequently:
We know ¢, = mro and from (2.16) we get

ChTACh = hi1.

Assume that we have already computed @); ; and H; ;. Then from (2.15) evaluated
in the last column we get
h !
Ag=Qu| i | +hna = Y haty + b g

Set w1 = hyp1,q41. We can compute

l
wier = Ag =Y hjg (2.17)
7j=1
because all quantities on the right hand side are known. Moreover, we know that
hit1y > 0 and || gi41 ||2= 1. Therefore A1 =|| wit1 ||2 and 41 = hHl—l,l Wiy

This procedure to compute g1, qo,... and Hy, Ho, ... is called Arnoldi process. We
summarize the computation:
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Arnoldi method:

w = T
hip = || To ||2
l =0

while hl—l—l,l 75 0
Q1 = w/hiy

l = [+1
w = Agq
for j=1:1
h'j,l = qJTw
w = w-— hjqj
end
P = w2

end

It is not difficult to check that the computation in the j—loop does indeed compute
w4y as in (2.17).

With our assumptions we know that hyy1; > 0 foralll € {1,...,m—1} and Ay m
from the algorithm above will be zero (all in exact arithmetic).

For symmetric A the computation simplifies, because then

ar B
H. = — /32 -
B
Bm O
Instead of (2.15) and (2.16) we get here
AQy = QT + 5l+1Ql+1€zT foralll e {1,...,m -1} (2.18)
and
QIAQ, =Ty foralll € {1,...,m} (2.19)

and instead of (2.17) we get in this case for [ =1,...,m — 1:

W41 = Aq — aq — Bigi—1, (2-20)

where we set 81 =|| ro ||2, g0 := 0 and

1
5l+1 =|| W41 ||2, qi+1 = 5 — W41
I+1

This procedure is called the Lanzcos process and we summarize analogously:
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Lanczos method:

w = T
B = ol
I =0
while Bi41 # 0
Q1 = w/Bi
l = [+1
w = Agq
a = qgw
wo = w—oq— Big-
By = || w ||2
end

19

As before with our assumption we have §; # 0 for [ < m and f,,,1 = 0 in exact
arithmetic. Note that in both cases in each step of the iteration above we need only

one matrix—vector product of the form Ag;, which is very convenient for large sparse

matrices.

Remark 4

1. The equations (2.13) and (2.14) imply that the columns of @), span an m—

dimensional invariant subspace of A. The eigenvalues of H,, or T,,, respec-
tively, are then also eigenvalues of A. If in (2.15) and (2.18) the quantities
hit1; or Bi41, respectively, are very small, then we can consider the columns
of ; to span a subspace which is approximately an invariant subspace. The
eigenvalues of H,, or T,, can then be considered as approximations of eigen-
values of A. The Arnoldi and Lanczos method are therefore used to compute
such approximations for large matrices, see e.g. [3] and references therein.

. If the vectors ¢, ¢, ... are computed with the Arnoldi or Lanczos process
in finite precision arithmetic then one observes that orthogonality gets lost
with increasing [ due to roundoff errors. A monitoring of the orthogonality
together with a reorthogonalization of the computed vectors is often necessary.
In this introduction of the basic ideas we will not consider these rounding errror
effects, but they are important and have to be handled carefully in practice.
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Chapter 3

Iterative Methods

3.1 GMRES and MINRES

We have now an efficient way to compute orthonormal basis vectors ¢y, ..., q of
KCi(A, ro). If we want to follow the minimal residual approach in Chapter 1 we have
according to (1.10) to compute z; such that

|| AQiz — 7o ||2= minl | AQiz — 1o ||2 -

A4S

From (2.15) we have
AQy = QuH, + hyyriquie] forl=1,...,m—1

and AQ,, = Q. Hpp-
Note that with

A= 1o foll Ty ] | \wo,l € R
e 141,
we have Q H; + hyy1,q1416] = Qiv1Hi1. Thus (2.15) can be rewritten as
AQr = Qi1 Higay (3.1)
Because roy =|| 79 ||2 Q1161 for all [ we get
AQiz —ro = Quy1(Hig102— || 1o |2 e1) for L € {1,...,m —1}.
Therefore for any z € R' we have

| AQiz — 7o ||2=I| Quyr(Hig102— || 70 []2 €1) ||2
=|| Hiy102— || 7o [|2 €1 ||2,

where the last equation holds because Qlj;1Ql+1 =1Iy.

Thus to compute z; we have to solve the linear least squares problem

min || Hy12— || 7o [l2 €1 [|2 - (32)
zE€

21
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An efficient way to compute this solution is the following:

Compute the (Q R-decomposition
Hiy =V Ry,

where Vi, € R §s orthogonal and

A

Ry

R =
! 0 ... 0

e R with R, = [i” upper triangular.

Note that in our situation H;;q, has full rank, because hj1q; > Oforall j € {1,...,1}
and [ < m. Therefore R, is invertible and for any z € R! we have

I Hirgz— [ o l2 ex o=l Riz— || 7o |2 Viiaen [l -
The solution z; of (3.2) is then received as
a=lroll2 (B, 0]V e (3.3)

and the residual 7, is the absolute value of the last entry in the vector || ro [|2 V% €1,
ie.

| 7 llo=1l o |2 /41 Viisen- (3.4)

Fortunately the QR decomposition of Hessenberg matrices is very special and there-
fore the solution z; of the least squares problem as well as || 7; ||2 can be computed as
a simple update of z;_1, the solution of the previous step, and || r;_1 ||2, respectively.

This method is known as GMRES ( generalized minimal residual) and was in-
troduced by Saad and Schultz 1986 [9]. As the residuals are minimized over the
sequence of increasing subspaces KC1(A,79) C Kqo(A4,79) C ..., the norms of the
residuals must decrease monotonically.

In exact arithmetic we will get the exact solution after m = min{d, k} steps with
a residual equal to zero. We hope, however, that the || 7, ||o becomes small enough
to let o + Z; be a sufficiently good approximation to x for much smaller [. This is
what we will call ”convergence”. By ”speed of convergence” we mean the speed with
which || 7; ||2 goes to zero with growing I. The GMRES procedure can be sketched
as follows:
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GMRES (basic form):
wo = T
hio = |lroll2
l = 0
while hl-l-l,l >0
Q1 = w/higy
l = I+1
w = Ag
for j=1:1
h'jl = q]Tw
w = w— hlej
end
hia = w2
Compute z such that || Hy414, 2 — hioer ||z minimal
T =T + Q2
if o, =|| b — Az ||2< tol then STOP
end

tol is here a tolerance value, which we have to specify for our residual norm to be
considered small enough. Note that for the computation of z; and ¢; we will of
course make use of the updating methods mentioned above. Also it is not neccesary
to compute x; for each [. Multiplication with @); in each step is a bit expensive. It
is sufficient if we compute z; for the step [ in which ¢; is small enough.

For the computation in step [ we need all [—1 previously computed vectors g, ...,q 1
which are in RY. If N is very large and if we need many steps of the iteration to
get a small residual, then storage requirements and computational costs become a
problem again. To avoid these difficulties GMRES is usually restarted after a fixed
number j of steps with the current approximtion as new initial guess. This method
is called restarted GMRES or GMRES (j). The choice of a suitable j is not easy.
The speed of convergence depends critically on j and may vary drastically with j.

Figure 3.1 presents the relative residual norms || 7, || / || 70 ||2 as a function of the
iteration step [ in a semi logarithmic scale for the matrix Ins511 from Chapter 1
for GMRES and GMRES (10), where o = 0 and tol = 0.001. For GMRES the
residuals decrease nicely, but not as fast as we might want. Note that the dimension
is here only 511. GRMES (10) does not do well on this example.

If A is symmetric then we already know that we can substitute the Arnoldi method
by the Lanzcos method to compute the basis ¢, go,... for the Krylov subspaces.
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Relative Residual History for tol=0.001

— GMRES

GMRES(10) — GMRES (10)

e L, /i1,
-
o

. . . .
0 50 100 150 200 250
Number of Iterations

Figure 3.1: GMRES and GMRES(10) for Ins511

Here we only need ¢;_» and ¢;_; to compute ¢, and the entries oy_1, 51 and S; of
T;. Thus we do not run into the storage and computational costs problems as with
GMRES.

In the minimal residual approach we now have to solve the least squares problem

min || 12— | 7o [|2 €1 [l2
2€

in step [, and in analogy to the Hessenberg case the solution z; can be received by
simple updating from z; ;.

This method is essentially the method MINRES. Storage requirements and compu-
tational costs are here much less than for GMRES due to the fact that we have the
3—term recursion for the computation of ¢ and only tridiagonal matrices 7} instead
of | x [ upper Hessenberg matrices H; for [ =1,2,....

Another matrix from the Harwell-Boeing Collection is shermanl, whose portrait is
given in Figure 3.2. It is a symmetric 1000 x 1000 matrix arising from a discretiza-
tion of a partial differential equation in an oil recovery problem. The first plot in
Figure 3.3 displays the relative residual curve for shermanl if MINRES is applied
with g = 0 and tol = 0.001. One may of course also use GMRES, disregarding
the symmetry of A. The right hand side plot shows the relative residual for this
case. In exact arithmetic GMRES should produce the same residuals as MINRES in
this case, and the GMRES convergence displayed in the figure confirms this. Also
GMRES(10) is not too bad in this case.
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3.2 CG Method

Large linear systems coming from the discretization of partial differential equations
often have a system matrix A which is not only symmetric but also, like our example
(1.2), positive definite.

We can of course apply MINRES to exploit the symmetry of A. But positive defi-
niteness permits the derivation of an even simpler method.

Let us assume in the following that A is symmetric and positive definite (spd).
Then it is easy to see that T} = Q7 AQ; from (2.19) is also spd. Therefore T} has
a Cholesky decomposition T; = BZBIT, where B; is a nonsingular lower triangular
matrix. Because 7} is tridiagonal B, must even be bidiagonal, i.e. we have

aq 52 a1 a; by

T = B _ BB - s |

B o b q a;
Solving a linear system w = T}z is therefore extremely simple and has almost negli-
gible computational costs.

In the Ritz—Galerkin approach to choose an approximation of Z from K;(A4,ry) we
compute, according to (1.9), z € R! such that

Q AQuz = Qo =l 7o |l er-
Here Q] AQ; = T; and we have to solve
Tizp =|| o ||2 e1-
We can thus take full advantage of the symplicity with which such systems can be

solved.

This is up to a modification in the computations of z; = );2; the Conjugate Gradient
method (CG method). The modifications make it possible to get not only the norms
of the residuals in the computational process but also the residuals themselves. The
modification consists in a diagonal transformation of 7;.

Theorem 5
Let the assumptions and notations above hold.

There exists a diagonal matriz D, = diag(dy,...,dyn) € R™ with positive diagonal
entries such that the following holds



3.2. CG METHOD 97

e For W,, := QunD,, we have
WIW, = DpQL QD = D2, =: Ay = diag(\y, .. ., Am) (3.5)

and A1 =|| o ||3 .
e For Tm =D,T,D,, = [\\\} we get
Trn = By BL
with _ .
1
A
—32 1
B, = -% 1
Am
L Am—1 1 .
and
Q,, = diag(wi, - -, Wm)-
Proof
The proof is not too difficult but tedious and therefore omitted. O

Note that the columns of W,, differ from ¢y, ..., q,, only by a factor. Thus for all
I € {1,...,m} the first [ column vectors of W,, are still an orthogonal (but not
orthonormal) basis for IC;(A, rp). With these new matrices we get from (2.19)

AW, = AQuDry = QT Dy = QD D DT, = Wi AT, = Wi AT B Q. B
If we define Y, :== W,,,B,.” then
AY,, = WA B (3.6)
and
Y,,BL = W,,. (3.7)
Note that according to (3.6) and the definition of Y,:
YIAY, = YIW, A 'B.Qy = B ApA B Q= Q= diag(ws, - ., wm)  (3.8)

i.e. the columns vy, ...,y of ¥,, are A-orthogonal.
Moreover
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and if W, = [wy, ..., wy,| then

w, = q1d1 = 7‘70\/ )\1 =Tp. (310)
I 7o [|2

Evaluating (3.7) and (3.6) successively column by column together with (3.5), (3.8)
and (3.9) we get in analogy to the derivation of the Arnoldi and Lanzcos method a

recursion for wy, wo, ... and y1,ys, . .. as follows
Wiy = Y1=To
2_ T T
A = || 7o |l3=ryro and wy = ry Arg
and for [ > 1:
wy Wi . /\l
Ay = —wp — ~wWipy, 16wy = w — —Ay,
)\l )\l Wi
)\ _ T
+1 = Wi Wiyl
and
Al A
+1 ) I+1
=Y T Y = Wi, e Y = Y Wi
)\l /\l
— T A
W1 = Y11 3Yi41-

Note that \; = wfw;, # 0 as long as w; # 0 and w; = yf Ay, # 0 as long as y; # 0
because A is positive definite. We summarize the computation:

The CG—Lanczos procedure:
1 = W1 =Ty
I =1
while w; # 0
5 w] w;
l p—
yl Ay,
w1 = w— BAy,
wlT+1UJz+1
Yiv1 = — 1
Y1 = Wiy +Y41Y
l = [+1
end
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Our aim is still to compute the Ritz—Galerkin approximation Z; from the C;(A, r,),
i.e.

T = Quz;, where Tizp =|| 1o ||2 €1 for I € {1,...,m}.

It remains to show that Z; can be derived from w, wo, ... and ¥y, ys, - . ..

To see this we look at
T = QlDlDl_lzl = W,z with z; := Dl_lzl. (3.11)

Then

Ti% = DIDD; 2= Dy || 7o ||2 €1 = rg roey -

Because T, = B.4BY and B, is a lower triangular we get here for all [ < m
T, = By BT and thus

Zl = TgToBfTﬁleflel.
Therefore for all [
i =rgroWiB; TQ B, tey = rlroYiQ, ' B, tey.

A simple proof by induction shows that elements of g; = [n1, ..., ;] := Q' B, 'rirees
are given by 7; = ;\}—j forj=1,...,0l and all {.

Thus

_ Aj _ oy
T = Z iyj =21+ J]lyl. (3.12)

Inserting this recursion into the CG-Lanczos procedure and recalling that z; =
Ty + x; we get
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CG—method (basic form) :
Choose an initial guess z
Compute g = b — Axg

Set wy = y1 =19
[ =1
while w; # 0
B wlTwl
l =
le Ay
T = 211+ B
Wi+1 = W — BiAy
_ wlT+1wl+1

T w] wy
Yir1r = W1 T YW
{ = [+1

end

The computational costs per step are obviously very low. As before we need only

one matrix vector product Ay, per iteration step.

Moreover, we can prove that w; is the (I — 1)-st residual.

Lemma 6
With the notations above we have

rio1=b— Az, =w foralll € {1,...,m}.

Proof
w1 =Ty = b— Ax()

Assume that the statement holds for an [ > 1. Then

r=b—Ar; = b—A(xi_1+ By) =r-1— ABw

= w; — APy = wiy1-

|

So far we have seen that the CG-method is an extremely efficient and inexpen-

sive way to compute the Ritz—Galerkin approximations from the Krylov subspaces

Ki(A, o), where we also get the residual vectors in each step.

Because A is spd
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|| v ||a:= Vol Av

is a norm on R". It can be shown that

| 2 — (zo + Qi) [[a= min ||z — (zo+ Qu2) [|a -
ZG’C[(A,T())
Thus zo + @Q;2; is the best approximation from zq + IC;(A, ry) with respect to || - || 4-
Here the Ritz—Galerkin approach coincides with the minimum norm approach with
respect to || - ||4-

Figure 3.4 displays the relative residual curve for the spd matrix (1.2) for n=>50,
i.e. N = 2500. Here tol = 0.0001 and oy = 0. CG converges nicely. The realtive
residual drops below tol within 70 steps of the Iteration.

0

Relative Residual History for tol=0.0001
10 T T T T

107

,ﬁ
S,
T

IR

,_
S,
T

I I I I I I
0 10 20 30 40 50 60 70
Number of Iterations

Figure 3.4: CG for Laplace(50)

The CG—method was actually the first Krylov subspace method. It was introduced
in 1952 by Hestenes and Stiefel [6] and has had a large influence on the developments
of scientific computing, see [4] for historical perspectives.

3.3 BiCG and QMR

For unsymmetric linear systems we can apply GMRES. But as mentioned already
the main problem is that the computational costs are growing with the number of
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iterations. At step [ the number of operations is of order [N, because we need all
the preceding basis vectors qi,...,q. We would prefer to have only to deal with
two previous basis vectors like in the MINRES or CG method. The short recursion
for computing q1,...,q was due to the fact that in AQ,, = @Q,,T}, the matrix T,
was tridiagonal. If we want such a short recursion also for unsymmetric matrices
A, then we have to give up the orthogonality of @Q,,. We can try to develop a
corresponding recursive computation of basis vectors vy, . .., v, for (A, ry) as before
from a similarity transformation of A to tridiagonal form like in the Lanczos process,
where we only require linear independence of the vectors vq,...,v;. The following
theorem is the basis for such a process and corresponds to Theorem 3.

Let sq, 79 € RV\{0}. For ease of notation we will assume that Kx (A, 7o) and Ky (AT, s0)
are nonsingular.

Theorem 7
Let the assumptions and notations above be given.

The follounng statements are equivalent

(a) Kn(AT,50)"Kn(A, 1) has an LU-decomposition

Kn(AY, s0)" Kn(A, ) = LU = [IB\I] {Y” .

(b) There exists a nonsingular matriz V€ RN and 6,8, € R\{0} such that

Ve, =011y and elTV_1 = 5280T

VIAV = T = [\\\\\} = (tij)ijef1,..n}

is a tridiagonal matriz with non zero subdiagonal elements ;.1 ; and t; 11 for
all j.

and

Proof
Kn (AT, s0)"Kn(A, 1) = (55 A" 7%r0)i jeqr,...n -

This matrix is obviously symmetric and if it has an LU decomposition
KN(AT, So)TKN(A, 7’0) =LU

then with D = diag(uyy, ..., uxn) we have

KN(AT, So)KN(A, 7‘0) = LD[} where (7 = [ §:| .
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Because LDU = UTDLT it follows that U = LY. Define

V= Ky(A,ro) L7,

Then
Kn(Ar) =VILT =V [IXII] (3.13)
and
Ky(AT sp)" = (LDL"Kyn(A,70)™)" = Ky(A,r)"LDL" (3.14)
= vIipLr=v7" [i” :
Because Ky (A,rq) is nonsingular it follows that rg, Arg, ..., AN~!ry is a basis for

R”Y. Thus there exist cg,...,cy—_1 € R such that
N-1
ANTO = Z CjAj’I"().
=0

Like in Theorem 3 it follows from (3.13)

AV = AKN(A,r) LT = Ky(A,r)CL T =VITCL™T

0 Co
1

where C' = . and therefore H = LTCL™T = [Q] . Likewise

1 envaa
from (3.14) it follows

ATV T = ATK N (AT, 50)TL DY = Ky(AT,50)"CL D!
= VIDL"CL"D™!
0 &
1

where C = _ and therefore H = DLTCL-TD-! = [Q]

1 ey

Thus we have on one hand
VAV = H = [Q}
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and on the other

VIATV T = H = [m} =(VTAV) = H' = [&} -

From

it follows that

- I\J-r

The subdiagonal entries of H = LTCL™T are all 1 and of H = DLTCL™"D~" are
all non zero. Therefore T"s subdiagonal entries ¢, ; and ¢; ;4 are all non zero.

From (3.13) we see that Ve; = ry and from (3.14) ef'V~! = §sl for a § € R\{0}.

If on the other hand V'AV =T = [\\] with Ve, = 17y and e] V™! = b5l

then A' = VTV and A” = V- TT7VT for all | € NN.

Then
Kn(A,ro) = [ro, Aro, ..., AV rg] (3.15)
1
=V 5—[61,T€1, TN el =VU =V [w}
1
U
and
Kn(AT,50) = [s0,ATsq,..., AV 5] (3.16)
1 .
= V7 =17, TN e =V IO =VvT [ﬂ] .
2
i
Therefore

Kn (AT, 50) Ky (A, o) = UTVTVU =UTU = [h} [i”

and with D = diag(tiyq, . .., Upy) we get

KN(AT, So)TKN(A, 7’0) = (UTD_I)(DU)

- ININ :
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The theorem tells us that a similarity transformation of A to tridiagonal form is pos-

sible if and only if all principal submatrices of the symmetric matrix Ky (AT, s0)T Ky (A4, 7)
are non zero. (This is the characterization for the existence of an LU decomposi-
tion.) Whether this condition is satisfied or not depends on the choice of sy and rq.

If for example we choose sy L ¢ then the (1,1) element in Ky (AT, so)T Ky (A, 10),
which is the first principal submatrix, is zero.

It can be shown that the set of vector pairs (sg, ) for which Ky (AT, s0) Kn (A, 7o)
has no LU decomposition is of measure zero. For numerical purposes, however, this
insight does not help very much, because in the computations we have also problems
if (s9,79) is close to a pair of vectors, for which the product of Krylov matrices does
not have an LU decomposition, as we will see later.

There is no method of choosing ”good” starting vectors which does not need com-
plete information on A’s eigenvalue and eigenvector structure. But eigenvector and
eigenvalue computation is a much more difficult problem than solving the linear
system Ax = b.

For the following development we will choose ry = b — Axy and sy = ry and assume
that Ky (AT, 79)" Kn(A,r) has all principal submatrices nonzero. Then from the
theorem we know that there exists a nonsingular V- € RY*¥ such that

V€1 = (517“() and V_T€1 = 527“0 and (317)
V1AV = T, (3.18)

Denote V = [vy,...ox] and YV := V=T = [y, ... yn]
Then from (3.15) and (3.16) we see that

v1,...v;  span K;(A,ro) foralll € {1,... N} and (3.19)
Y1,...,y span K (AT, r) for all I € {1,...N}. (3.20)

Note that (3.17), (3.18),(3.19) and (3.20) still hold, if we replace T by D~'T'D and
V by VD, where D is a nonsingular diagonal matrix, i.e. there is freedom in the
way we scale the off diagonal entries of T by a diagonal similarity transformation.
Let us use this freedom here to get |t 41| = tj11; for j € {1,...,N — 1} and
[ o1 lla=I 91 [la= 1.

Then we can summarize the properties for the scaled 7 and V and Y = V7 as
follows:

1 1
V€1 = 77’0,Y€1 = — 7 T0
| 7o [l2 | 7o [l2

YTV = Iy (3.22)

(3.21)
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(03] 52
ylav = 7= =~ 181 = (3.23)
c . c . N
YN QN
AV = VT 3.24
ATy = Y717 3.25

vi,--.,v span Kj(A,ry) and yy,...,y span K;(AT) 7).
Evaluating these equations column by column we get

1 1
from (3.22): v = To Y= To
[ 7o Il2 I o l2
from (3.23): oy = yi Avy.
Assume that we have already computed vy, ..., v, 91, ..., yrand aq, ..., ap, B, - -+, B, Y1, - -

for [ > 1, where we set 51 = v1 =|| 7o ||2 and vy = yo = 0, then we get

from (3.25): Avp = Bivi_1 + aqup + Y1 v
from (3.25): ATy = yyi—1 + g + By
We can compute w1 = yv1 = Ay — B — oqu

w1 = By = ATy — vy — o
and from (3.23) : W U1 = Y1 B Yt = Vg1 Biga -

Because ;41 > 0 and |3;11] = ¥i41 we know that

Y =4/ lwli | and B = sgu(wlun) v

and we get

Up41 W1
U1 = —— and Y = .
Vi1 Bi1

This leads to the unsymmetric Lanczos method.

N
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Unsymmetric Lanczos method:
u = w=ry
i = m=|roll2sv0=v =0
I =0
while 541741 # 0
1 1
V41 = — WY1 = ,—wW
Y41 Bis1
l = [+1
u = AU[ w = ATyl
oy = .%TU
u = u— B 1 —
w = W—7%Y-1— oy
= wly
YN+1 =V ‘5|aﬁl+1 = sgn (5)’)’l+1
end

Comparing this procedure with the Lanczos method, we see that the computational
steps look very similar, but here each iteration requires twice as many computations,
in particular we have to compute 2 matrix vector products Av; and ATy, in each
step.

Ty = 0.

Note that in step [ we divide by 5,11 and 7;11. fj+1 and ;41 are zero for 6 = w
It is easy to see that if w = 0 or w = 0 in the step, where ;11 and ;.1 are computed,
then v,...,v; or yi,...,1 span an invariant subspace of A or A%, respectively. We
will have a breakdown in our computation, because we cannot go on dividing by
Bi+1 and 7,41, but we have an invariant subspace, which contains the solution of
AZ = ry. This is called a ”lucky breakdown”. But it is also possible that w # 0 and
u # 0 but § = w'u = 0. Then we cannot go on with our computation. Here we do
not get an invariant subspace of A or AT and the information we have computed so
far does not enable us to compute the solution of AZ = ry. This is called a ”serious
breakdown”. A closer look at the proof of Theorem (7) can show that this happens
if and only if the (I + 1)st principal submatrix of Ky (AT, 70)T"Kx (A, 1) is zero, i.e.
there is no LU—-decomposition.

If |B141] and 7,41 are very small compared to the norm of the vectors v and v from

which they are computed, then the vectors v;;11 and y; 11 will have very large entries
and then the results will be contaminated by round-off errors.
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The price that we have to pay for using the basis v1, ..., v; of (A, ry) with the short
recursion is this danger of possible serious breakdowns or nearly serious breakdowns.
In practice this method works often reasonably well.

So let us assume we get through with this computation. Then we may use a Petrov-
Galerkin approach to compute approximations to AZ = rq. A suitable second sub-
space is obviously K;(A”,ry) because we have yi, ...,y as its basis. According to
(1.11) we then compute z € R’ such that with Y; = [y1,...,%] and V; = [vy, ..., v/]

YlTAVizz =Tz = YETTO =|| To ||2 YlTV}el =|| To ||2 €1.

Thus we have to solve the [ x [ system

Tizi =|| 7o || €1 (3.26)

If we try to stay as close as possible to the CG—method, then we would use a
Cholesky—type decomposition of the form

T, = BlQlBT, 3.27
l

where B; is a bidiagonal matrix and 2; is a diagonal matrix. Such decompositions
exist for all [ € {1,..., N} if and only if T has an LU-decomposition, i.e. if all
leading principal submatrices are nonsingular.

Note that if we follow this way of solving (3.26) we have here an additional source
of possible breakdowns.

But if we do so, then we can also use exactly the same modification as in Theorem
5. The derivation is completely analogous. In analogy to the CG Lanczos method

we get here a method with four sets of vectors instead of two. This method is called
BiCG method.
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BiCG:
Chooose an initial guess xg
Compute g = b — Axg
Set wi =y =W =41 =71
=1
while w; # 0
’lI)lT’bUl
(6%} = =
leAyl
Z = 11 +toy
wir = w— oAy
W = W — aATyg
B = —
Y1 = w1+ By
Y1 = Wi + Bl
l = [+1
end

It can easily be shown that
w; = b—A$1_1 =T for = 1,2,...

The two types of possible breakdowns show in the following way. If Ky (AT, 70)T Ky (A, 7o)
has a singular leading principal submatrix then @] w; = 0 for a corresponding [ while
w; # 0 and w; # 0.

If the tridiagonal Ty has a singular leading principal submatrix, then one of the
factors g7 Ay, will be zero.

Instead of the Petrov—Galerkin approach we could think of a minimum residual
approach. In this case we compute that same vectors in V; = [vq,...,v] and W, =
[wi,...,w] for I =1,2,... with the unsymmetric Lanczos method and then have to
solve the least squares problem

min | AViz — 7o ||2 -
z€

But unfortunately this does not correspond to a least squares problem with parts
of the tridiagonal matrix 7 that we have at hand. If we want to use the 7;’s , then
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we could compute z; as the solution of the least squares problem

min | Tisr02— | o |2 €1 |2,
z€

T

0...0 Bi41
residual and the method is known as QMR.

where as before T;,1; = [ } . This is called a quasi—-minimization of the

Figure 3.5 displays the relative residual curve for Ins131, a smaller dimensional
version of Ins511. Here tol = 0.001 and x¢ = 0. The erratic behavior of the BiCG
residuals is typical.

Figure 3.5: BiCG and QMR for Ilns131

There are many more Krylov subspace methods and the choice of a suitable one is
not easy and depends on the class problem that has to be treated. A good assesment
of the major algorithms is given in [8].



Chapter 4

Preconditioning

In many cases the basic iterative methods converge too slowly or even fail to con-
verge. Studying the convergence of the methods one finds, roughly speaking, that
the convergence is very good for matrices which have eigenvalues clustered in prin-
ciple around 1. In Chapter 1 we saw that the minimum residual approach allowed
an upper bound for the residual (2.10):

Irille = lla(Arollz < [ X2 I X7z [I7o]l2 min max [GA)]-

Ggell, Ae{A,..., )}

This equation is the starting point for a number of results on upper bounds for the
residuals. It can, for example, be shown that if we have an unstructured A for which
the symmetric matrix A7 + A is positive definite then this inequality can be used
to proof that for the residuals in GMRES we have

1
Ao (AT+A)2 ?
min )
|z < 1—m | 7o [|2,

where Apin(M) and Apax(M) denote the minimal and maximal eigenvalue of the
symmetric matrix M, respectively. In particular for A spd this bound specializes to

!
condy(A)? —1Y)2
Il < (S22 2) il

where condy (M) denotes the condition number || M ||5|| M~ || of M. There are
similar bounds for the residuals in other Krylov subspace methods. Such bounds
indicate that the residuals shrink faster if the eigenvalues of A are clustered around
one point or the condition number is close to one.

Therefore the iterative methods are combined with preconditioning, i.e. instead of
Az = bone solves M~'Ax = M~'bor AM~'y = b, where M~'A or AM~"! have bet-
ter convergence properties for the iterative method. M~! is called a preconditioner
of A. We could try to find a suitable matrix M or M ! directly. If we have M, then
we would of course not form M ! explicitely. In the matrix vector products we need
in the iterative methods, we would compute z = M~y by solving the linear system
y= M-z

41



42 CHAPTER 4. PRECONDITIONING

M or M~ should be such that

e M~1is close to A~! in some sense
e computing M or M is not too expensive

e the system My = z is much easier to solve than the original system (for the
case that we compute M)

Applying a good preconditioner is crucial for the success of an iterative method.
Here we will focus on two choices of M which are based only an algebraic techniques
and work for general matrices.

4.1 Incomplete LU Preconditioning

The standard Gauflian elimination for A is equivalent to the computation of the LU

decomposition A = LU of A, where L = [B\ } and U = [ﬂ] L and U are

easy to invert, because of their triangular form. For large sparse A the computation
of the exact L and U is prohibited because of the arising fill-in. The basic idea in
the incomplete LU preconditioning (I LU preconditioning) is to use L and U but
skip some parts of the computations and the corresponding entries in L and U

If A= LU with L = [B\ } U = [i” , the entries of L and U can be computed

successively by the following formulas:
i1
ui; = ag— Yl
k=1
1 =
lij = &= (Gij - Ukjlik> :
W k=1

The ILU(0) preconditioning computes these quantities with the constraint that
entries of L and U whose position corresponds to zero entries in A are ignored (set
to zero):

a;; = 0= l;; = u;; = 0.

The number 0 in ILU(0) indicates that in this case we allow no fill-in in the ap-
proximate LU factors.

A simple implementation can be derived if we use (a copy of) the matrix A and
overwrite it stepwise by the entries of L and U.
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ILU (0)
FORi=2,...,N
FORk=1,...,i—1

QGik = i/ akk
END
FOR j=k+1,...,N
IF Q5 75 0
Qi = Qi — QigQgj
END
END

END

The entries of L and U are then in the lower and upper triangular part of (the
copy of) A. This preconditioning is easy to implement but often there are stability
problems.

We could try to improve the situation by allowing a moderate amount of fill-in. One
might for instance allow in addition to the sparsity pattern of A that p co-diagonals
on both sides of the main diagonal fill-in. This is often denoted by ILU(p). The
computation is still relatively simple, e.g.

ILU (1)
FORi=2,...,N
FORk=1,...,i—1

IF a; 7é 0
Qi = Qg / 933
END

FOR j=k+1,....,N
IF Q45 75 0 OR aikakj;éO

Ai5 = Q5 — Qi Oy
END
END
END
END
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Another variant is the incomplete LU—-factorization with numerical dropping. There
we choose a drop tolerance factor € < 1 and do not compute entries in I and U whose
absolute values decrease more than by this factor. This variant is often denoted by
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ILUT.
ILUT:
FOR i = 1,...,N
w = (aj,.---,a;N),€ =€ || w
FORk=(ﬂ...,i—“\i) i=ellwll
IF wy # 0
Wy = Qik/ukk
IF |wk| < €
Wy =0
END
END
IF wy, # 0
FOR j=k+1,...,N
IF Ukj 75 0
wj = wj—wkukj
END
END
END
FORj;=1,...,i—1
IF w; # 0
IF |wj| > €
Lij = wj
END
END
END
FOR j=i,...,N
IF w; # 0
IF |w;| > €
Uij = W
END
END
END
w=20
END

There are many variants of incomplete triangular decompositions and choosing a

suitable preconditioner together with a suitable

Krylov subspace method is not all
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easy.

Depending on the problem one might also need column permutations in the ILU
preconditioning, which makes the procedure more complicated. The methods still
have numerous problems. But their advantage is the easy implementation.

Figure 4.2 shows the residual curves for various Krylov subspace methods with
ILU preconditioner. Compare with Figure 3.1 to see the big improvement in the
convergence for GMRES(10).

Ins511: Relative Residual History, ILU preconditioning
with fill-in factor=1.5318, tol=1e-05 and droptol=0.001
T T

— GMRES(10)
cGS

— BICG

— BICGSTAB )

— QMR

IAATIAR

GMRES(10)
-5 BiCGstab

5 10 15 20 25
Number of Iterations

Figure 4.1: Ins511 with ILU(0)

4.2 Sparse Approximative Inverse

One of the severe drawbacks of ILU is the fact that the computation of the factors
is very sequential. But for large systems one would also like to perform the iterative
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solution method on parallel computers. There are a number of techniques to get
parallelizable preconditioners. We will here only briefly mention the concept of one
of them, the SPAI (sparse approximative inverse). The idea is here to compute a
matrix M ! with M ! ~ A~! directly as the solution of the optimization problem

min || AM — I ||F,
MeS

N

where || C [|[p= (| >_ ¢} is the Frobenius norm of a matrix C' € RN and S is
$,j=1

the set of all matrices with a prescribed sparsity pattern.

The following observation shows that this optimization performs nicely. Let A =

lai,...,an] and denote M = (m;;) = [m4,...,my]. Then
N N
min | AM — T [|3=min ) _ || Am; —¢; 3= _(min || Am; —¢; |3),
j=1 j=1

i.e. the minimization can be done for each column independently.

If Z; is the index set of prescribed non zero entries in the j—th column of M, then

m; = EI: m;je; and therefore
€L

min || Am; — ¢; |[3=min || ) am;; —e; |1} -
iEIj

The solution of the problem requires only the columns a;,7 € Z;, of A to compute
m;. This is highly parallelizable.

If we choose a sparsity pattern for M, e.g. the sparsity pattern of A, A” or |A|+|A|"
then for all j € {1,..., N} the set Z; is defined and we have to solve a problem of
the form

min || Az —e; 15

where A; contains the columns a;, of A from Z;. x € R’ corresponds to the m;; and
therefore [ is the number of indices in Z;. This is a simple least squares problem
that we can solve using the ()R decomposition of A; or via the normal equations.

Figure 4.2 displays the relative residual curve for Ins511 for various Krylov subspace
methods using a SPAI preconditioner. Here it is only GMRES that works well with
the preconditioner.
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. SPAI Preconditioned Ins511 : Relative Residual History for tol=0.001
10 T T T T
— GMRES
— GMRES (10)
— BICG
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10° — QMR .
10" - BICG i
10° | .
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10 v A
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Figure 4.2: Ins511 with SPAI
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