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Abstract

This paper is concerned with the construction of generalized uncertainty relations
and minimizing states. Starting from a two operator parabola ansatz we derive a
new set of uncertainties by extending the parabola ansatz to quadratic forms. This
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operators. The resulting minimizing wavelets are solutions of connected eigenvalue
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applicability of the presented generalization. These sort of wavelets feature special
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1 Introduction

Wavelet analysis was originally proposed as an alternative to windowed Fourier analysis
in a signal processing context. Originally, wavelets were functions generated from a single
one by dilation and translation. The so-called mother wavelet was a function of vanishing
integral. However, since some years the term of wavelet has to be understood in a more
general sense, i.e., a wavelet is a function satisfying a generalized admissibility condition
and inducing by inner products a decomposition of the function to be analyzed. From a
signal processing point of view it is often very useful to decompose signals by some atomic
functions with nice localization properties. It is well-known that localization is related
to uncertainty principles. Seen from this angle the present paper is devoted to establish
more flexibility in the known uncertainty framework. Using the fact that group theory is
the common thread between Gabor- and wavelet analysis, the main goal of this paper is
to provide useful representations of underlying groups and to establish related generalized
uncertainty principles. Finally, we obtain nice analyzing wavelets by minimizing the new
uncertainties.

To be more precisely, we are interested in wavelets with good localization properties related
to the representation of the underlying group. In case of the Weyl-Heisenberg group the
common representation leads to the windowed Fourier transform. It is known that the
localization properties in time and phase space depend on the underlying window function.
This fact can be described by Heisenberg’s uncertainty relation. In this setting a optimal
analyzing wavelet is a window function minimizing Heisenberg’s uncertainty. To establish
a wider range of useful decompositions we aim at groups containing both the Gabor- and
wavelet case. During the last decade, efforts have been made to construct such time-
frequency representations in Ly. In [Tor91, Tor92, KT93] it was proposed to consider a
bigger group containing both the affine and the Weyl-Heisenberg group. In principle, there
are two cases of mixing both groups — the direct and the semi-direct group product. For the
semi-direct group product it was shown that the representations of such a bigger group are
not square integrable. Hence, one may act on quotient spaces. On the basis of pioneering
work of Antoine et.al. and Torresani et.al. on the group theoretical background of Gabor
and wavelet analysis we increase the capability of the whole framework by introducing
generalized wavelet transforms in anisotropic Sobolev spaces. To obtain the right analyzing

wavelets we search for minimizer of related uncertainty relations, see e.g. [DM95] for the



affine group. However, it is a known drawback that the structure of uncertainties become
more complex if the number of group parameters increases. The classical Heisenberg
uncertainty is just a single relation. But in more complicated cases we obtain families of
uncertainties and searching for simultaneously minimizing states fails. This problem rests
on the classical theory for two infinitesimal operators. A r—operator construction is far
from being understood. In this paper we present a parabola interpretation of uncertainties.
Then, by generalizing this ansatz we obtain matrix-valued commutator relations. This
leads to the fact that in our new setting every uncertainty principle can be expressed as a
determinant. For two operators the determinant coincides with the classical uncertainty
setting.

In the present paper we proceed as follows:

1. In the second section, we review the basic theory on groups, group representations
and uncertainty relations. Moreover, we present a new generalized uncertainty set-

ting which can be interpreted as a multidimensional parabola ansatz.

2. In the third section, we introduce the affine Weyl-Heisenberg groups. Furthermore,
after establishing anisotropic Sobolev spaces, we derive the related admissibility

conditions.

3. In the fourth section, we show by some comprehensive examples the applicability of

the generalized uncertainty setting.

4. The appendix contains some basic proofs.

2 Basic Setting and Uncertainty Principles

In this section, we introduce the group theoretical background and the uncertainty frame-

work.

2.1 Group Representations

Let G be a locally compact and topological group with left or right invariant Haar measure
du. A representation 7 of G in a Hilbert space H is a homomorphism between G and the
group of bounded linear mappings £(#). We restrict ourselves to the setting of continuous

unitary irreducible representations. Such a representation is called square integrable if



7 is irreducible and there exists a non-trivial vector % € H such that

0< / | (7 (g)36, )3 Pdu(g) < oo (2.1)
G

A vector 1 satisfying (2.1) is called admissible. In case where (2.1) does not exists one
may restrict the integration to an adequate subset X. Often one uses X = G/H, where
H is a closed subgroup of G. Because 7 acts on G and not on G/H it becomes necessary
to embed G/H in G. This will be realized by the canonical fiber bundle structure of G,
see [Mac76],

II:G— G/H.

Let ¢ be a section of such a fiber bundle. A representation acting on G/H is called a

oc-modified representation and is defined by
Ty = T O 0. (2.2)

This leads to a slightly modified definition of admissibility, see [KalTor]. A section o is
called admissible if there exists a bounded positive and invertible operator A with a

bounded inverse and a vector 1 such that for all f € H

/ (o (@), g 2dps(z) = (f, Ay (2.3)

G/H
holds, where dy is a quasi invariant measure on Lo(G/H). A stronger formulation is given
by the following definition. A section ¢ is called strictly admissible if there exists a

positive constant K and a vector v such that for all f € ‘H
[ 1), 1) duta) = K111 (2.4
G/H
holds. The general structure of o was analyzed in [AAG91a, AAG91b]. By 7 and the defi-
nitions of admissibility one has well-defined integral transformations on 7. In dependence

on the underlying Hilbert-space 7 and the special choice of G one has to state explicitly

the conditions to specify the set of analyzing function.

2.2 Classical Uncertainty Principles

The starting point to construct uncertainty relations is the underlying group G and its

representation 7 in some Hilbert space H. Let ¢ = (g1,...,9n) be an element of G.
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Furthermore, let f be a vector belonging to H. With respect to the representation 7 we

define so-called infinitesimal operators by

0

[A(g:) (@) := a—gi[ﬂ(g)f](w)lg:e : (2.5)

Let A = A(g;) be some infinitesimal operator with A : D(A) — H, where D(A) C H

denotes the domain of A. The expectation of A with respect to a state ¢ € D(A) is

defined by

_ (Ad,9)

The variance of A with respect to 1 € D(A) is defined by
A (A) = pyp((A = py(4))%) = py(A%) — py(4)® . (2.7)
If the operator A is self-adjoint and non-commuting, then the following theorem holds.

Theorem 2.1 Assume that A and B are non-commuting and self-adjoint operators and
let the commutator be given by [A,B] = iC. Then for all ¢p € D([A, B]) the following

uncertainty relation
1 (C)? < dpay (A% (B?) (2.8)

holds. One has equality in (2.8) if and only if there exists a parameter t € R with

(A—itB)h =0 or equivalently (A?+t°B?)yp = —tC1 . (2.9)

Proof At first, we compute (A — itB)*(A — itB) = A? + tC + t2B?. This holds for all
t € R. Hence, for all ¥ € D([A, B]), with ||9|| = 1, we have

0 < (A —itB)pll3; = py(A%) + tuy(C) + t*py(B?) (2.10)

which is a real and nonnegative parabola in t. Consequently, the condition

_(m(0) \ my(4?)
b= (2uw(32)> piy(B?) =0 (211)

is fulfilled. This proves inequality (2.8). One has equality in (2.8) if there exists a t € R

which is a root of second order (this means D = 0). This is equivalent to eigenvalue

problem (A — itB)® =0 or to (A —itB)*(A —itB)y =0 [ |



Remark 2.1 For infinitesimal operators A and B the uncertainty relation can be written

as

([A, Bly, ) < 447 (A)AY(B).

If the commutator (lower bound) vanishes we obtain a trivial uncertainty. Minimizing this
inequality leads to the case where one of the variance terms has to be zero. Such a situation
might be given if ¥ is an eigenvector of A and B respectively. We want to exclude such

cases of trivial uncertainties.

2.3 Generalized Uncertainty Principles

In this section, we present a new way to generalize the two-operator setting. The essential
idea is to think of vectors of observation variables. We start with r infinitesimal operators
and consider suitable linear combinations of the operators. In accordance with Theorem
2.1 we create new commutator conditions to generate non-trivial uncertainties. The new

uncertainty principles may be understood in terms of several parabolas.

The covariance of A and B with respect to 9 € D(A) ND(B) is defined by

Ay (A, B) := ([A = py(A)lY, [B = py(B)lY) - (2.12)

Based on Theorem 2.1 the next theorem specifies the commutator conditions which avoid

trivial uncertainties.

Theorem 2.2 Let a system of infinitesimal and self-adjoint operators {A;}1=1,..., be given.

By
A = (Al, e ,Ar) s K = (_i[Ak’Al])k,l:L...,r and 2 = (A(Ak’Al))k,l:L...,r (213)

we define a vector of operators, a related commutator matriz and a related matriz of
covariances. Assume that we have two linear combinations of the form B = v - A and
C =a-A, where y,a € R", such that ¥ Ka # 0. Then, for all ¢ € D([B,C]) the following
uncertainty principle

iy (Y Ka)? < 49'Svye'Sa . (2.14)

holds. One has equality in (2.14) if and only if there exists a parameter t € R with

(B—itC)y =0 or equivalently (C*+t*B*)y = —ty'Kaap . (2.15)



Proof Just as in the proof of Theorem 2.1 we compute (B — itC)*(B — itC). Thus, we
have to compute the [Z] YA, Y alAl]. By [A4;, Aj]] = —[A;, A;] it follows that

ZVJ‘AJ‘,ZOAIAI ZZZ’Yjal[AjaAl] = Z viculAj, Al
j l Jj 1

Jbii#L

= (ma2 —ya1)[Ar, Ao] + (103 — y31)[A1, A3] + ...

(vea3 — y3002)[ A2, A3] + ...

0 [A1, Ag] ... [A1, Ay
. ay
—[A1, Ag] 0
= (y,---»7) _
[ArflaAr]
(678
_[AlaAr] e _[A'r—l,A'r] 0
= iWKa.

Hence, we have (B — itC)*(B — itC) = B? + ty'Ka + t2C%. Consequently, for all 1 €
D([B,C]) and ||%||% = 1 the equation
(B — #C)pl% = 1y (B?) + byl K ) + 2pg(C?) (2.16)

holds. Non-negativity of (2.16) implies

py(Y Ka)? < 4py (B*)uy(C?) - (2.17)

One has equality in (2.17) if and only if there exists a parameter ¢t € R with (B—itC)y =0
or equivalently (B2 + t2C?)y = —ty' Katp. To rewrite (2.14) we use that B = yA. Then,

it follows immediately that

AG(yA) = Af(vA,vA) = (yAf,vAf)

= Y ) vm(AfL A =Sy

j=11=1

And similarly we have Afc (aA) = o'Za. [

We have to be careful about the choice of 9. It is not obvious that the domain of the
generalized commutator is dense in 7{. In general, the overall domain is an intersection of

all possible domains of all commutators.



Corollary 2.1 The uncertainty structure may be easily decomposed in
1
1t (VKa)? <oV Va+y'Ma,

with a variance term

V = diag (A3(A1), ..., A3(4,))

and a symmetric term of mized products
M=E-V)WaV +Vya(S-V).
Every nontrivial uncertainty relation has now the following expression

0< C < Tyy + Toe + Tec (2.18)

where
C = LpyyKay?
= Zuw(v o),

r
Ty = ZO‘]ZV?A%(AJ)A%(AI) )

Ji=1
Toe = Y, > aaymAH(An)Af(4;,A)
Gl=T5jAln=1

T T
+ Y D vajaA(A)A(An, Am)

n,m=1n#m j=1

r r
Tee = Z anamAf(AnaAm) Z 'Yn'YmAf(AnaAm)
n,m=1l;n#m n,m=1;n#m

Remark 2.2 The condition v'Ka # 0 is equivalent to the demand that for all 9 €
D([B,C]) we have to choose vectors v and a such that ¥'3vy # 0 and o/Sa # 0. To

satisfy this condition it is necessary that v,a ¢ N (X).

Theorem 2.2 extends Theorem 2.1 by involving all possible commutator relations. But
to gather the new objects it seems to be suggestive to formulate the new uncertainties in

terms of several parabolas. To this end, we consider the partial differential equation

(A—itB)p =0 .



By substituting B = 4'B, where B = (By,...,B,) and v = (7,...

partial differential equation has the form

(A - it’)’lBl - it’)’QBQ —eee T Z't’}’rBr)’l[) =0

and with o; = tvy; follows

(A — z'a131 — ia232 i ‘iarBr)’lﬁ =0.

,7r)", the resulting

This procedure may be repeated also for A = v'A. Finally, this leads to a reformulation

of the established r — operator uncertainties in Theorem 2.2.

Theorem 2.3 Let forl =1,...,r the infinitesimal and self-adjoint operators A; be given.

Furthermore, we define a matriz F by

A2
i/2[A, B1]

i/2[A, B,]

i/2[A, Bi]
BY

(BiBj + B;B;)/2

(BiBj + B;B;)/2

/2[4, B,]

32

Let the matriz py,(F) be the component-wise expectation of F. If 1 € D([A, aB]) it follows

that the quadratic form py(F) is positive semi-definite, i.e., for all eigenvalues \; holds

N > 0. Finally, for all ¢ € D([A, aB)) the uncertainty relation with respect to A and B

can be expressed in the form

det (py(F)) >0 .

Proof At first, we note that we have for all o;; € R :

(A—iayBy — ... —ia,B)"(A—ia1By — ... —ia,B;) = (1,01, ..,00)F(1,01,..

Hence, for all ¢ € D([A, aB]) with ||4|| = 1 one has

0 < ||(4 —iaB)gl* = (1, @)uy(F)

o).



where i, (F) =

pup (A?) py(i/2[A, Bi]) py(i/2[A, By])
py(i/2[A, Bi]) py(BY)
wy((BiBj + BjBi)/2)
py((BiBj + B;B;)/2)
1y (i/2[A, By)) s iy (B7)

Thus, the form pu(F') is positive semi-definite. Consequently, the uncertainty can be writ-

ten as the determinant. For the two operator case this is just the discriminant (2.11). H

The condition YK« # 0 can by A= (4,0,...,0) and v = (1,0,...,0)" transformed into
T
> A, B]#0.
=1

The mixed terms py((B;Bj + B;jB;)) in the quadratic form p,(F') represent the covari-

ances.

2.4 Tensor Product Hilbert Spaces

Later on we intend to use anisotropic Hilbert spaces. To this end, we need some basic
facts about tensor product Hilbert spaces. Up to equivalence there are three different
possibilities to construct a tensor product of two Hilbert spaces, see [DF93]. We use a

method presented in [Hoc98].

Assume that H; and Hy are two given Hilbert spaces and H] and H/, are its duals. Let
L(H',H),) be the space of bilinear mappings. Then, the tensor product z ® y is defined
as the element in L(H), H}) with

(z@y)(',y) =2"()y'(y) , (=',9) € H) x Hy,

where £ € H; and y € Ho. Consequently, Hi ® Ho is generated by tensor products
z ® y, where (z,y) € H1 x He. Hence, this space is defined as a subspace of L(H], H)).
Furthermore, we need to establish a ”inner product” in this space. Let f,g € Hi ® Ho,
where f = Z;nzjl cjuj ® vj and g = Y\ dpwy ® zp, and uj, wy € Hy, vj, 2z € Ha. By

mj mg

1f,9) =D cidr (uj, wr)qy, (0, 2k) 4,

j=1 k=1

10



we define a sesqui-linear functional. Equipped with this sesqui-linear functional, H; ® Ho

becomes a pre-Hilbert space. The tensor product
H1 @ Ho

is then defined as the closure of H; ® H, with respect to I(-,-).

3 Affine Weyl-Heisenberg Groups and Admissibility

In this section, we specify the groups under consideration, appropriate function spaces,

and we determine the related admissibility conditions.
3.1 Weyl-Heisenberg and Affine Group
The affine group G,y is given by
Gosy =({la:0,1): 4 € B, a € Re, Re 50(),0).
with the group law
(¢,a,R) 0 (¢,d',R") = (¢ + aRq,ad’, RR').
Proposition 3.1 The right and left invariant Haar measures on Ggpr are given by
dur(q,a,R) = a 'dadgdm(R) and dur(g,a,R) = a_("'H)dadqdm(R),
where dm(R) is an invariant measure on SO(n).

By SO(n)/SO(n — 1) = S"~! we can rewrite every rotation R, € SO(n) as a product
KR, 1, K € S" ! and R,_; € SO(n — 1). Very often one is interested in such axial-

symmetric functions. We shall use this fact later on for computing admissibility conditions.

The reduced Weyl-Heisenberg group is given by

Gwpn = ({(q,p,@) 1 g€ Rna pE Rna pE 5170})’

with the group law

(@,p0) o (¢, 0, ¢")=(g+d.p+p, 0+ ¢ +p-q mod 2r).

11



Proposition 3.2 The group Gy is unimodular with the invariant Haar measure

du(g) = dgdpdy .

This can be found in [SD80].

3.2 Mixed Groups

Beside the groups introduced above we focus mainly on a mixture of the affine and Weyl-
Heisenberg group. For that reason we have to put both groups into a uniform setting.

This can be done by direct or semi-direct group products.

The direct affine Weyl-Heisenberg group GZW g 1s defined as the direct product of

Gwn and Ggyr an is equipped with the component-wise group law
(¢.p, 93,0, R) o (¢',p, ;¥ d, R)

=(qg+¢,p+p,0+ ¢ +pgd mod 2m;b+ aRb ,ad’, RR') .

There are different ways to generate a related group representation. We could define a

matrix-valued mapping (direct sum)

m(g) O
0 ma(g)

T+ 7 G— L(H1+Hs), g~
However, this representation obviously leads to a component-wise behavior. For our pur-
pose we prefer direct products of representations, see [VK91].

Proposition 3.3 Assume that w1 and mo are given representations of G and H respec-

tively. Then, (g,h) = m1(g) ® ma(h) , g € G, h € H is a representation of G X H.

A proof of the proposition and basic results for computing the related Haar measures can

be found in [VK91, SD80].

Proposition 3.4 Assume that G, H are given locally compact topological groups with left
(right) invariant Haar measures p1 and po respectively. Then, the product pi ® po is a

left (right) Haar measure on the product G x H.

Consequently, in this setting we can use the known Haar measures of Gwpg and Ggyy.

Hence, for the direct product case we have all ingredients. Setting G = Gwpg and

12



H = Ggyr, we are done.

The second alternative is the construction of a semi-direct product of G,y and Gwg.
Starting point is the group generated by translation, modulation, dilation and rotation in
R™. This group was explicitly discussed in [Tor92, Tor94, AM92, KT93, Tor91, TAGM95].

In our elaboration we follow [KT93].

The semi-direct affine Weyl-Heisenberg group G,y is defined as the semi-direct

product of Gy g and Ggyy and is equipped with the group law
(¢,p:a, R, 0) 0 (¢, 9, d, R, ¢)
= (¢+aRq,p+a”'Rp',ad,RR',0 + ¢' + p(aRy)) ,
The inverse element of g € G, g is given by
(¢,p,0,R,0)5" = (~a~'R™'q,—aR™'p,a™", —p + pq).

The next proposition states one special representation for G,w g, see [KT93] for more

details.
Proposition 3.5 The representation of Gawng given by

(g, 0,9) f (z) = Vae'X OO 20 £ (q(z 4 p)). (3.1)
1s irreducible and is called Stone-von-Neumann representation.

Proposition 3.6 The group Gawpg is unimodular. The invariant Haar measure is given
by
da
d:“‘(Qapa a, Ra 90) = dqdp;dm(R)d()p ’

where dm(R) denotes again the invariant measure SO(n).

At this point we have appropriated adequate representations of our mixed groups and

invariant measures on them.

3.3 Anisotropic Sobolev Spaces and Related Admissibility

The next step is to introduce adequate Bessel potential spaces and to check irreducibility

and the existence of at least one non-trivial admissible vector. This includes to state the

13



admissibility conditions.

In many papers [AAG91a, AAG91b, AM92, TAGM95, Tor91, Tor92, Tor94, KT93] of
Gabor and wavelet analysis the space under consideration is just the Ly(R™). We extend
the framework to a wider range of Hilbert spaces. Extending the Lo — wavelet transform to
H? - one obtains then images in certain fiber spaces, cp. [LMR98]. However, the integral
transform is again induced by inner products in L(R™). A more general way is to define
the wavelet transform by inner products in anisotropic Bessel potential spaces. To this

end, we start by defining the anisotropic Sobelev space by

H81’82(Rm X Rn) = {U c LQ(Rn X Rm) : ||U||51,52 < OO} ’ (3'2)

mix

which is equipped with the norm

51,82

3, 55 == / (L + [|ka]2)5/2 (1 + |k ||?) 2/ 2 F u(ky, ko) 2dk1 dEs (3.3)

R™ xR”
The inner product is given by
(U, 0) prov.sn = / (1 + [l*1 %) (1 + ||k ?)*2 Fulke, ko) Fo(kr, ko)dkidks . (3.4)
R™ xR™
Applying Subsection 2.4 by setting H1 = H(R™) and Ho = H*2(R™) and definition (3.2)

one can prove the following theorem, cp. [Hoc98|.

Theorem 3.1 Let s1,s9 > 0 and n,m € N. Then, we have

H51 (RM) ®l HSQ(]R’n,) — HSl,SZ(]R’m X Rn) .

mix

To range H,'»>*(R™ x R") in the scale of other function spaces we introduce two further

well-known function spaces, cp. [Tri78, ST8T].

Assume that s = (s1,82) € R x R and n,m € N. The spaces

Hi(]RmJ“”) ={u€ S’(]Rm+”) : Jul|as < oo} (3.5)
and
Hp» (R := {f € S'(R™™) = lullrs < oo} (3.6)

14



equipped with the norms
s = [ 1(+ WP 4 0 PhalP)2) Fulhs k) Pdbrdhe (30
Rm+n

and

ull7,s == / (L 1| (Ra ko) 122 (1 + [k 17)*2 2 Fuk, ko) Pdkidhs . (3.8)
]Rm+n

are called anisotropic Bessel potential spaces.

Proposition 3.7 Assume that 0 < s1,s9 < R and m,n € N. Moreover, assume that

5= (s1,82) and § = (s1, max(s1, s2)). Then, the following relation holds
H% C H C H?

= “mix

After establishing our Hilbert spaces, we aim at constructing related representations of
G. Let us start by the common Sobolev space H*(R™). To establish a suitable group

representation in H*(R") we define the operator A by its Fourier-transform
As = S'(R") = S'(RY), where (Agf)Nw) = (1+ ||w]*)*?f(w). (3.9)
A representation of some group G in H*(R") can now be defined by
ms(g) := A_sm(g)As = H*(R") - H*(R") , (3.10)

where 7 is a representation of G in Lo(R™). To apply definition (3.9) we have to move

from 7 to the equivalent representation 7 in phase space via
m=F'%F ifandonlyif Fr=#F. (3.11)

Consequently, by using well-known group representations 7 in Lo(R") of Gy and Gy
we can establish representations of mixed groups in anisotropic Sobolev spaces. Let
us start by the direct group product Gwpg X Ggrs. For the related representation
in accordance with Proposition 3.3 a natural candidate for the representation space is
H5'(R™) @, H®2(R™). Hence, a suitable product representation of Ggw g in phase space

can be defined by
1,52 (9: () (w,m) = (L4 [lwl®) 72 (1 + [|nl|?) 52/ 2600 @)an /2=
(1 +llw +pI*)*/*(1 + llaRn|*)**" f(w + p,aRn) .

15



By defining
(A1) (B, ko) = (14 [[Ra[*)* /(1 + N|Ral|*)°2/2 f (R Ro)

the representation in time space is given by

7r51,52 (ga h)f(xay) = A*Sl,*SQT‘-(gah)AS1,82f(x7y) .

The following theorem ensures at least square integrability of our representation m,, ,, of

GWH X Gaff-

Theorem 3.2 The representation ms, 5, of Gy in HL(R™) @ H2(R") 4s homo-

morph, continuous, unitary and square integrable.

Proof Assume s; =s > 0and sy =¢ > 0. Then its obvious that =, ; is a homomorphism:

mst((g,h) o (¢, 1) = msp(gog hoh)=mis(gog) ®mp(hoh)

= T1,5(9)m1s(9") ® map(h)ma(R')

= (m1,5(9) @ m2,4(h))(m1,5(9") ® m2,e(R))

= Tst(9, h)ﬂs,t(glah')
We know that my s, the representation of Gy g, and that mo;, the representation of Ggyy,
are continuous. Hence, we conclude that ms; continuous. To show that m,; is square
integrable one has to show that m,; is irreducible and there exists a non-trivial vector.
Assume 7, ; is reducible. This means there exists a closed, non-trivial subspace V C
HS(R™) @ HY(R™) with 754(9)V C V Vg € G%;, ;. Under this assumption there exist
non-trivial functions h € V and f € V*.
Let f,h € H*(R™) @ H'(R") and

(As,if)" (R k) = (1 (k2 1272+ (k2 |%)7 £ (R, k) -
Then, we have by As;f =: F and A;;h =: H

(ms,t(9)f, h)}]s(Rm)@lHt = (m(9)F, H>L2(Rm+n) = <ﬁ(9)ﬁaﬁ

Because of

#(9)F (w,m) = a"?ee @M@ F(w + p,aR'n)
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it follows that

m+n

2 f(K("'apaaaR)) (Qab) ) (312)

<7“r(g)ﬁ, I:I>L2(]Rm+n) = a"/2e% (21r)

where K(w,n,p,a,R) = (w+p,aR') T(w,n). By @ = R™ x R™ x R* x R, x SO(n)

and some substitutions we obtain

/ | (7, 0, 0, by, R)F, ), Paud = (2)™+7+1 / \ (w,m) P I (n)dwdn ,  (3.13)

GZWH ]R’m"r"
where
I(n) = / B (¢, aR'n) o d¢dadm(R)
Rme+XSO(n)

Using Euler-angle representation of R € SO(n) and some standard substitutions I(7n) can

be expressed by

I(n) = vol(SO(n — 1)) //lFHCH" dcde .

Hence, (3.13) is equal to

(2m)™ L w0l (SO(n — 1)) -

» - O
o [ [arrerra+ier i

JJ R

Assume that 7 is reducible. Then, there exist vectors
0£heV CH R @ H'(R") and 0#£ fe V™t

such that
O = <7T(p7 qa@abaaaR)Fa H)L2

But this implies that

0=

2 . 2ys t|f(£ QP
o [ fasnarras ot

R™ R7

is true. But this is contradictory to 0 # f, h. If f vanishes in a neighborhood of the origin
and setting f = h # 0 it follows that

7 2
o<l [ [a+ierra+ 112y e e ge < oo,

JJ R

Such a function f evidently exists. |
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Remark 3.1 We call the related left transform in H®(R™)®,H!(R") anisotropic Gabor—

Wavelet—transform. The integral transform maps H®(R™)®, H (R") isometrically onto

Lo(Gly - ).

By the weight functions

(Aasf) ik i= [ D)2 4 (L4 (ko [2)2/?] (R, k) and
| £(k1, )

(Arsf)" (ki k1) = [(1+ R l?)*2 (1 + || (ks ko) |[2) 2/
we obtain representations

7TA,§(9a h)f(‘TlaxQ) = AA,fEﬂ'(gah)AA,Ef(xla‘TZ)
15(g, h) f(z1,22) = Ar_sm(g,h)Arsf(z1,z2).

: 51,52 51,52
in HY and H ™%,

Remark 3.2 Abbreviating the weight functions by A, one has a general admissibility con-

dition for functions f belonging to some Hilbert spaces H

A s )N §
: 7sjjl)l~c2(||kn1’kQ)| d"kid" k2 <oo. (3.14)

0 < (21)™ " Lol (SO(n — 1)) /]2 /
Rm+n

Consequently, in all cases the operator A in condition (2.3) is given by

|(Axtp)” (1, K2) |

Rmn L1

A=1Id-C d™ k1 d"ks (3.15)

and hence, by (2.4) we have isometrical mappings.

After establishing representations of GgW g in Bessel potential spaces H; we consider now

the semi-direct group product G,w g and related representations.

Proposition 3.8 The representation (3.1) of the semi-direct product Gewp in Lo(R™) is

not square integrable.

To overcome this deficiency we proceed as in Section 2.1 and restrict the integration to
suitable cosets X. To keep notations at a reasonable level we restrict the computations
to the classical Sobolev space. Everything holds for ansisotropic spaces H;(R") too. To
construct a restriction of 7 on a homogeneous space X we may consider for instance the

following subgroup of Gow

18



I'= {(Oapa 1a 15‘P) € GaWH} . (316)

Other cosets may be chosen, see [KT93]. However, at first we have to specify a admissible

section o to embed X =T\ Gowg in Gawp.

Proposition 3.9 Let ¢ € H*(R") and o(q,a,R) = (q,8(a, R),a, R,0), where f: X —» T
is a piecewise differentiable mapping. Furthermore, the representation ms, is given by

A_g(moo)As. Then, the section o is strictly admissible for a constant co-vector v if

|1 — (v,

A B,
0<R[ Rk <o (3.17)

The proof of Proposition 3.17 for the simplified Lo(R™) case can be found in [KT93] and

can be applied as well for H*(R").

Remark 3.3 G,y acts from right. However, Gow g s unimodular and thus the invari-

ant Haar measure is given by dgdadm(R)/a. A possible structure of B is given by

—1R !
B(a,R) = w +0(5)

where S € SO(n — 1), v is a SO(n — 1)-invariant co-vector and o is smooth enough on

SO(n —1).

4 Uncertainties and Wavelets in Anisotropic Sobolev Spaces

In this section, we compute generalized uncertainties und minimizing wavelets in anisotropic
Sobolev spaces. We consider both, the semi-direct product G,y and the direct group

product G, ;.

Before computing some uncertainties we have to check that our modified representations

Mus = Ay _smAs s (4.1)

I

induce self-adjoint infinitesimal operators in H?(R"). Similar to (2.5) we define by

0

[As,s(9:) f](z) :== a_gi[ﬁ*,S(g)f](ﬁﬂNg:e (4.2)

infinitesimal operators on H(R").
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Lemma 4.1 Assumed that A(g;), defined by (2.5), is some self-adjoint operator on Ls.
Then, Ay s(gi), defined by (4.2), is some self-adjoint operator on HY.

Proof At first, we remark that for some ¢ € H] we have

Avs(g)dl(z) = aigi[m,s@)gb](xng_e

_ A*,_saigi[w(g)A*,sqs](a:)\g:e
= A*,—S[A(gi)A*,s(ﬁ](m) :

Finally, we obtain for ¢, € H? that

<A*,S(gi)¢7¢>Hf <A*SA* sA(gz) *,S¢aA*,Sw>L2
(Ass8, A(gi) Ass¥) g,

= (} As—s Agi) M) g
(¢,

Ass(90)) s

[ |
Consequently, if we switch from Ly to the Hf framework we can apply Proposition 4.1 to

establish uncertainty principles by Theorem 2.1 and 2.2 respectively.

4.1 Uncertainties related to G¢,

In this subsection, we establish in accordance with Theorem 2.2 a generalized uncertainty.
Let G%;; be the underlaying group and Hj,;,(R?) the representation space under con-
sideration. Hence, we have the following infinitesimal operators: A(q), A(p), A(a), A(b)
and A(p). Let A = (A(q), A(p), A(a), A(b)) be the vector of operators and let v and « be
given by

v=1(0,1,1,0) and «=(1,0,0,1).

Then, we have

0 [A(g), A(p)]  [Alqg), Ala)]  [Alq), A(b)]
x — ;| ~HA@ AR 0 [A(p), Ala)]  [A(p), A(b)]
—[A(g), A(a)] —[A(p), Ala)] 0 [A(a), A(D)]

—[A(g), A()]  —[A(p), A(b)] —[A(a), A(b)] 0
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0 Al) 0 0
| -4ae) 0 0 0
- 0 0 0 A®)

0 0 —A®) 0

and thus yKo' = (0,1,1,0) - (0,—A(y), A(b),0) = —A(p) + A(b) # 0. This represents
the generalized commutator. To derive the uncertainty structure we have to compute the

following terms

0 As f(A(q)’A(p)) As f(A(Q)aA(a')) As,f(A(Q)’A(b))
T_V = As f(A(Q)v A(p)) 0 As f(A(p)a A(a)) As,f(A(p)a A(b))
Az, 5(Alg), A(a)) Az p(A(p), Ala)) 0 Az 7(A(a), A(D))
As,1(Alg), A(b)) Asf(Alp),A(b)) Asr(Ala), A(D)) 0
A2 (Ag) 0 0 0
. 0 A2 (A(p)) 0 0 |
0 0 A2(AW) 0
0 0 0 AZ ((A(b)
Vo' = AF f(Ap) + A §(A(a))
aVa' = AF 1 (A(g)) + AF ;(A(D)) ,
(Z-V)YaV = ,
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and consequently, we have

Mo = [AZ(A(@) + A2 (A®)] [As1(AD), A(@) + B f(ATp), Ala) |

+ (A2 1(A) + A2 1 (A@)] [Asr(A(), A®)) + By (A0), AD))|

Concluding, we obtain the following uncertainty

ps,f(—A(0) +AD)? < 4[AS ((A(p) + AF (A(a)] [AF ;(A(9)) + AZ (A®D))]

+[A2(A@) + A2 /(A0))] [As5(Alp), Ala) + A5 (AR, Ala) |

+[AF 5(Ap) + A3 £(A(a))] [AE,f(A(Q)aA(b)) + Ag,f(A(q),A(b))] :

The minimizing vector f is given in phase space as a solution of the following partial

differential equation

A~ ~

(A(a) + A(p) — ) f =it (A(b) + Alq) — p2) [ - (4.3)

A function satisfying (4.3) is given by

A

f(w 77) = 7’1+32etw2/2—u2tw—w/2—iu1w+nt—52w—w (1 + w2)—31/2 (1 n 712)_82/2

where the parameters must be chosen such that the admissibility condition is satisfied,

ie, n>0,t <0, and for n < 0 the function f = 0, see Figure 1.

4.2 Uncertainties related to G,z

In this section, we derive uncertainties related to G, . We proceed in two steps. At first,
we start by a homogeneous space X and compute directly some uncertainty structures.

Secondly, we observe that this special structure can be obtained by applying Theorem 2.2.

As in Section 3.3 we restrict G4 g to the homogeneous space X induced by the subgroup
X given by (3.16). To keep notations at a reasonable level we choose . = H*(R?). By
Remark 3.3 we know how to choose . The next proposition exhibits the infinitesimal

operators in dependence on the section o and the embedding /.
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Figure 1: Wayvelet function based on GgWH for s1 = 1,8 =5,t= -1, yy = —4 and

o2 = 6.

Proposition 4.1 Let Gqwn be given and let w5, = A_g(mo0)Ag be the square integrable

representation of X in H*(R?). If the embedding function is given by

B(a,R) =a™! ~sinf _(° (4.4)

cos 6 1

where a € Ry and 0 € [0,27), then, the infinitesimal operators are given by
A%(a) = A(a) + A(p2) ,  A%(gj) = A(gy) and A7(0) = A(0) + A(p1) - (4.5)
Moreover, the infinitesimal operators satisfy the following commutator relations
[A%(a), A% (g5)] = 1A(g;) +id2;A(p) ,  [A%(a), A%(0)] = 2iA(p1) ,

[A7(0), A7 (q1)] = iA(g2) +iA(p) , [A7(0),A%(q2)] = —iA(q1) and [A7(q1), A%(q2)] =0 -
(4.6)
Consequently, for the homogeneous space X there exist for n = 2 five uncertainty princi-

ples.

Proof We choose n =2, v=(0,1), S € SO(n —1), 7 = —1 and finally ¢(S) = (0,7)" =
(0,—1)". Hence, the structure of (4.4) is satisfied

a 'Ry

B(a,R) = a~(—sin6,cos )’ — (0,1) = T

+ ¢(S) .
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Using this embedding and A(w) = (1 + [|w||?)~*/? we derive the infinitesimal operators

< 0

A(a)p(w) = %ﬁs,azﬁ(w) = M) (1 + [lw]*)4h(w) +

A@)s(l@]* +w2) (1 -+ lw]*)*/* b w) + Aw) (1 + ] *) /275 - ( wi 1 )
w2

8||w||2 9 4

and

BOW) = inoh(@)| = A@)swn(1 + [l?)* () +

e

A@)(1 + [[w]2)*/2V4) ( ot )

—Ww1

. Swi A - w2 i A
= TTToF ||w||2¢(w) + Vo ( ) + aw1¢(w) .

—w1

To make them self-adjoint we modify them by
iA%(a) =: A%(a) = A(a) + A(q:) and iA°(9) =: A°(9) = A(9) + A(p1) .

This shows (4.5). Furthermore, we have
9
8q]~

Hence, the relations (4.6) are obvious

Fooh(w)| = —iwjh(w ) and iA%(q;) =: A%(q;) = A(qgj) -

e

A% (g)h(w) =

[A7, A%(g5)] = [A(a), Ag;)] + [Alp2), Algj)] = iA(q)) +id52A(p)
[A%(q1), A% (2)] = [A(q1), A(g2)] = 0,
[AZ, A7(0)] = [A(p2), A(0)] + [A(a), A(p1)] = 2iA(p1) ,
[A7(6), A% (q1)] = [A(6), A(q1)] + [A(p1), A(q1)] = iA(g2) +iA(p) and

[A7(0), A% (q2)] = [A(6), A(g2)] + [A(p1), Ag2)] = —iA(q1) -

The essential message of Proposition 4.1 is that some of the infinitesimal operators are
given by sums of operators. This reflects the influence of the embedding function . To
analyze these cases we consider the uncertainties with respect to A%(0) and A%(q;), for

1=1,2.
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Proposition 4.2 Let X be the homogeneous space under consideration and let v € H®

such that ||9||s = 1. In accordance with Theorem 2.2 the uncertainties with respect to
A%(0) and A%(q;), | = 1,2, are given by

1
10 < ATG(AO)AL,(Ag) + ATy (Alp1) ALy (Ag) +

207 1 (Aq,) [Rits,p (A(0) A(p1)) — ps,(A(8)) s, (A(p1))] (4.7)

with lower bounds

Ci = uly(Alg) + Ap)) and

Co = ply(Alq)) (4.8)

Proof This result can be proved more generally. Assume that A, B and C are the given

self-adjoint operators. Then by
A (A+B) = AF,(A)+ A7 ,(A) + (AB + BAYWY, §), — 2 (A9, %), (B, ),
= A7 ,(A) + A7, (A) + 2R (By, Ap), — 2 (A, ), (B, 9),
we deduce (4.7) and (4.8)

Ag,qp(A + B)Af,w(C) = Az,w(A)Az,qp(C) + A?,w(B)A§,¢(C)

+24A7,(0) [R(By, Ap), — (A4, ) (B, )] -

Using the definition of the covariance we specify (4.7) in Proposition 4.2
1
10 S A2 (AO)A2(Ay) + A2, (A1) A2, (4,) +

ALy (Ag) Asp(A9), Alpr)) + AL (Ag) A (Alp1), A0)) . (4.9)

To realize how this interacts with Theorem 2.2 we start again by the same set of infinites-

imal operators A(p1), A(p2), A(q1), A(q2), A(6), A(a). Assume that

A = (A(p1), A(p2), Alq1), A(ge), A(0), A(a))

and we have chosen vectors
v=1(1,0,0,0,1,0)" and «; = (0,0,-1,0,0,0)" , a0 = (0,0,0,—1,0,0)".
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Then, it follows

(0 0 Al 0 A) —A) )
0 0 0 —A(p) Alp1) —A(p)
r_| Al 0 0 0 (g2) —Alqr)
0 A(ep) 0 0 (1) —Alg2)
—A(p2) —Alp1) —Alge) —Alar) 0 0
A(p1) A(p1) Aq1) A(ge) 0 0

and hence, Y Ka; = A(p) + A(g2) # 0 and ' Kas = A(q1) # 0. Moreover, we have

YV = AZ,(A() + AZ,(A(0)),
aVa, = Ag,w(Aql) and
VMo = A2(Aq) [Asp(A0), Alpr)) + B,y (A0), A1) | -

Consequently, we obtain the following uncertainty principles

s (A) T A@)? < [A2,(Alpn) + A2, (AB)] A2, (Algy))
+A2 5 (Ag) [0 (AB), A(pr)) + By (A(0), Alp1))|

(4.10)

and

1

dhsu(Al@)? < [ALL (A1) + AT, (A(9))] ATy (Alg)

A2 4 (Agy) [As0(A(0), A(p)) + By (AD), A1) | -

(4.11)

Uncertainties (4.10) and (4.11) correspond exactly to (4.9).

Finally, we derive some minimizing elements of (4.10) and (4.11) for the special case s = 0.
For other cases it is to difficult to find a analytical solution. Using A%(0) = A(0) + A(p1),
Ag, = Aq and

w9 SW1

N o - N
A =1 ] =
) , Alp1) Zl+||w||2¢+28w1¢ and Ay = wiyp

A(6) =iV - (

—w1

we have to solve the following partial differential equations

iV - (

“2 ) 4 bi2g— =it (wah — o)
I A R TEA L A
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Lemma 4.2 Let ¢ € H*(R?) and qAS be smooth enough. For a adequate choice ofqg and

s = 0 explicit solutions are given by

— w2 . Swy
iV - +1
—wy 14+ ||w

0 - . R .
“2¢+Zaw1¢—Nl?p—“f(wl?ﬁ—m'lﬁ)a for 1 = 1,2

and forl =1 and 1 +ws > 0 by

2 .
¢(w) =¢ (”L‘;H + w2) (1 + 1wy + wz)—,ul-f-ztug e(1+w2)t

and forl =2 and 1+ wy > 0 by

2 .
P(w) = ¢ (@ + OJQ) (14 iwy + wp)lr —iHk2tD) gent

A straightforward proof of Lemma 4.2 can be found in [Tes01].

5 Appendix

Proof of Proposition 3.1

To show the machinery for computing Haar measures, we prove this proposition. Let
H C Q = R™ x Ry x SO(n). Then we have to show that ur(g o H) = pr(H) and
pr(H o g) = pr(H). Let @1 (H) = ¢’ o H, that is

By Haar’s theorem there exists a non-negative weight function v with

ui(H) = [ 2(g. 0 Rydadadm(R).
H

Hence, we have

pr(g o H) = / v(q, a, R)dgdadm(R)
g'oH

_ / +(®1(q,a, R))| det Jo, (¢, a, R)|dgdadm (R) .
H

Using Euler angles, the Jacobian is of the following structure

Jo, = 0 d 0 and thus, |detJs, (¢,a,R)| = (a’)"*!.
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Up to a constant we deduce that (g, a, R) = a~ 1) and consequently, we have
pr(q,a, R) = a~ ™ Vdgdadm(R) .
We compute the right measure analogously. By
®r(q,a,R) = (g,a,R) 0 (¢',a',R') = (¢ + aRq',ad’, RR)

we obtain the measure

IU‘R(Q7 a, R) = aildqdadm(R) :

Proof of Proposition 3.5

We proceed as follows. We start by computing the adjoint group action in the correspond-
ing Lie algebra. Therewith we are able to derive the co-adjoint action on the dual Lie
algebra. By this mapping the co-adjoint orbit follows instantly. Finally, by Pukanzky’s
condition we can derive irreducible representations as characters with respect to certain
functionals belonging to the dual Lie algebra.

The first goal is to construct the adjoint action of G, g on the related Lie algebra G, g-

For that reason we conceive a element of G,y as a matrix

1 (aR'q)" ¢
g=120 aR q )
0 0 1

where group law is preserved by matrix multiplication. The corresponding Lie algebra

Gow g can be conceived as a matrix-valued Lie algebra

0 ¢ t
Gawn = 0 ™ z |, (zeR" teR r € so(n)
0 0 O

Every element X € G,wg can be written as
X=a"Qi+C P+ \K+R-J +1T,

where \,t € R z,( € R?, RZJ are coefficients of r € so(n). The connection between G i

and G,wpr is given by the exp - mapping. Now, we compute the adjoint action of Gaw
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in Gowr. Let g = (q,p,a,p) € Gawrg and (z,(, A\, t) are the coordinates of a element

X € Gowp with respect to the basis {Q, P, K,T}. By
Ad(9)X = gXg ' = (az — Ag,a” '(+ Ap, At +apz — a”'q( — pg))

it follows the adjoint action

a 0 —q 0

0 a ! p 0
Ad(g) =

0 0 0

ap —a'q —pg 1

With respect to the basis {Q*, P*, K*,T*} we can compute the co-adjoint action

a! 0 0 —p

s
s
jen

q

)
L
Q
&
hS
—_

—pq

A functional F' € G}};,; has the expression
F =z3Q" + (g P* + A\ K™ +t3T™.

Consequently, we can deduce the co-adjoint orbits

.
* * —1,.% *
Ty = ¥ =a xy— Pty

Co — ¢* = a(g + qtg
Ap = A = a_lqa:g —ap(y + A — patp

|t =t =1

We are interested in Stone-von-Neumann type representations. The related orbits are
described by setting t* # 0. In this case we can find for every initial value zj, (§ numbers
g, p and a such that z* = (* = 0. Hence, without loss of generality we may choose

x5 = (5 = 0 and therewith we have the following orbits

( z* = —pt;
< ¢* =gty

A= Af+ 55
|t =1

These orbits are characterized by t*, \* € R. Its knows that for the co-adjoint orbit the

relation Op = G,wg/Gr holds, where G is the stabilizer of F' with respect to Gaw g
Gr={9€Guwn:Ad*(9)F =F} and F=tT"+)X'K".
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The co-adjoint mappings Ad*(g) acts as follows
Ad*(9)F = —pt'T"+qt*'T* + N*K* — pgt*T*
= (g—p—pg+1)t'T* + X\*K* .
To preserve the invariance property we have to ensure that p = ¢ = 0. Consequently, we

have
Gr ={(0,0,a,0): a€Ry,peR}.

At this point we use Pukanzky’s condition.
Lemma 5.1 Assume that H is a polarization in Gawg and that the condition
Ad*(exp(H))F = F + H*

is satisfied. Then, the characters of H with respect to F' induce irreducible representations
7. The characters are of the following structure xp(h) = eXFX) where h = exp(X) €

H = exp(H).
A polarization with respect to F' is given by
H=R-Q+R-K+R-T.

Let X = (z,0,\,t) = 2Q+ A K +tT € H C Gawrg- Then, we can identify the related group
elements by exp(X) = (z(e* — 1)/),0,e*,t)" € H. For checking Pukanzky’s condition we

need
e~ 0 O 0
y 0 er 0 z(e*—1)/A
Ad* (exp(X)) =
ez -1)/A 0 1 0
0 0 O 1

0 0
t'z(e — 1)/ t*z(e — 1)/
Ad*(exp(H))F = =F+
A* 0
t* 0
e;arrL

and F defines the following characters xz of H by xr(g,0,a, ) = elA" log@)+t"¢) et
(qa 070'7 QD) =h € H7 (07:1"7 170) = gn € H \ GaWH and (Q7p7a7 (P) =gEc GaWH Then we

deduce
(0,2,1,0) o (g,p,a,¢) = (¢, + p,a,¢ + zq) = (¢,0,a,¢ + zq) o (0,0,a(z + p),0)
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and with f(hog) = xr(h)f(g) we finally obtain
m(g)f(x) = xr(g0,a,9+zq)f(a(z +p))
— e((oaoa)‘* 7t*)a('a'a10g(a)7w+zq))f(a(l‘ 4+ p))

— ei()\* log(a)-l—t*((p—f—zq))f(a(a: +p))

Proof of Proposition 3.6
The strategy is the same as in the proof of Proposition 3.1. The difference is the trans-

formation @, :  — € which is defined by
OL(g;p,a, R, ) = (d,p,a",R,¢')o(q;p,a,R,¢)
= (¢ +d'R'q,p' +d 'R'p,d'a, R'R,¢' + ¢ +p'(d'R'g)).
This leads to the condition y(®(q,p,a, R, p))ad < v(q,p,a, R, ). A possibly weight
function is then given by v(q,p,a, R, ) = a . Hence, we obtain

dur(q,p,a, R, ) = v(q,p,a, R, p)dg dp dm(R) da dp = a~'dg dp dm(R) da dep.

For dupr we obtain the same weight function. |
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