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Abstract. In phase field models, different components of the solution (tempera-
ture and phase variable) exhibit a strongly different local behaviour. An optimal
discretization should use a mesh for each component. We present a general frame-
work for the adaptive solution of coupled systems and its application to phase field
simulations.

Free boundary problems give rise to coupled systems of partial differ-
ential equations, which are prominent examples of systems where a careful
numerical discretization is needed in order to resolve the solution’s behaviour.
Usually, a high resolution is essential near the free boundary, while coarser
meshes are sufficient in the bulk. A reasonable numerical method should use
locally adapted meshes to fulfil both the needs of accuracy and efficiency. For
coupled systems like the phase field system, where components of the solution
show strongly different local behaviour, an optimal discretization should use
specially adapted meshes for each component.

1 Models for solidification

An undercooling or oversaturation of a liquid leads to a rapid solidification
of the material. Models for this behaviour include energy and/or mass trans-
port by diffusion and/or convection as well as energy/mass conservation con-
ditions across the interface, like the Stefan condition. On a certain (meso-)
scale, additional surface effects at the phase boundary play an important role,
depending on curvature C or velocity V of the moving interface I', usually
described by a Gibbs-Thomson relation like

eCr+e,Vr+6=0 on I.

Anisotropic surface effects lead to dendritic growth.

Mathematical models for solidification with surface effects differ mainly
in the treatment of the free boundary, defining it as a sharp interface, a level
set, or a diffuse interface (phase field). Numerical methods for solidification
simulations are developed following the same lines.
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1.1 Sharp interface models

In a sharp interface model, the phase boundary is a (smooth) hyper-surface
of the underlying space (a surface in 3D or a curve in 2D). The advantage
of the treatment of the interface as a smooth surface is its lower dimension
and that curvature, which appears in the Gibbs-Thomson law, is well de-
fined. Drawbacks are that the standard model allows no changes in interface
topology, no nucleation. The notion of varifolds allows for some possibilities
in this direction.

The free boundary problem leads to a degenerate parabolic equation for
the interface motion, like an anisotropic mean curvature flow equation, cou-
pled with heat or mass diffusion in solid and liquid phases. Additionally,
convection can be added by coupling to Navier-Stokes’ equations in the time
dependent liquid phase.

Numerical methods for sharp interface simulations. The sharp inter-
face model leads to numerical methods with separate discretizations of bulk
(3D) and interface (2D) (or 2D & 1D).

In the bulk, a fine mesh is essential near the interface to sufficiently resolve
the behaviour of solutions (temperature, concentration). Adaptively refined
meshes in finite element methods are crucial to get enough resolution, espe-
cially in 3D. A numerical sharp interface finite element method with adaptive
meshing in 2D and 3D was presented in [7,8], with additional convection in
2D in [2].

1.2 Diffuse interface models

Phase field models can be formulated either with a double obstacle potential
or a smooth double well potential. We want to restrict ourself here to an
obstacle formulation, as introduced by Blowey and Elliott [3].

The model describes the evolution of temperature # and phase variable y
in a domain {2 and is a system of two (degenerate) parabolic equations:

@+ Ax) — kA= f
edx — ediv(a(Vx)) + A(x) - 28x > 70

in 2 x (0,T) plus boundary and initial conditions. The function a may in-
clude anisotropic solidification parameters, and A is a (set valued) maximal
monotone graph, the subdifferential of the double obstacle potential,

(—00,0] if s = —1
A(s) = 0 ifse (—1,1)
[0,400) if s =+1

with the effect that values of x are in the interval [-1,+1]. f is a given heat
source density, A, k, and 8 are non-negative, material-dependent coefficients,
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and € > 0 a small parameter. The phase variable x is equal to —1 (solid) or
+1 (liquid) everywhere but in a narrow transition region of width O(g). For
€ — 0, the solution converges against a solution of the sharp interface model
with a corresponding Gibbs-Thomson relation. Figure 1 shows the evolution
of the phase boundary during the solidification of an undercooled liquid.

Fig. 1. Solid-liquid interface at different times

Both components of the solution, temperature and phase variable, show
a strongly different local behaviour, see Figure 2.

Fig. 2. Graphs of phase variable and temperature on 1/8 domain

— The phase variable is constant outside of a moving narrow strip of width
O(e), where the phase transition occurs. Here, |[Vx| = O(e71).

— The temperature satisfies the heat equation outside this strip, thus it
is smooth. Inside the moving strip, the gradient of temperature changes
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rapidly. In the limit ¢ — 0, the Stefan condition holds at the sharp
interface,

(ﬁvgliquid - IiVHsolid) .n=-\V.

In order to resolve this behaviour with a finite element approximation, dif-
ferent requirements to the discretization hold for both components.

— The mesh for discretization of x must have a local mesh width of hg < ce.
Outside this strip, where x is constant, the mesh might be arbitrarily
coarse. In order to be able to track nucleations, the phase field system
should be solved in the whole domain, not only near the current interface.

— To resolve the temperature behaviour, a much coarser mesh is sufficient
in the strip than is needed for the phase variable. On the other hand, the
mesh must have a sufficient fineness also in the rest of the domain.

A separate discretization for both temperature and phase variable is needed
in order to meet all requirements in an efficient numerical method.

2 Adaptive finite element methods for coupled systems
of PDE

Besides phase transitions, many physical problems lead to coupled systems of
partial differential equations, too. Especially in case of nonlinear phenomena,
the components u;, i = 1,...,n may show a strongly different behaviour
(smoothness of solutions etc.) in the common underlying domain 2 C R?.

The usual adaptive discretization for systems of PDEs uses the same mesh
for all components, locally refined based on a posteriori error indicators for
the sum of error contributions on each mesh element.

An optimal adaptive discretization should use different locally refined
meshes for different components of the solution, controled by separate error
indicators for each component.

In [6] we present a general concept for adaptive finite element methods
for stationary or time dependent coupled problems.

Solution components u; are discretized in finite element spaces X;, which
are based on different locally refined simplicial grids S;, where all meshes §;
are refinements of the same macro triangulation Sy of (2, see Figure 3 for a
simple example.

The advantages of this approach are

— separately adapted mesh for each component of the solution;

— altogether less degrees of freedom, thus more efficient;

— by the common macro mesh, a direct local hierarchy of the triangulations
S; is given. This enables an ezact evaluation of each other component U;
on the elements of mesh S;.
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So S So

Fig. 3. Two different refinements of a macro triangulation Sop

A somewhat similar idea for phase field simulations was proposed by El-
liott and Gardiner [5], who use two separate meshes for temperature and
phase variable. A fine mesh with mesh size h < ¢ for the phase variable is
used only near the transition region (selected by a ‘mask’), a coarse mesh
with mesh size H = 4h for the temperature. Use of the ‘mask’ reduces com-
putations for the phase variable significantly, but does not allow to track
nucleations, e.g. Both meshes are aligned, but no error estimators or local
mesh refinements are used.

2.1 Aspects of implementation

The adaptive multi-mesh method is implemented in the finite element toolbox
ALBERT, a joint development with K. G. Siebert [9,10]. The toolbox uses
simplicial meshes in 2D (triangles) and 3D (tetrahedra) and local refinement
by bisection of elements, which induces a hierarchical structure of meshes
and finite element spaces.

The multi-mesh concept introduces the traversal of a common, virtually
refined mesh Syr, see Figure 4, for calculation of coupling terms, which in-
volve several components or functions from finite element spaces defined on
different meshes, like [, U;® with U; € X;, & € X;.

Fig. 4. Virtual mesh Sy with locally maximal refinement from S1, S

2.2 Numerical analysis and adaptive methods

We recall the standard a posteriori error estimates and adaptive finite element
methods for a scalar elliptic problem. The error ||u—U]|| between the solution u
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and a discrete approximation U is estimated by a sum of local error indicators,

e.g.
-0l < S 02,
ses
where the indicators ng must be computable from the discrete solution U
and given data of the problem (a posteriori).
On an quasi-optimal mesh for a given error tolerance tol, the local error
indicators are equally distributed over all mesh elements,

tol?

n?gm% forall S € S,

compare [1], e.g. A similar approach is used in case of coupled systems. The
goal is an estimate of the errors ||u; — U;|| by a sum of local error indicators
on separate meshes, like

n
SNl —UilP < S mig++ > nis.
i=1 SeSt SESH

In order to describe a quasi-optimal set of meshes, one possibility is to split
the total tolerance tol to the separate meshes

tol} + -« - + tol? = tol?

and optimize every single mesh. This leads to decoupled equidistribution
conditions

77%,5“ L forall Se€ S;i=1,...,n.

3 Adaptive method for phase field models

In a joint paper with Z. Chen and R.H. Nochetto [4], we derive error estimates
and adaptive methods for the double obstacle phase field system. Denoting
by u = 6+ Ax the energy density, and again discrete (finite element) functions
by uppercase letters, the estimate looks like

llu — Ull oo (0,m;5-1(2)) + VElX = Xl (0,1;02(2))
1/2

T

< computable terms, localizable to mesh elements.

In [4], we use a common mesh for the discretization of temperature and
phase variable. The local error indicators g contain contributions from both
components,
Estimated error < 19 4+ max Z nz,
™ sesm
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where m is the time step index. A quasi-optimal common mesh fulfils the
equidistribution condition for the local indicators

2 tol?

Ns ~ #Sm

Here, the total mesh element count #S™ is very large because of the fine

resolution in the strip, thus the local temperature error must be very small
also in elements far from the interface.

for all S € S™.

Adaptive FE method with separate meshes

A separation of contributions from temperature and phase variable in the
error indicator is possible:

Esti 2 2 )
stimated error §n0+m£x( Z s+ Z 7 g
sesy sesm

A split of the tolerance to both meshes, as described above, leads to a smaller
element count #JS5", thus larger local error tolerances for the temperature
error. It follows that the temperature mesh contains much less elements than
a common mesh. Also the mesh for the phase variable contains less elements,
as a fine resolution is needed only in the transition region. Figure 5 shows
element counts over time. A time-dependent tolerance was used for the error
in each time step, which reflects the fact that the interface length grows
during the simulation.
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Fig. 5. Element counts for phase variable and temperature meshes over time

Figures 6 and 7 show the temperature and phase variable meshes with
zooms to the interface region. Finally, we present in Figures 8-10 a compar-
ison of temperature and phase variable meshes from simulations with three
different error tolerances tol.
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%

Fig. 6. Temperature mesh (2608 elements) and zoom to interface

NN

Fig. 7. Phase variable mesh (23015 elements) and zoom

Conclusion

We described an efficient adaptive finite element method for phase field calcu-
lations, together with some 2D simulation results. A more detailed description
of the multi-mesh method and results from 3D simulations will be presented
in forthcoming articles.
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Fig. 8. tol=10: Meshes with 1122 resp. 7440 elements

Fig. 9. tol=T7: Meshes with 1568 resp. 11813 elements

Fig. 10. tol=>5: Meshes with 2245 resp. 20631 elements
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