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Abstract

We report on a new iterative method for regularizing a nonlinear operator equa-
tion in Hilbert spaces. The proposed TIGRA-algorithm is a combination of TIKhonov—
regularization and a GRAdient method for minimizing the Tikhonov—functional. Un-
der the assumptions that the operator F' is twice continuous Fréchet—differentiable with
Lipschitz—continuous first derivative and that the solution of the equation F'(z) = y fulfills
a smoothness condition we will give a convergence rate result. Finally we present some
applications and a numerical result for the reconstruction of the activity function in Single
Photon Emission Computed Tomography (SPECT).

AMS Classification. 65J15, 65J20, 65J22, 44A12

1 Introduction

This paper is dedicated to the stable solution of a nonlinear ill-posed operator equation

Fz)=y, (1)
where F': X — Y is a map between real Hilbert spaces X, Y. If only noisy data y° with
Iy’ —yll <o (2)

are available, then the problem of solving (1) has to be regularized. Due to the importance for
technical applications, many of the known regularization methods for linear operator equations
have been generalized to nonlinear equations during the last decade. Roughly speaking, the
developed methods can be separated into two classes: Tikhonov-regularization and iteration
methods. Tikhonov-regularization might be the best known method. As an approximation to
a solution of (1), one takes a minimizer xi of the Tikhonov—functional

() = Iy’ = F@@)|” + allz — z|” (3)

a > 0. The function Z plays the role of a selection criterion, xi is an approximation to a
solution of (1) with minimal distance to Z. The theoretical results for Tikhonov-regularization
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are encouraging: Under rather weak conditions to the nonlinear operator F' it can be shown
that, for properly chosen regularization parameter «, the minimizing function xi is a good
approximation to a solution z, with minimal distance to Z ( we will refer to such a solution as
Z-minimum-norm solution). Under a smoothness condition to the solution, convergence rates
can be shown [9]. However, there are some open problems. In most of the results it is assumed
that the minimizing element xi of (3) is known. For a numerical realization, a:i (or a sufficient
good approximation) has to be computed. For a linear operator A, the minimizer of (3) is
unique and can be computed by

2 = (A"A+al)7t A%y

For a nonlinear operator F, (3) might have several (local) minima. Using an optimization
routine for minimizing the Tikhonov-functional one might end up with only a local minimizer
of (3), and therefore with a bad approximation to the solution z,. Another problem is the
selection of the regularization parameter «. It is well known that a posteriori parameter choice
rules like Morozov’s discrepancy principle in general yield better results than a priori rules. But
for general nonlinear operators F' a parameter fulfilling Morozov’s discrepancy principle might
not exist (for more details, cf. Sections 2 and 6).

In contrary to Tikhonov-regularization, iteration methods produce an approximation to the
solution within every iteration step. Due to the ill-posedness of the operator, the iteration has to
be terminated early enough, and the termination index of the iteration is then the regularization
parameter. Several iteration methods for nonlinear operators were under investigation during
the last years, e.g. Landweber methods [13, 23], Levenberg—-Marquardt methods [11], Gauss—
Newton [1, 2], conjugate gradient [12] and other Newton—like methods [15]. The computation
of a new iterate is mostly not difficult to perform. For Landweber’s method, one has to evaluate
the operator F' and the adjoint of the Fréchet-derivative of F'. For all other methods, one has
to solve a linear equation additionally.

The drawback is that the analysis of these methods appears to be more difficult than for
Tikhonov-regularization. In order to show regularization properties, convergence rates or to
introduce stopping rules for the iteration, one has to impose rather stringent conditions on
the operator and its Fréchet derivative. For example, the convergence analysis for Landweber
iteration was given in [13] under the condition

|1F(Z) = F(z) - Fl(z)(@ - 2)| <nl|F@) - F@)l|,  n<1/2, (4)
and in [5] a Newton—Mysovskii condition,
I(F'(2) = F'(2:)F' ()% = O(lla = 2.]) , (5)

(F'(z)* denotes the left inverse of F'(z) ) was used to analyze Landweber’s method and the
iteratively regularized Gauss—Newton method. However, for practical applications, eg. from
medical imaging, it is difficult to prove the required estimates, and it would be therefore of
interest to develop iteration methods for which convergence results can be shown under weak
restrictions to the operator.

By reviewing the analysis of the above mentioned iteration methods one gets the idea that
conditions like (4) have to be introduced mainly due to the ill-posedness of the operator F'. If
one considers Landweber iteration, then this is a steepest descent method for minimizing the



residual R(z) = ||y’ — F(z)]|. It is well known [17] that the steepest descent method converges
to the unique minimizer of the functional if R(z) is convex. But even for linear operators this
condition is violated in case of an ill-posed operator. On the other hand, we have shown in [25]
that the Tikhonov-functional (3) is locally convex for bilinear operators, and that the steepest
descent method can be used to find a minimizer of ®,(z). Thus the main goal of this paper will
be the development of an iterative algorithm which combines Tikhonov-regularization with the
steepest descent method. The resulting TIGRA-method (Tikhonov-Gradient-method) will be
defined by

7 =1+ B(F' (@) (y — F(2))) + ax(a) — 7)) . (6)

k+

Here, ;. denotes a scaling parameter. We might remark that in contrary to the steepest descent
method for minimizing ®,, the regularization parameter a4 will change during the iteration.
As a stopping rule for the iteration we will use a Morozov-like discrepancy principle. We might
remark that Scherzer [28] considered a similar iteration procedure under the much stronger con-
dition (4) to the operator F. He named it a modified Landweber method, but as our approach
for the analysis of the iteration as well as for the choice of the parameters is totally different
from [28] and is based on the interaction of Tikhonov-regularization with the gradient method,
we feel that Tikhonov—Gradient method is an appropriate name for the iteration.

Throughout this paper we will assume that the following conditions hold:
1. F'is twice Fréchet—differentiable with continuous second derivative ,

2. The first derivative is Lipschitz—continuous,

[ F"(z1) — F'(z2)|| < Lllzw1 — 22| - (7)
3. There exists w € Y with
T, — T =F'(1.)w, (8)
4. and
|w|| < 0 and Lo < 0.278 . (9)

We will show that the TIGRA-algorithm is a stable method under the above conditions and will
give a convergence rate result. Moreover, we might remark that our conditions are only slightly
more restrictive than the conditions for the classical convergence rate result for Tikhonov-
regularization given in [10]. (cf. Section 2).

The structure of the paper will be as follows: In Section 2 we will collect some well known results
for Tikhonov-regularization for nonlinear operators. Section 3 contains results from operator
calculus for nonlinear operators. In Section 4 it will be shown that the Tikhonov—functional has
a convexity property in the neighborhood of a global minimizer of the functional. A convergence
analysis for the steepest descent algorithm for minimizing the Tikhonov-functional is given in
Section 5 . It is shown that the algorithm converges to a global minimizer of the Tikhonov—
functional if a starting value for the iteration within the above mentioned neighborhood is
known. Section 6 is dedicated to the investigation of the continuity of the mapping @ — a:i,

where xi denotes a global minimizer of ®,. The main result is that this mapping is continuous
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under the above given assumptions, and that especially a regularization parameter « exists such
that Morozov’s discrepancy principle holds. The TIGRA-algorithm is introduced in Section 7,
and a convergence rate result is proven. Finally, in Section 8, we will give some applications.

2 Some results on Tikhonov—regularization

In this section we will collect results on Tikhonov-regularization which will be used later on.
In 1989 Engl, Kunisch and Neubauer [10] gave the first convergence results for Tikhonov—
regularization. If a Fréchet differentiable operator F fulfills (7) and a smoothness condition (8)
with L||w|| <1 is given, then they could show for an a priori parameter choice o ~ ¢ the error
estimate

lz, — @]l = O(V6) . (10)

For our purpose, we will need an intermediate result of the proof for this Theorem. The authors
show that the following estimates hold:

Iy = Fz)ll < 6+ 2afwl, (11)
§ + alwl|

vay/1—Liwl

The proof of the Theorem and the above estimates can be found additionally in [9], pp. 245.
We might remark that for these estimates no information about the parameter choice was used.
Setting o = §/n, we obtain

(12)

Iz, — 2.l <

AN/ s e

§
r —xdl <
Y =

The function ¢(n) has a minimum at n = ||w||, and so the best a priori parameter choice would
be ape = §/||w]|. Of course, vy is usually not known, but p with ||w|| < p might be available
and so we could use Gy = 6/0 < e instead. It is well known that a too small regularization
parameter might cause a higher instability, and it seems therefore reasonable to allow only
regularization parameters such that &, < a = /7, i.e. to choose < p.

It is well known that a posteriori parameter choice rules lead in general to better results than a
priori rules. One of the most used rule is Morozov’s discrepancy principle, where a regularization
parameter « is chosen such that

Iy~ Pl =ed,  e>1, (13)

holds. If such a parameter exist, then it is easy to show that :vi fulfills an error estimate (10).
In [24] a modified discrepancy principle was used. There, the regularization parameter was

determined such that
§< |y’ = F(a')| <ed, c>1, (14)

holds, which is more realistic for practical applications. If such a parameter exists, then the

error estimate 12
2(1 + ¢)||w]] 1/2
ot -l < (=) o (15)
1 — Ll|w]|
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holds, cf. [24]. Additionally, some simple conditions under which a parameter with (14) exists
were given in this paper.

Besides the question of the proper choice of the regularization parameter, for arbitrary nonlinear
operators it is an open question how the minimizer of the functional can be computed. In [25]
we have shown that the function

0on(t) = u(z +1th) teR heX

for a bilinear operator F is a convex function for all ¢, h with ||th|| < r(«) and r(a) = O(a++/«).
As a consequence the steepest descent method could be used to minimize ®, for this class of
operators. In Sections 4 and 5 this result will be generalized to twice Fréchet differentiable
operators with Lipschitz—continuous derivative.

3 Some results from operator calculus

The analysis of Tikhonov-regularization and the TIGRA-algorithm in the following sections
will be based mainly on the Taylor—series for F' and especially on the fact, that for twice
continuous Fréchet—differentiable operators the second order remainder of the series can be
expressed in integral form, i.e. we have

1
1
Fla+h) = F(z) + F@)h+ / (1= 7)F"(z + vh)(h, h) dr (16)
0
Due to the Lipschitz—continuity (7), the second derivative can globally be estimated by

1" () (R, )| < LA - (17)

Moreover, we obtain for the first Fréchet—derivative
1
F'(:r—i—h):F'(ac)—f-/F”(x—i-Th)(h,-)dT (18)
0
In the following section we have to use some properties of the integrals given in (16) and (18),
and so we might esp. recall the definition of an integral of a vector function of one real variable:

If f:]a,b] — Y is a mapping into a Banach—space Y and —oo < a < b < oo, then we can
define the partial sums

n
Sz, = Zf(t_i)(ti —ti_1), ticn <t; <t;,
i1

where Z,, is a partition a =ty < t; < --- < t, = b of [a,b] and AZ,, = max{t; — t;_1} is the
mesh of the partition. As for the classical Riemann integral, we define

b

/ F(t) dt = Tim Sy, (19)

n—oo
a



if such a common limit exists for all sequences of partitions (Z,) with AZ, — 0 as k — co. It
is well known that the integral exists if f is continuous on [a, b]. With respect to (18), we can
define for fixed h the operator B, : X — Y by

Buk 1= / F"(z + 7h) (h, k) dr (20)

0

and observe that B is a linear operator in k: Indeed, the partial sums for the above integral,
Sz (k) = F"(x + %h)(h, k)(7: — 7i21),
i=1
are linear in k£ and thus the limit, By, is linear. Thus we obtain from (18)

F'(z + h) = F'(z) + By, (21)

and especially
F'(x+ h)* = F'(x)" + B;,, (22)

which we will need later. Another frequently used property of the integral is

1 a
1
/f(aT) dr = - /f(T) dr . (23)
0 0
Indeed, by setting k; = a7;, + = 1, ...n, we find kg = 0, kK, = a and

Zf(m_'i)(ﬂ' = Ti1) = 1if(l_ii)(ﬁi — Ki-1) ,

a “

where the right hand side of the last equation is a partition of the integral on the right hand
side of (23). As for Riemann integrals, we get the Fundamental Theorem of Calculus: If

Gt = [ gtr)ar., 4

then G is differentiable with
G'(t) = g(t) . (25)

For a proof, we refer to [32], Part I, p. 77.

4 A convexity property of the Tikhonov—functional
Tikhonov-regularization requires the computation of a global minimizer of the functional
Oo(@) = Iy’ — F@)I” + |17 — | . (26)
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For nonlinear operators F' it might be difficult to compute a global minimizer of the Tikhonov—
functional. There might exist several global minima and even local minima. In such a situation,
most of the known algorithms will only manage to converge to a local minimum. Our aim is to
use the steepest descent method for minimizing ®,. It is well known that steepest descent will
converge to (the global) minimizer of a functional, if it is convex. In [25] it was shown that this
condition can be relaxed for the Tikhonov—functional with bilinear operator F'. In the following,
this result will be generalized for arbitrary nonlinear operators F' with Lipschitz—continuous first
derivative and continuous second derivative.

For what comes we will set

Cu %/ (1= 7)F"(x + trh)(h, ) dr . (27)
We obtain with (16)
F(z+th)=F(x) +t-F'(x)h+t*- Cy(t)(h, h) (28)

and

oz +th) = o) — 2t ((y° — F(z), F'(z)h) — afz — &, h))
+(|F'(@)R]* — 2(y° — F(x), Co(t) (h, b)) + ol A]]?)
+2t3(F' (2)h, Cy(t) (h, )
| Co(8) (B D) - (29)

Proposition 4.1 Let C,(t)(h, h) be defined as in (27), and define g(t) : Rt — Y by
g(t) = t*C(t)(h, h) - (30)

Then g(t) is twice differentiable and the following properties hold:

t

i) o(t) = % / (t — ) F"(x + vh)(h, h) dr , (31)
i) J(t) = % / F'(z + 7h)(h, h) dr = ; / F'(x+ t7h) (h, h) dr | (32)
i) ') = %F"(m +1h) | (33)
and .
w)  [llg@I*]" =2({g"(®), 9(®)) + g D) - (34)
Proof:

i) By using (23) with f(t7) = (¢t — t7)F"(x + tTh)(h, h).
ii) By using (31), the product rule, (25) and (23).
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iii) Follows from (32) and (25).
iv) For differentiable mappings u(t),v(t) : R — Y we have

(u(t), v(t))" = (u(t),v'(t)) + (u'(t), v(t)) , (35)

and applying this formula twice gives (34).

In the following we would like to investigate the area of convexity of the function
Pun(t) = Bo(a, +th),  teR [h|=1. (36)

where xi denotes a (global) minimizer of the functional ®,. We have shown in [25] that ¢_ , (?)
with a bilinear operator is convex as long as |t| < 7(p)(a + /) holds, where 7 is a positive
function. For twice Fréchet-differentiable nonlinear operators we will only be able to show that
@, ,(t) is convex for [t| < r(o) min{a, \/a}.

Proposition 4.2 Let C , (t)(h, h) be as in (27) and C , (t)(h, h) be defined by

(o7

1

0, (0)hh) = g / F'(a’ + trh)(h, b) dr . (37)

Zo

0

Then we obtain for the second derivative of ¢, (t) with ||h|| =1

o) () = 2F'(@)hl® = (¥’ = F(z.), F"(z] +th)(h, h)) + 20

+t(F’(xé)h,405(t)( h) + F"(z’ + th)(h, h))
+t2(F"(2° + th)(h, h),C ROIAD)
+2t2”0m:1 () (h, h)1* . (38)

Proof:
[ o« . .
r_ is a minimizer of ®,, and thus

0o (7,) = =2((y* — F(z), F'(2)h) + alz — 2, h)) =

(e}

(cf. (29)). Defining ¢(¢) as in (30) and z replaced by xi, ¢, (t) can be written by (29) as
Cun®) = 0.0+ ([F'()h]” + @) — 20 — F(a), 9(1)) (39)
+2(t- F'(2) )b, g()) + g ()] -
We have

(EUF @RI +a)" = 2(|F' @)Al +a)
(' = F(a)),9(t))" = (' —F(),¢"(1)) -



Using (35) with u(t) =t - F'(z’)h, v(t) = g(t) we get
(u,v)" = W, v) + (u,v") + 2(u’, ") ,
and, because of v'(t) = F’(xi)h, u'(t) =0
(t- /(@ ), g()" = 1(F"(a? )b, " (8)) + 2(F'(a? ) (1))

Thus we have found

"

on,(8) = 2(|[F' (@ )l +a)—(y’ = F(a}), ¢" (1)) +26{F" (2 ), ¢" (0))+4(F" (), ¢ (£))+ [l DI°]”

and using (31)—(34), (37) yields (38).
U

Proposition 4.3 Let § = na with n < p. The norm of F'(:vi) can be estimated by

1P/ < max { Llly? — F@I|+ [IF@l], e + (—— +1) |F'@)] = K . (40)
VI—Lo \1-Lg

Proof:
Itisfora>1

IF'E) < [1F'(=)) - F'@)| + | F' @)
7
< Ll -z + |F' @)

—~
~—

and it follows by the minimization property of xi and a > 1

1 1
s —12 §

_ < Sd(d') <~
|z, —z|" < - () < >

Ta(2) < |y’ = F@)I,
and thus we have found for o > 1
IF' ()l < Llly* = F(2)|| + ||F'(2)]] - (41)

Moreover, we have for o <1

IF" ()| < [|F'(z) = F' ()| + | F'(2.) = F'@)]| + | F'@)] , (42)
and the first term can be estimated as follows: By (7),

9 8
1F'(z,) = F'(z,)|| < Lllz, — .| -

For oo < 1 we use estimate (12) and get
d+ af|w]

<
Veay/1—Ljjw|

n+ [jw]
< e
1—L|jw|
20
1—Lo

é
[z, — .|l

IA



For the second term in (42) we obtain

[1F (z.) = F'(@)l| < Ll|z — .|| = L||F'(z.) ]|
< Llw[[IHF' @) + Lllw]l[|F'(z.) — F'(Z)]
< LlwlllE' @+ (Zllw)*[F @) + Ll D)*[[1F () - F'(@)]
< ||F'(f)IIZ(L||wII)j + (w1 F" (z.) = F' (@) -

The right hand side converges because of L||wl|| < 1 for n — oo,

1 1
Fl(z,) — F'(@)|| < ||F'(2)||———— < [|F'(Z)||——— 4
(@) = F@) < 1P@I =g < WF@I=, (43)
Thus we have found for o <1
1P @) € =2t (1) P (@) (44)
T V1=1Lp 1—-1Lp
and combining (41), (44) yields (40).
O
To simplify the notation, we will define
a(t,h) = (F"(z +th)(h, h),C , (t)(h, h)) +2||C , (&) (A, R[>
(45)
bt,h) = (F'(a)h.AC , (O)(h,h) + F"(x_ + th)(h, ) ,
(46)
e(t.h) = 2P (@] + 20 — (4 — F(al), F"(a + th)(h, ) .
and have therefore
. () = c(t, h) +tb(t, h) + t*a(t, h) . (47)

Proposition 4.4 Let a(t, h), b(t, h) and c(t, h) be defined as in (45) and o be chosen such that
0 = na with n < 0. Moreover, assume that v is chosen such that

3 3
7+§L||w|| <7y+ §Lg< 1 (48)
holds. Then a(t,h), b(t,h) and c(t,h) can be estimated independently of t, h:
3
la(t,h)| < ZL2 (49)
lb(t,h)] < 3LK (50)
c(t,h) > 2va, (51)

where K is defined in (42).
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Proof:
According to (17), (27) and (37) we have with ||h|| =1

1

1 L
o, @enl < 3 / (1= )P (& + trh) (b, )| dr <
¢ 0
2 // L
IC, @) (R < IIF . +trh)(h, b)| dr < <3
and thus
~ 3
la(t, h)| < ||[F"(z + th)(h, WIC ; @)(h, W) +2C ; (#)(h, B)|I* < ZLQ :
Similarly,

bt < IE ) (4”% (t)(h, W)+ 1 F" (&, + th) (B h)||) <BLIF(z,)

(42)
< 3LK.

¢(t, h) can be estimated as follows:

e(t.h) ~ 20 = 2P )R +a) — (4 — F(), F'(a + th)(h, ) — 270
20— Lljy’ — F(a)]| - 270

,\
=1V
=

> 2a— L(6 + 2a||w]]) — 2y«
= 2a— L(na+2a||lw||) — 2y«
3
> 2<1—§LQ—7)Q>O. (52)
U

Theorem 4.5 Let § = na, n < o. The function ¢_,(t), ||h|| = 1, is under assumption (48) a
convex function for all

[t] < — mln{ \/_\/ 3K 2+\/_ } =:7(a), (53)

where k and K are defined in (57), (42) . Especially holds

n

@, ,(t) = 2ya (54)

for |t| < r(a).
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Proof:
It is
@ (t) = c(t,h) + tb(t, h) + ta(t, h) .
We have to consider two cases:
1. Let ¢t > 0. Then

gpi;h(t) > c(t, h) — t|b(t, k)| — t*|a(t, h)| for b(t,h) <0, (55)

o, () > cft,h) —t*|a(t, b)| for b(t,h) > 0 . (56)
2. Let t < 0. Then we have

(p;h (t) > c(t,h) —t*a(t,h)| for b(t,h) <0,

gpg,h(t) > ¢(t,h) — t|b(t, h)| — t*|a(t, h)| for b(t,h) >0 .

Thus it is sufficient to consider the first case only. From (56) follows with (49) and (52)

123 3 3
¢ (t)—2ya>2 (1 — §LQ - ’Y) a— Lt = p(t) .

4
Setting ;
nzl—iLQ—y, (57)
then p;(t) has the zeros
8K
t1,2 =+ @\/& . (58)

and because of p;(0) > 0 holds
P, (1) > 27a
for |t| < [t12|. From (55) follows with (49), (50)

"

3
¢, ., () =2y > 2k — LKt — ZLZt2 =:po(t) ,

1 8ka
tio = — —ZK:I:\/ALK2 —
12=7 [ + 3
Now let i, = min{|t|, [t2|}. Then
8ka
[—2K+ \/4K2 + 3

RO

2K + (/4K? + $ka

8ka if 8 2
K (24 V8) if sk <4K

1 /s e 8 2
T AVE L 1f§/§a>4K.

12

and po(t) has the zeros

tmin =

2o I

v
SIk




Combining (58), (59) we have shown gog L (t) > 2vya for
1 < 1 . 8K 1 8Kk 8Kk
—min q 4/ , \/ :
= L 37142V 3 "3K(2+8)

1 . 1 8Kk 8ka
= Zmln{l_}_\/ﬁ\/ 3 ’3K(2+\/g)} (60)

5 The steepest descent method

The steepest descent method is a widely used iteration method for minimizing a functional
® : H —» R Although it is sometimes slow in convergence, it seldom fails to converge to a min-
imum of the functional. For operators F' which can be decomposed into F(z) = Af + B(f, p),
x = (f, u), where A is a linear and B a bilinear operator, we have shown in [25] that steepest
descent can be used to find a global minimizer as long as a starting value z(, belonging to the
area of convexity of the function ¢, , (t), for the iteration exists. The techniques developed in
[25] can in principle be used for a convergence proof of steepest descent method with twice
continuous Fréchet—differentiable operators. However, there are some significant changes in the
proofs. Additionally, we will need later on some quantitative estimates on convergence rates
of the method and the determination of a step size parameter. Thus we will give in short a
convergence analysis for the steepest descent method for minimizing the Tikhonov-—functional
D, (z).

The method is defined by
z =T, + Bkv(ba(xk) ) (61)

k+1

where V®,(z,) denotes the direction of steepest descent of ®, at point z,, and [, € R is a
step size or scaling parameter. According to (29) we find

V&, (z,) = 2(F'(z,) (y° — F(z,)) — ez — 7)) . (62)
For the following, we might denote by
Kyo)(2') = {x €X|lz=2" +thteRheX and [[th]| < r(a)} (63)
(for the definition of r(«), see (53)).

As in [25], we define
hy == xi -z, , (64)
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and functions o1 (t), v2(t) by
01(t) = Pz, + thy) (65)
Pa(t) = Dyla —thy) . (66)
1 and @9 can be rewritten as

oilt) = ¢i(0)— 2V,
palt) = ¢a(0) + 2V,

l‘k), hk>t + C1(t, hk) . t2 + b1 (t, hk) . t3 =+ a1(t, hk) . t4 (67)
"), bt colt, hy) - 82+ bo(t, hy) - 2 + as(t, hy) - 4 (68)

v

~—~~

X

—~

15

where the coefficients ¢ (¢, hg), b1 (t, hx), a1(t, hx), ca(t, hx), ba(t, hi), as(t, hy) can be determined
as in (29), e.g.

at,he) = |1F(z)hell* = 2(y° = F(z,), C, (t)(hw, i) + o[ h|” (69)
bi(t, ) = (F'(z )b, O, (t) (i, b)) (70)
ar(t,hi) = |IC, (t)(hw, i)l (71)

In contrary to the setting in [25] do these coefficients depend additionally on ¢, which is the
main reason that we cannot completely use the analysis in [25]. The following two Propositions
remain unchanged:

Proposition 5.1 Let the assumptions of Theorem 4.5 hold, and let @ (t) be defined as in (65)
and x, € Ky (o) (mi) Then we have

oi(t) < 0forte0,1),

o (t) = 0fort=0,

and
01 (t) > 2yallhi||? , forte(0,1] . (72)

Proposition 5.2 Assume that z, € K,(q) (xi) Then an interval I = (0, Bo],

(V®al(z,), h)

b= NGz

exists such that the iterate x,,, = x, + V@4 (x,) is closer to xi than x, for By € I:

Iz, =zl <12}, =2, -

Especially, x, , € Ky(q) (xi ).

k+1
For a proof, we refer to Propositions 2.4. and 2.5. in [25].

Proposition 5.3 Let the assumptions of Theorem 4.5 hold, z;, j =0, ...,k + 1 be the steepest
descent iterates for minimizing ®, and hy be defined as in (64). Moreover, assume x; €
Kr(a)(xi)) for j=0,...,k. Then

(V®a(2,), i) > ol el - (74)

14



Proof:
Let 1 (t), p2(t) be defined as in (65)—(68) and ¢ € [0, 1], and gx(¢) as g(¢) in (30) with z replaced
by z, and h replaced by hy. Then ¢;(t) is computed by (cf. (39))
ei(t) = ©1(0) =2V ®a(z,), hie) + (|| F' (2 )hl|* + cxl|]*)
=2(y° — F(z,), g(t)) + 2(tF'(z,) b, gi(t)) + g ,

and we get by Taylor’s formula

St = G0)+1 / & (6t) db

1
— —2(V(a). )+t [ Lo ds.
0

Now we have 0t € [0,1] for t € [0,1], ¢} (t) < 0 and ) (0t) > 2va||hy||? for these t (cf. (72)).
Thus we conclude

1

UV Ba(,), hi) =~ (1) + ¢ / &L (08) 0 > 2tva
0

for all t € [0, 1], and esp. t =1 yields (74).

Proposition 5.4 Let the assumptions of Theorem 4.5 hold, and let z;, j = 0,...,k + 1 be the
steepest descent iterates for minimizing .. If 1; € Ky(q) (xi) for 7 =0, ...,k and the scaling
parameter B is chosen such that

Br < min e 167ya (Pa(7,) = Prmink) (75)
£ VP (x, )2 16K2 + 16c + 2400l + 8KL + L2 ||[V®4(z,)]

holds, then the new iterate x, , s closer to :ci than z,_. Here,

1

Gmin g = min{ Py (z,) +tVP,(z,)) : t € R} . (76)

Especially, x, , € Ky(q) (xi ).

k+1

Proof:
Let ¢1, @2 be defined as in (65)—(68). We will first estimate ||hg|| from below by ¢1(0) — 1(1).-
We have ¢1(t) = p2(1 — t). Keeping in mind that V@a(xi) = 0 holds, we get from (68)

©1(0) —pi(1) = (1) — 92(0)
Co (t, hk) + bey (t, hk) -+ G,Q(t, hk) . (77)

15



By setting
1
1
C, (1)) = / (1= 7)F"(a" + trhg) (e, he) dr | (78)
B 0

the coefficients in (77) can be determined by (cf. (29))

calth) = [Pkl + alll = 2 = F(a),C, s (), ) (79)
bty ) = 2F (@), C,_, (0) (I, ) (80)
aslt,he) = [C,_, (1) )| (81)

(e}

Using the estimate (40), 6 = no, n < ¢ and

1
an L s L 9
1€, s O, hi)ll - < §II/(1—T)dTIIthI = 7 1k (82)
¢ 0
s (11)
|y = F(z)|l < 6+ 20wl < na+ 20w < 3o, (83)
we obtain
3
ot hy)| < (K2+04+59<JtL)||hk||2 =: Col| g |? (84)
KL -
b2 (2, hr)| < TIIthI3=: ba | Pue? (85)
L? 4 4
a2 (t, hi)| - < Telllhull™ =: @2l el” - (86)

Altogether this yields
©1(0) = 1(1) < Gollhkll® + ball el + @l e * -

The minimal value of ®,, @a(xi) = 1(1), is usually not known, but @pnk, defined in (76), is
computable. In case of ||hg|| < 1 we find

©1 (0) - ¢min,k < ¥1 (0) - @1(1)

3 KL L?
< (K?+a+ 5904L)||hk||2 5 1P |* -+ Ellhkll4
3 KL I?
< (K2+a+§gaL+7+E)||hk||2. (87)

Thus it follows by using (74) for ||h|| <1

16y«
(I)oz 7h >
(VOal@,), ) 2 1675 760 7 2400l + SKL 1 IF

((Pl(o) - ¢mm,k) :

In case of ||hg|| > 1 we get from (74)

(V®,, h) > v .

16



Inserting the above estimates for (V®,(z,), hx) in (73) shows that 8 < Sy, and, by Proposition

5.2, the new iterate is therefore closer to xi than the old one.
O

Proposition 5.5 Let the assumptions of Theorem 4.5 hold, K,(a)(mi) be defined as in (63),

7y € Ky (q) (xi), and {x, }ren be the iterates of steepest descent for the Tikhonov—functional with
Bx chosen according to (75). Then, there erists a constant M, defined in (93), such that the
second derivative of

Ok (t) == Qq (2 + VO, (z,)) te[0,1],

s bounded by
|6 ()] < M|V 4 (z,)]I* -

Proof:
According to the choice of § all iterates are in K,(q) (xi) The definition (62) of V®,(z,) shows

that [|V®,(x,)|| bounded in K,(, T by a constant k: It is
k ( ) o

IV@a(@ )l < I1F' @)y’ = F )l + ellz, — ],

and
! ! ! ) 1] S (7))(40) S
[F' @)l < [[F'(z,) = @)+ 1F )l < Lz, =zl + K
< Lr(a)+ K =: K (88)
(83) 5 (16)—(17) 5 5 L, s
v =Pl S ea+IFG) — Fe)l < 3o+ IF @I - ol + 2 e —a,
(40) L, .
< 30+ Kr(a)+ Zr(a) = Kqo (89)
Qo ~ a2 < a¥(lar— a2 + o’ — 2|2 + 2, [} - )
< a’r()’ + adq(x,) + 20" max{|le, — |, |z, — 2}
< a?r(a)? 4+ a®,(Z) + 2amax{ar(a)?, ®.(7)}
< a’r(a)’ +ally’ — F(@)|| + 2amax{ar(a), [y’ — F(2)||} =: 3 (90)
Thus
IV, (z, )| < K:= K1 - Ko+ K3 (91)

holds for all k. Defining Ck s ) (V®@qu(z,), VO4u(z,)) as in (78) with hy replaced by V&, (z,)

and

C 5 (1)(VPa(z,), VPalz,)) :=

¥ : / F'(@, + 7V (2,))(Va(z, ), VBa(z,)) dr ,  (92)
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we find (cf. (38))
or() = 2|F'(2,)V0alz)|’ — (¢ = F(g,), F"(x, + tV®a(,))(VPal(x,), Vea(,)))
+20||V®o(z,)||* + 4(F'(2,)VEa(2,),C , (t)(VPa(,), VPa(z,))

+t(F'(z, )VP4(z,), F"(x, +tVP4(z,)) Véfl;a(xk), Vo, (z,)))
+t2<F”(~Tk + tvq)a(xk))(vq)a($k)ﬂ V(I)Ot (‘Tk)’ V(I)O‘(‘Tk)»

k

(
@)),C, s ()T,

122G, (1)(Va(z,), Vea(z, )

S
«

t)(V®qa(z,), VOal(z,)), C , (t)(VP4a(z,), VBa(z,)) can be estimated simi-

8
k,za

The norm of Ck
larly as in (82),

IC, s (O(VEalz), VR < FIVTala)I
1€, (O(T2a(5,), Tea@ ) < FITaz)I

Using the above given estimates and (17), (88)-(91) we can finally estimate |¢, (¢)| for ¢ € [0, 1]
by

B (0)] < (K] + Lig +20) [V @a(z,) || + 3tk L] V@0 (2, I

32
‘f'TfQTHV‘I’a(%)H4

312
< (KJ% + Lko + 200+ 3k1K + Trf) IV®4(z,)|?

=t M||V®q(,)|* . (93)
O

Now all ingredients for the final convergence proof of the steepest descent method have been
collected:

Theorem 5.6 Let the assumptions of Theorem 4.5 hold, K, (:Ui) be defined as in (63), xy €
K (o) (xi), and {x, }ren be the iterates of steepest descent for the Tikhonov functional ®, with

g |V ®@a(z, )2 16K2 + 160 + 24paL + 8KL+ L2 |[V®u(z)|? "M’ [’

where Gmingk and M are defined as in (76), (938). Then x, converges to a global minimizer of
P,
T, —)xi for k — oo .
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The proof is similar to the proof of Theorem 2.9 in [25].
At the end of this section we might remark that (74) provides a control over the accuracy of
the k-th iterate. Indeed, we conclude

1
Iz, — ]l < V—OKIIV%(%)II : (95)

which will be a useful estimate for the algorithm to be defined later on.

6 Continuity of the map a — a:i and Morozov’s Discrep-
ancy principle

The choice of the regularization parameter is of highest interest in the theory of regularization
methods. A posteriori parameter choice strategies have been used successfully for linear in-
verse problems. Well known is Morozov’s discrepancy principle [18], where the regularization

parameter is chosen such that
s
ly’ = F(z,)|| = co (96)

holds. For general nonlinear operators, it is a well known fact for Tikhonov-regularization
that the mapping o — a:i as well as the mapping o — ||y’ — F(xi)” might be discontinuous
[30, 4], and thus a regularization parameter o with (96) might not exist. It is therefore of
interest to give conditions under which the continuity of the above mentioned mappings can
be guaranteed. Kravaris and Seinfeld [4] and Scherzer [27] gave conditions, under which a
regularization parameter with (96) exist. However, for practical applications it is sometimes
difficult to prove the required conditions, and thus we introduced in [24] a modified discrepancy
principle, and showed that this principle can be used under relatively mild conditions. Here,
we will focus on the continuity of the map o« — xi We will show that the map is continuous
for twice Fréchet differentiable operators if only a smoothness condition z, — Z = F'(z,)*w
with ||w|| small enough holds. This actually gives a new focus on the smoothness condition
for nonlinear problems: For linear problems, this condition was needed to obtain convergence
convergence rates. All the other above discussed properties are obtained automatically by the
linearity of the problem. For nonlinear problems, we will get additionally the continuity of the
mapping o — :vi, the existence of a regularization parameter with (96) and the uniqueness of
the minimizer xi of the Tikhonov—functional.

If the solution z, of the equation F(z) = y fulfills a smoothness condition, then we will

show for a sequence o — « for £ — oo that the sequence xi of minimizers of the Tikhonov—
k

. §
functional ¢, converges towards z_:

Theorem 6.1 Let F' be a twice Fréchet differentiable operator with (7). Moreover, assume
that the solution x. of F(x) =y fulfills the smoothness condition

T, — T =F'(z,)w (97)
with .
< —

loll <0<+ (98)
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and that a sequence {c, } with lim, 0, = @ =9/n, o, >0, n < p is given. If

n+o

Lin+20+ —| <1
e A= ol
holds, then the estimate
||$6 —336 || |O[—Olk|(’l’]+29)
e T 2(1 = pr)vara

with px, qr given in (118), (110), yields for k large enough. Especially converges xik

k — oo.
Proof:
For the following, we set

A = Fl(z)

Ay = F'(2) ),

k
and get with (18)
1
=A+/F"ac +7(z —xi))(mi —2, - )dr.
k

0

As in (20) we define the linear operator By, by
1
Bi() = [ Pl +r(al, — o), — ol - )dr,
0
with

and find therefore

Moreover, let us define

F" x + 7h)(h,h)dr .

=)

L
oWl < FIIAI?

We conclude from (17)

The necessary condition for a minimum of the Tikhonov—functional ®,(x) reads
a(z — 1) = F'(2)"(y° — F(2)) .

20
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s
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(101)

(102)

(103)

(104)

(105)



Thus we have with (103)

) ) ) _ _ )
r, —x, = T —:U—i-ac—.ra
k k
1 5 1 5
T AX(0 _ T A¥(q0 _
= A -FE)) - A0 - )
1 5 1 5
= —(A+B)*(y°-F — —A*(y’ - F
A+ B (W~ F(, ) = AW~ F(a)
= LT % pr g lF(I“)_iF(:E‘S ) +iB*(y‘5—F(x‘s )
Qo «Q * i “k Q, k %k

— 1
2y - Fla) + —Bily' — ()

ao, k “k
1
oA (A6, — ) o6l —alel —aD)
k
and we have shown
* a—o * * *
(o, I+ A A)(xjk—mj): —t4 (yé—p(xj))+3k(y5—p(xjk))—A C(ajik—mi,xik—xi).
(106)
Now, by using the estimates
1
I+ A A A <
L I N
1
e + A" AT < —
ak
and (105), (102) we obtain
s s |Oé—04k| 5 s 1 5 s 1 s L) s
_ < 1= Tkl _ - _ _ _
lz, =zl < Yoy, ly F(%)||+ak||3k||||@/ F(xa)ll+2\/07k||0(xak T, =7,
la—a, |, 4 s L. s 5 5 5 L s 512
< —E|y - F —||ly’ = F — — 107
< Za\/a_k”y (wa)||+ak||y (@, M, x"‘||+8\/a_k”x°‘k z, |7 (107)
Setting § = na, (11), (12) yields
ly’ = F@)Il < (n+20) (108)
5 n+o
-z € —]—m= , 109
I~ =l < ATV (109)
and, by setting
ak
== 110
G = (110)
we get
ly = F@ )l < (n+2q0)a (111)
5 noa+ o, 0
—x € /=
”x% wll < V1= oL
N+ 0
< ——Vo. (112)
Varv1 — oL
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Inserting (108)-(112) in (107) yields

|a_ak|

5 5 L\/& n+o N+ qxo0 5 5
- < ————n+2 + + -
l7,, =zl < Yoo, (n+20)c 8\/@7( T=oL * Javi—of Iz, =2

L(n+2qr0), s 5
= lz, -zl
k
la—a,|(n+20) L (Vak(h+o)+n+aqo\, s 5
< + — ||:ra — xa||
2/qc 84y Vv1—oL

L(n+2qx0), s 5
L+ 20c0) 00ty

+
Ak
By setting
L \/q_k(77+9)+77+%9:|
Pk = — [N+ 2qk0 + 113
* Ak [77 g 8v/1 — oL (113)
we find | 7+ 20)
1— Pt < L% .
( pk)”xak ‘,'Ea” — 2\/%—a
Because of ¢, — 1 for £ — oo holds with (99)
: nt+o
1 =1L 2 — <1.
ko Pk [" TRt T QL]
Consequently, there exists p with 0 < p < (1 — py) for k large enough and (100) holds.
Ol

Conclusion 6.2 The Tikhonov—functional ®, has a unique minimizer under the conditions of
Theorem 6.1. Moreover, let the constant ¢ in Morozov’s discrepancy principle chosen such that

¢ > 3 holds, and assume
ly? — F(z)| > b . (114)

Then there exists a reqularization parameter o such that (96) yields.

Proof:
In Theorem 6.1, xi was denoting an arbitrary minimizer of the Tikhonov—functional. Thus, a

sequence {z_ } of minimizers converges to every minimizer of ®,, which means the minimizer
k

has to be unique.
In [24] was shown xi —  for & — oo, and because of (114) there exists g with ||y‘5—F(xio)|| >

cd. Setting i, = 0/0, « = 6/n with n < ¢ we have a;, < a. From (11) follows

ly* = F(z, ) <30<ch.

8
X
“min

The function (o) = ||y’ — F(xi)” is monotone increasing and, according to Theorem 6.1,
continuous for & € [umin, 2], and thus there exists a regularization parameter with (96).
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O

Condition (99) means that 7 and p have to be small enough. Especially, because of 6 = na, «
should not be chosen to small compared to §. This reflects the well known fact that a too small
« usually leads to a bad reconstruction quality. We might give a simple criterion for (99).

Proposition 6.3 For n < g, condition (99) is fulfilled whenever

Lo <0.278
holds.
Proof:
For n < p we have
n+e Lo
L 20+ ———| <3Lo+ ———.
R I ey o I A W ey
Setting x = Lo, the right hand side is smaller than 1 if
x
flz) =34+ —F/———-1<0

2V1 —x

(115)

holds. Finding the zeros of f(x) is equivalent to finding the roots of a cubic polynomial, and

we get f(z) <0 if z < 0.278.

7 The TIGRA-algorithm

g

As earlier mentioned, the TIGRA-algorithm will be a combination of the steepest descent
method for the minimization of the Tikhonov—functional and an optimization routine for finding
a regularization parameter o such that Morozov’s discrepancy principle holds. The algorithm

is defined as follows:
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e Given y° with ||y’ —y|| <
e Choose o, ¢ <1 and z, € Kr(l'é ), with
“o

s
v — Fa’ ) > 58

ek=-1,1=0, xi =z

1,0 0
e Repeat (116)
k=k+1
9 s
xk,O = xk—l,l (]‘]‘7)
=0,
While ||V, (x; )] > TOL(k) (119)
5 5 5
xk,l+1 = mk,l + ﬁk,lvéak (xk,l) (120)
l=1+1
end (121)
until ||y’ — F(z, )|| < 56 (122)

The algorithm consists of an inner iteration (119)-(121) and an outer iteration (116)—(122). The
main idea is that we choose ag such that xy € Kr(aw(xio) holds, and the inner iteration will

converge towards .Tio. If ¢ is chosen properly, then the last inner iterate belongs to KT(GI)(xil ),
and the inner iteration for £ = 1 might converge to xil and so forth. Subsequently, we
compute approximations for the Tikhonov-minimizers xi , and will show that the last iterate

is a reasonable approximation to the solution z,. In the following, we will investigate how the
parameters «g, ¢ and T'OL have to be determined such that the inner as well as the outer
iteration terminates and that the final iterate is s good approximation to the solution. We
might assume that a starting value zy might be known with

oo — .|| < X (123)

In general, one would use the best known approximation x; as an a priori guess for the
Tikhonov-functional as well, i.e. one would set = z,. But the analysis of the algorithm
will be the same if we distinguish between z; and Z. First we will show that there exist a
regularization parameter o such that zy € K, (q) (:vi) holds.

Proposition 7.1 Assume that (115) holds, and that xo with (123) is given. Moreover, assume
that the parameter v (cf (48)) fulfills

3
v = <1—§LQ>T ,7<05. (124)
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If « is chosen such that (126) holds, then

8

€K, (2,). (125)

Proof:
Let o > 0 be given. From (12) and (123) we get

Iz} = zol| < 2] — ]l + |z — ol
§ + af|wl|

Vay/1 = Liuw|
)
+ ap 4

Vay/1— Lo

<

According to (53), zo € K, ( ) holds for « large enough if

1 8ka

s
o —2x || <
leo =11 < 277755

(cf. (53)) , which is true if

0+ ap 1 8k

N aVi=1 S L0+ VD)

holds, or equivalently,

L6+ LA\ay/1— Lo < ( v 8’“11;;9)) LQ) a. (126)

This inequation yields for o large enough as long as the coefficient of « is positive; it remains
to show that this is always fulfilled in case (115) holds. We recall from (57) that x was defined
by

3
k=1—=-Lp—
9 0—7,
where v < 1 was a free parameter which has to be chosen such that « is still positive. The

coefficient of o has the structure a — b with a,b > 0. Thus we have
0<a—-b&0<(a—b)(a+b)=a®>—b*and find with (124)

8(1—3Lo—") > A1 —3Lo)

—(Lo)* > ——2—

3(1+v/2)? 3(1+v2)?

We observe p(0) > 0 and thus p(Lp) is positive for z; < Lp < x5, where z; 5 denote the zeros

of p. A simple calculation shows that for the positive zero x5 &~ 0.298 , and thus p(Lp) and the
coefficient of « in (126) are positive if (115) holds.

— (Lo)? =: p(Lo)

g
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If 2° , 2’ denote minimizers of the Tikhonov functional with parameters o, = qa, ,, ¢ <
-1 Yk

1, then we will show that xik € Kr(ak)(xik) holds if only ¢ is chosen close to 1. This
1

means especially that xi can be used as a starting value for the steepest descent method for

minimizing @, (z).

Proposition 7.2 Let o, = qo, ,, o = 0/n, 1 < p, and assume that Lo < 0.278 holds. Then
g <1 can be chosen such that

\/5(77+Q)+n+qg]§ﬁ<1 (127)

L
== 2
p=" |n+20+ N

and, with o = 6/ 0,

(n+20)[1/g = 1| 1 1 [8 8k
20— p) max{1l,1//min} < o7 Win { } (128)

1+v2V 37 3K(2+38)
holds (for the definition of k, K cf. (57), (42) ). Moreover, xik_l € K"(%)(xik)'

Proof:

According to Proposition 6.3 condition (99) is fulfilled, and for ¢ — 1 converges p to the left
hand side of (99), and p < 1 can be found such that (127) holds for ¢ < 1 big enough. The
left hand side of (128) converges to zero for ¢ — 1, and therefore ¢ can be chosen such that
both (127), (128) hold. Now let g be chosen with (127), (128) . According to (100) yields with

O = Q1

%tk T 24/qog1(1 - p)

(n+20)[1/q — 1]
873

< — 129
- 2y/a(1-p) (129)
Because of o = §/1 > @ follows
5 s (n+20)[1/q — 1]
_ < 130
On the other hand, we conclude from (129)
s 5 (U‘+'29)\1/Q'—'1| [
and combining (130), (131) yields
+290)|1/q—1 1 )
||milc — xik_l | < (n 2(§)|_;q) | .max{w, 1} -min{ag, v/ar} - (132)
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According to Proposition 4.5 is :ci € Ko, )( ) if ||x . xik || < r(ag) holds. We find

k-1

(o) 1 . 1 8Ky, 8kay
r(ag) = —min ,
‘ L 1+v2V 3 "3K(2+3)
1 1 8K 8K
> —min 2 % U nin{og, vag) 133
7 {1+\/§ } {ok, v} (133)

37 3K(2+V8)

Altogether we have shown

(132) 20)|1/q—1 1
I, =t R { 1} min{ay, v}
(128) ] 1 8/6 8K
< — min ———— » min{ oy, /o 134
(133) 1
< (o) (135)
9 s
and thus z, € Koo, (2 ak)'
U
For the TIGRA-algorithm we do not know the minimizing functions :ri , but we will show
k-1
that the sequence {xk 11 Jien cODVerges to xé . By choosing TOL(k) in (119) small enough,
k-

we can still ensure that an iterate 2’ with ||<I>ak 1( )|| < TOL(k) is a suitable starting

k—1,1
value for minimizing ®,, with the gradient method:

k—1,1

Proposition 7.3 In the TIGRA-algorithm, let q be chosen accordmg to (127), (128), v accord-

ing to (124) and assume oy > Quuin. Moreover, assume that xk o € Kr(ap_1)(T ik_l), and that

the iterates :L" are computed by the inner iteration (119)—-(121), where the scaling parameter
Bry in (120) is chosen asin (94). If &° is the first iterate with

k—1,1,

IV®a, ,(z, ,, )| <TOL(k—1), (136)

k—1,1,

e 1 [k 8k .
TOL(k 1)—2Lm1n{71+\/§ 3,73K(2+\/§}m1n{ak,\/a_k}, (137)

then xi € Kr(ak)(x‘s ).

—1,1, ap

Proof:

It is xi L € Kr(ak_l)(xé ), and thus the sequence (xi ,) with scaling parameter f; chosen
-5 k-1 -

as in (94) converges to xi (cf. Theorem 5.6), and the inner iteration terminates after a finite
k-1
number [_. The iteration error can be estimated by (95). We conclude

9 9

5
< |z e I

'

5 5
k-1 “ + ||x°‘k—1 -

s
||xak T, ”

27



(95) 5 P 1 s
)
(136) 1
< el -, I S TOLG = 1)
k k—1 Yo
(134),(137) 1 1 8k 8K
2 = min —, ———— » min{y,
< 7 {1+\/§ 3 3K(2+\/§)} o, Vo)
(133)
< r(ow) ,

I
and thus z
k—1,0,

g

Next, we will show that the TIGRA-algorithm terminates after a finite number of iteration
steps. Because the previous Propositions were based on the assumption that oy > a4y, holds,
we will additionally show that the terminal regularization parameter is not smaller than a,;,.

Proposition 7.4 Let the assumptions of Propositions 7.1-7.3 hold. For given xo with (123),
T with (114) choose ag such that xy € Kr(ao)(xi ). Moreover, assume
0

2
> 2 138
423 (138)
and that TOL(k) admits the inequation
£TOL(k) + TOL(k)?* < ¢ (139)
o 2(ya)? -

for all k € N. Then the TIGRA -algorithm terminates after a finite number k, of outer iteration
steps, and the last reqularization parameter fulfills o > Qtin .

Proof:
Following Proposition 7.1, we choose «g such that (126) holds, and find z, € Kr(ao)(xio)'

Without loss of generality we assume oy > i, and because of (114) g can be chosen large
enough such that S
Iy — F( Il > 58

holds (cf. proof of Conclusion 6.2). Theorem 5.6 shows that z,, converges towards 2’ and
) aO

because of V@, (:L'Zl) — 0 for [ — oo, the inner iteration terminates after a finite number
1.(0) of iteration steps. If ¢ and TOL(0) admit (127), (128), (137), then z’ € K,(al)(asi ).
1

0.1, (0)
By induction, we find for all k¥ € N with oy = qay_1 and ay > auy;, that the inner iteration

. 8 8
terminates and that =, € Kr(ak)(%k )-

Because of ¢ < 1, the sequence {ax }ren is monotone decreasing and converges to zero. Now
assume that the outer iteration does not stop or stops with an regularization parameter smaller
than au,;,. Then there exists £ € N with oy = qag_1 < quin and ag_1 > ay,. The iterates
xifl,l converge towards mik E Let us denote by [, (k—1) the stopping index of the inner iteration
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for the (k — 1)th outer iteration; for simplicity of notation, we will denote the belonging iterate

by xiill*. We have by (16) and (17)
é 5 ! ) ) ) L s 5 2
PG, )~ FE I < IFE e, —2, I+ 2, — |
(40) s 5 L, s 5
O R - o | (140)
(99),0136) K L

< —TOL(k -1 —— _TOL(k —1)?

S SeTOME-DA 2(y)? =1
(139)

< (141)

and thus by the definition of a,;, = 6/0, |w|| < 0 and ¢ > 2/3,

$ é

s s
W - FE_ O < - FE DI+ IFE, ) - F@E )

-1
(11),(141)
< §+ 20y 1||w|| +
«
= 5+22|w|+6
q
®min
< 0+ 2 ||w|| + ¢
q
)
< 6+ 2—|jw|| + 6
qo
< 5,

which means that the iteration would have terminated with z,_,, and a1 > qmin-

It now remains to give a convergence rate result for the TIGRA-algorithm.

Theorem 7.5 Let F' be a twice continuous (Fréchet— ) differentiable operator with Lipschitz—
continuous first derivative, fulfilling (7), and x. be a solution of the equation F(x) =y with

T, — 2= F'(z,)'w lw]| < 0<0.278 . (142)

Additionally, assume that only noisy data y° with ||y° — y|| < & are given, that T admits (114)
and let the parameters xo, oo, g, TOL(k), v and B, , for the TIGRA-algorithm are chosen as
follows:

1. zo with (123),
2. ag with (125),
3. q with (127), (128), (138) and

2(1-p) Vao 2( 2(1— p) ) 0 <30, (143)

29



4. TOL(k) with (136), (137)
5. vy with (124) , and
6. B,, with (94) .

Then, if xi L) denotes the last iterate of the TIGRA—algorithm, we get the error estimate
; el \"* o, 1
— 2| < | ——— R — 144

(for the definition of K, cf. (42)). For 6 — 0, we obtain esp.
’ — || = 0(5'?%) . (145)

L.
Proof:
According to Proposition 7.4 does the iteration terminate. In the following, we might denote
by [,(k) iteration index where the inner iteration (119)—(121) for a fixed & terminates. Then

the last two outer iterates aci . , z fulfill
E ’*(k*_l) k*!l*(k*)
)
Iy = G, )l < 56 (146)
5 S
||y - F(xk*fl,l*(k*fl))” > 55 )
and therefore
) ) ) )
%< =P, IS = PG I+IPE, ) =P, )
(141) s
< - FE e,

1.e.

5 <y - F@a' ). (147)

Ey—1

Now let us assume that ||y? — F(z’ )|| < 6 holds. Then
o,

3 < v~ F@. )ll- v~ F& )
s s
IPGS, )= F, )l

IN

.~
8
[

“

L
< Kla!  —d +5ld e
Fy —1 ko 27 %, -1

*

Here, the last inequation was obtained similarly to (140). By (129) yields

(n+20)|1/q -1

8 s
le.,, =2, I < 2(1—p) .
(n+20)[1/q — 1
NG 148
S 2i-p VT e
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and thus

K(n+20)|1/q — 1] L ((n+20)|1/q—1]\
6 < M vae g (TG o

This is obviously a contradiction if ¢ is chosen with (143) and we have shown

s 5 § 5
5o W -FE OIS - FE,  I+IFE, )= FE I
(146),(141)
< 66 (149)

Thus, 2’ fulfills the modified version (14) of Morozov’s discrepancy principle, and , by using
ak*

(149), (15) we have therefore shown

; 14wl \Y*
—r | < [ —= 52
Ie., x”—<1—uwn |

and conclude finally

s é é s
17 ooy =Tl < e, — @, e, =l
(95),0136) 1 14wl 7
< -TOL(k.) + (7 57
g 1—Ljjw]|
139) 1 14wl '
: K‘*(l—uwn

O

The classical convergence rate result for Tikhonov-regularization was given by Engl, Kunisch
and Neubauer [10] for Fréchet differentiable operators with Lipschitz continuous derivative and
a smoothness condition as above with Lp < 1. But it was then an open question how the
minimizers of the Tikhonov—functional could be computed. Here we have presented an algo-
rithm which actually computes an approximation to a minimizer of the functional that fulfills
Morozov’s discrepancy principle. The used conditions— twice Fréchet differentiable operator
with Lipschitz—continuous derivative and Lp < 0.278 — are only slightly stronger than in the
above mentioned paper.

8 Applications

Within this section we might give some practical relevant examples that meet the requirements
of the TIGRA-algorithm. The main focus will be on SPECT (Single Photon Emission Com-
puted Tomography), a medical imaging technology.

Bilinear Operator Equations
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Many operators F' : X; x Xo — Y can be decomposed into (or approximated by) a sum of a
continuous linear operator A and a bilinear operator B ,

F(z) = Af + B(f,1) , (150)

x = (f, ). These operators have been extensively treated in [25]. If an estimate

IBCf wll < IBIILf el

holds,
1Bl = inf {IB,mll < ell Ml T(F; ) € Xox Xa},

then it is easy to see that F' is twice continuous Fréchet—differentiable with Lipschitz—continuous
first derivative, and the TIGRA-algorithm can therefore be used. A classical example for a
bilinear operator is the autoconvolution operator,

F(x)(s):/:v(s—t)x(t)dt, —o<a<b< oo,

a

cf. [14, 24]. Other examples appear in parameter estimation problems for partial differential
equations [3, 8, 16, 22], and in [26], a bilinear approximation to the attenuated Radon transform
was used.

Single Photon Emission Computed Tomography

In SECT, the aim is to reconstruct the distribution of a radiopharmaceutical inside a (hu-
man) body from measurements of the radiation outside the body. The connection between the
measurements y and the activity distribution f is given by the attenuated Radon transform:

,u(sw‘L+7-w)dr

y=R(f, p)(s,w) = /Rf(swL +tw)e a dt , (151)

s € R, we S As for the Radon transform, the data are represented as line integrals over all
possible unit vectors w. The (usually also unknown) function p is called the attenuation map,
it is related to the density of the tissue and reflects the fact that the intensity of the emitted -
rays is damped when traveling through the body. In general the attenuation map will be known
only if an additional CT (Computerized Tomography )-scan is performed, which might cause a
significant rise of costs for the medical examination. It is therefore of interest to reconstruct f
without knowledge of y, i.e. to solve the nonlinear problem (151) [19, 20, 31, 21, 26, 25]. Dicken
[7] studied the mapping properties of the attenuated Radon transform. He also introduced a
redefined attenuated Radon transform R, by

p
R,(f, p)(s,w) = / f(swh +tw)E [/ p(sw™ + Tw) dr| dt . (152)
R —p
The function E € C%(R) is chosen such that

E(z) = exp(—xz) for x € R"
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and |E|, |E'| and |E"| are bounded. For SPECT, the functions f and p will be nonnegative
with compact support. If we assume that f has its support in a disc with radius p, then
the operator R, coincides with R for admissible sets (f, ). Fortunately, R, has much better
mapping properties than R. If R, is considered as operator

R, : H3' () x Hg*(2) — L2(51 X [—o, 0]) 51,80 >0,

where H{(2) denotes a Sobolev space with zero boundary conditions, then it can be shown
that R, is twice continuous Fréchet-differentiable with Lipschitz—continuous first derivative

whenever (si, s3) are chosen with
381

2< —— 153
et (153)
cf. [7] . The function px is related to the density of the tissue and has therefore discontinuities,
and thus sy < 1/2 is a realistic assumption. If we set s, =1/2 — ¢, € > 0, then a choice
. 2(1+2¢) S 2
o 3 3
ensures the above given properties of R,. However, for practical applicability we would like to
have (s1, s2) as small as possible. If we additionally assume that f is bounded, then we can
define
D(R,) := Dy, 50,0 = {(f, 1) € Hg' () x HF*(Q) | [[fllc < C}, (154)

and consider
RQ : Dsl,sz,C — LQ(SI X [—Q, Q]) 81,82 > 0 .

With this definition area, R, is twice continuous Fréchet—differentiable with Lipschitz—continuous

first derivative for
1 2
82>Z, 81>g(1—82),

cf. [6]. Thus both s;, sy can be chosen smaller than 1/2, e.g. s; > 4/9, s, = 1/3. Altogether
we have seen that the redefined attenuated Radon transform fulfills the requirements of our
TIGRA-algorithm.

For our numerical test computations we used the so called MCAT-phantom [29]. The activity
f+« is concentrated in the heart, and the attenuation function p, models a cut through the
thorax.

The generated data y were blurred with random noise (relative error 6,¢; € {1%, 2.5%, 5%, 10%}),
and the TIGRA-algorithm was used to reconstruct the activity and attenuation function. For
all four reconstructions cy = 10000, ¢ = 0.7 and Z = (f, 1) = (0,0) was used, and the iteration
stopped always with a regularization parameter o, ,, with § < [ly?—R,( ) <

59 (cf. Table 3).

Comparing the reconstructions for the activity and attenuation functions with the original
functions (f, u) in Figure 1, then we find that the reconstructions for the activity function look
quite good, but the reconstruction for the attenuation map is far off. This is a well known
phenomena for SPECT with both (f, ) unknown. Because of the nonlinearity of R,, the
solution of (151) will not be unique. Tikhonov-regularization will then give an approximation

0 0
ky (8) fk* (8):14 (&)’ ’uk* (8515 (8)
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Figure 1: Activity function f, (left) and attenuation function p, (right)

Figure 3: Residuum and regularization parameter «

Figure 2: Generated data y.

k. (8)

for the terminal iterate of the TIGRA-

algorithm
5T€l 5 ”y(; - Rg(f,i (5),1* (5)5 ’uz*(é),l* (5))” 55 ak* (6)
10% | 0.6601 3.256 3.3 | 403.5
5% 0.33 1.582 1.65 | 23.26
2.5% | 0.2063 1.026 1.032 | 7.98
1% | 0.0826 0.402 0.413 | 0.322

to a solution of (151) with minimal distance to the a priori guess T = (f, ) = (0,0). This

34




solution does not necessarily coincide with the solution given in Figure 1. If one would like
to have a better reconstruction for the attenuation function, then one has to come up with a
better a priori guess u. However, in SPECT we are only interested in reconstructing the activity
function by using an attenuation map that is consistent to the data. Because our reconstruction
for the activity function differs from f, by a factor, we measured the reconstruction quality by

4
flc* (8),14 (8) f*

f,f*((;),l*(l;)“ ||f*||

reconstruction accuracy = H I

‘-100%.

The results are given in Table 4. Visual examination (Figure 5) shows that the image gets
sharper for smaller noise and that especially the south—western part of the activity function is
better reconstructed. Our numerical test computations show that TIGRA can be used in order
to reconstruct at least a good approximation to the activity function f,. We might especially

remark that the algorithm seems to pick a good final regularization parameter o, ;.

Figure 4: Reconstruction accuracy of the TIGRA-algorithm with blurred data

relative data | reconstruction
noise accuracy
10% 54%
5% 25%
2.5% 20%
1% 18%
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