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Abstract

In this paper, we discuss some ideas how adaptive wavelet schemes can be
applied to the treatment of certain inverse problems. The classical Tikhonov—
Phillips regularization produces a numerical scheme which consists of an inner and
an outer iteration. In its normal form, the inner iteration can be interpreted as a
boundedly invertible operator equation which can be handled very efficiently by
using a stable wavelet basis. This general framework is illustrated by an application
to the inverse heat equation.
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1 Introduction

Due to its theoretical challenges and its practical importance for many industrial appli-
cations the theory of regularization methods for inverse problems has gained increasing
interest in the mathematical community over the last two decades. Excellent introduc-
tions to this field can be found e.g. in [12, 14, 16]. In this article we aim at presenting a
framework for adaptive Tikhonov regularization and its realization by adaptive wavelet
methods for parabolic differential equations. Moreover, in order to highlight the main
ideas we will only consider inverse problems with a linear or an affine linear operator,
e.g., parameter estimation problems for heat transfer equations. Hence we consider a
compact operator A between Hilbert spaces X and Y and a corresponding operator
equation

Az = y, (1.1)

where z is the searched for function and y denotes perfect data, however we assume that
only some observed data y° with a known error bound ||y — y°|| < 6 is given.

Tikhonov-Phillips reqularization of such an ill-posed problem is achieved by replacing
the linear equation (1.1) by the minimization problem

find x‘sa € X which minimizes

(1.2)

To(z) = Az = ¢ |} + allzll% -
The idea of Tikhonov—Phillips regularization (1.2) is to control the influence of the data
error in the regularized solution z’, by adding a penalty term. The unique minimizer of
(1.2) is given as the unique solution of the regularized normal equation

(A*A + al)x® = A%y . (1.3)

Early results on the convergence of Tikhonov regularization methods were usually
entirely based in function spaces, the additional influence of an appropriate discretiza-
tion of the operator was hardly mentioned. For some exceptions see, e.g., [19, 20, 21].
However, any numerical scheme for solving inverse problems by Tikhonov regularization
depends on at least two parameters (regularization parameter «, a parameter determin-
ing the discretization of the operator) and a stopping rule. Characterizing a numerical
scheme for operator equations as adaptive usually refers to a nonlinear dependence of
these ingredients on the given data 3. In this sense, any a posteriori stopping rule leads
to an adaptive scheme. In this paper, we address adaptive schemes in a stronger sense:
we analyze methods where the regularization parameter and the discretization spaces
depend on the unknown solution and are chosen adaptively during the solution proce-
dure without using a priori information. More precisely, we will consider the following
framework for Tikhonov regularization:

e given data: A,9°,6,0 < ¢ <1, a;

e outer iteration for determining the regularization parameter: choose iteratively
an = "y, for each a, determine a critical level of approximation € = €(a, d, y°)



for the solution. This parameter has to be chosen, such that the over all scheme
realizes optimal convergence rates;

e inner iteration for determining the minimizer 9 , of (1.3): z? , will be deter-
mined by suitable wavelet Galerkin approximations of the forward operator A*A,
these wavelet approximations will be chosen adaptively by using local a posteriori
error estimates and an appropriate refinement strategy.

The paper is organized as follows. Section 2 contains the description of a model problem,
which describes a parameter estimation problem for a heat equation. Section 3 deals
with the approximation requirements of the outer iteration and the resulting adaptive
approximation levels ¢ = ¢(a,d,y°). Finally Section 4 analyzes how to construct an
adaptive wavelet Galerkin method which realizes the required levels of approximation.

2 A Model Problem

In this paper, we just aim at outlining a general approach for adaptive Tikhohonov
regularization via wavelet discretizations. Hence we will not present any numerical
results. However, in order to focus our ideas we will introduce a simple model problem,
which serves as motivation for the subsequent sections. We do not present any new
results in this section, to the contrary the content is rather classical and elementary,
see, e.g., [23, 25]. Since we want to merge results from inverse problems and wavelet
analysis, which have developed some conflicting notations and which sometimes even
give different meanings to the same expressions, we would like to introduce some basic
concepts in detail.

We consider inverse heat problems, the underlying differential equation is hence given
by

up = div{oVu}

onz €, t €[0,T], where Q C IR? denotes a region with piecewise smooth boundary
' = 09.

The construction of wavelet Galerkin methods and their convergence properties have
only recently been analyzed successfully, these results will be described in Section 4.

The inverse problems we consider will differ in terms of the given and/or the measured
data: initial data p = u(-,0); boundary data a(x,t) = u(z,t) for z € T, t € [0,T];
observation at a fixed time instant g(xz) = u(z,T), observation on an interior region
b(z,t) = u(z,t) forz € QC Q, t €[0,T].

Let us first consider the standard inverse heat problem:

given data: a, g , searched for quantity: u .

For this model problem the forward operator A = A(u) is defined as follows: For a fixed
a let L denote the solution operator of the parabolic problem

uy = div{oVu} for x € Q
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with initial data p and boundary values a, i.e.,

L(p)(z,t) =u(z,t) forz € Q, t€[0,T] .

Then
A(p)(z) = L(p)(2,T) , (2.1)
which leads to the formal description of the operator equation for the inverse problem
Alp) =g .

In order to allow the modelling of measurement error, A is considered as a mapping from
Ly(2) — Lo(Q).

For non-zero boundary data a, the operator A is nonlinear. However, introducing
u¥ and g% = u¥(-,T), where u* denotes the solution with zero initial and non-zero
boundary data, i.e.,

u = div{oVu} forz € Q [ u(-,0) =0, a(z,t) =u(z,t) forx €T, t €[0,7],
leads to an affine decomposition
A(p) = Ap+g*
where A is the linear operator, which solves
uy =div{oVu} forz € Q |, u(,0)=p, 0=u(z,t) forz e, t€[0,T],

and restricts the solution to its values at time 7. Hence by combining the originally
measured data g with the particular solution ¢# via

jg=g-g"

leads to a linear inverse problem Au = §.
A similar affine decomposition also holds for the inverse problem posed by

given data: b, searched for quantities: (u,a) .

In all these cases including many variations, we are finally lead to consider an exponen-
tially ill-posed linear operator equation.

3 A Framework for Adaptive Tikhonov Regulariza-
tion

We consider Tikhonov regularization for solving a linear operator equation (1.1), i.e., we
consider

) = (A*A+al) 'A%y, (3.1)

«
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where ||y — ¥°|| < § and A is a compact operator between Hilbert spaces X,V
A X =Y .

Now let us incorporate an adaptive Galerkin discretization of (A*A + of) in (3.1). Le.,
we fix an approximation tolerance € and construct an index set A, such that the corre-

sponding approximate solution x‘sa’ A, satisfies a guaranteed error estimate

l2® — :L'i’AeH < const. % . (3.2)
An adaptive scheme, which realizes this condition will be described in Section 4.

The choice of a and e determines the approximation properties of x‘;, A.- S0 far we
have discussed the solution of (1.2) for a fixed value of a. Let us now discuss how to
determine a suitable value of a. We will choose a according to a discrepancy principle
of the form (or some modification thereof)

|4z}, 5, — 4°ll = 76 + o, (3.3)

where 7 > 1 and o sufficiently large, for a precise statement see Theorem 3.1. This still
describes an idealized situation: in practice one never aims at solving (3.3) precisely,
one rather chooses a from a sequence of test parameters and determines ay € {a, =
q"agl n=0,1,2,...}, for a fixed 0 < ¢ < 1 by requiring

Az, 4, =¥l < 70+ 0, (3.4)
||Ax‘;n,A€—y‘s|| > 76+0€ for n< N . (3.5)

Hence the overall algorithm for computing :vfl,Ae requires to solve (N + 1) operator
equations of type (3.1).

Of course the number of iterations /V is a priori unknown. Thus an efficient procedure
for obtaining sparse approximations of (A* A+ «l) in connection with a reliable strategy
for selecting the approximation level ¢ will greatly reduce the numerical cost of the
algorithm. Our main objective in this section is to determine an approximation level
€(9, @) such that xgé’ A, exhibits optimal convergence rates. Note that the approximation
level €(d, @) may change with a during the search process for the optimal regularization
parameter oy. This will later be used to choose coarser approximations for larger values
of a.

As usual we assume that the generalized solution 2 lies in the range of (4*A)¥, that
is,

T = (A"A)"v, |v|]| <o . (3.6)

Moreover we restrict ourselves to smoothness assumptions of the order

O<r<

[N



since higher order regularity of 2™ does not further improve the convergence rate of
|23, o, — || . This is consistent with the theory of a posteriori parameter selection
for classical Tikhonov regularization since — even when using the exact operator A —
applying a discrepancy functional of type (3.3) limits optimal convergence rates to the
range 0 < v < 1/2. To avoid unnecessary notation we furthermore assume that

range(4) =Y, |y’] >4, [A<1. (3.7)

The starting for this investigation is a basic estimate which reveals the three error
contributions in estimating ||z, , —27||. This result is a small adaptation of previously
published standard estimates, see, e.g.,[19, 21].

Lemma 3.1 Let at be the generalized solution of Ax = y and let x‘5a7A€ be defined by the
discretized version of (3.1). Assume that ||y — v°|| < § and that z+ obeys (3.6). Then,
) €llz™

e, 2l < 5o + D

2a " Va

+ a’cya(v)

where

ci,a(mzz{M <v,un>}25{(1—u>1—"u“g}2 .

= (62 + a)

In connection with the modified discrepancy principle (3.4) this result gives an optimal
convergence rate.

Theorem 3.1 If ¢ = O(6%a9), with 0 < p,q, p+q = 1, and if « is chosen by the
modified discrepancy principle (3.4) with T > 2/q, o > 9||xz*||/4q, then

25,4, — 27|l = O(6>7C"*D)

The above theorem shows that we can e.g. choose p = ¢ = 1/2 and still obtain
optimal convergence rates. Such a choice is preferable for large values of o which is the
case in the beginning of our iterative search for the optimal regularization parameter.

Optimal convergence rates cannot be achieved in general if p 4+ ¢ < 1.

4 Wavelet Galerkin Methods for Operator Equa-
tions

In recent years, much effort has been spent to design efficient numerical schemes based
on wavelets. The most far-reaching results were obtained for operator equations of the
form

Au = f, (4.1)

where A : H — H' is a linear operator from a Hilbert space H into its normed dual H'.
In our applications, H will typically be a Sobolev space H* on some domain 2 C IR or
on a closed manifold. We assume that A is boundedly invertible so that

AVl ~ o], ve H (4.2)
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holds. This setting fits perfectly to the normal equation (3.1) arising in the inner itera-
tion, i.e., to the problem

) = (A*A+al) 'A%y | (4.3)

(67

since, as already stated above, A = (A*A + «al) is boundedly invertible on Ly(£2).

Before we discuss later on the specific problems arising in the numerical treatment
of (4.3), let us briefly recall the basic numerical concepts. We are especially interested
in adaptive schemes, and we shall focus on numerical algorithms based on wavelets, i.e.,
the basis functions are taken from a family ¥ = {¢, A € J} satisfying the following
fundamental assumptions:

e V induces norm equivalences for a whole scale of Sobolev spaces,
I 0eq dntallms ~ (Xner 22701da?)2, 50 < s < s1;

e 1), possesses the cancellation property [(v,\)] < 27 ™ 0] g (s )3

e the wavelets are local in the sense that diam(suppy,) ~ 2~ Ne J.

Nowadays, several constructions of bases satisfying these assumptions are available [4,
7, 8, 9]. Our goal is to develop a suitable Galerkin scheme to approximate the solution
of (4.3). Therefore we consider subspaces of the form

Sa:={r: A€ A}, ACJ, (4.4)
and project our problem onto these spaces, i.e., the Galerkin approximation u, is defined
by

(Aup, vy = (f,v), v € Si. (4.5)
In an adaptive scheme, the goal is always to find a possibly small set A C J such that

the actual error is below some given tolerance. In principle, such a scheme consists of
the following three steps:

e compute the current Galerkin approximation u,;
e estimate the error ||u — u,|| in some suitable norm;

e add wavelets if necessary which yields a new index set A.

For the second step, one clearly needs an a posterior: error estimator since the exact
solution u is unknown, and for the third step one has to develop a suitable refinement
strategy so that the whole algorithm converges. In the wavelet setting, an error estima-
tor can be easily constructed by employing assumption (4.2), norm equivalences, and
Galerkin orthogonality, i.e.,

lu—unllae ~ (A = ua)llg-¢ ~ || f — Aual|z- (4.6)
1/2

= lralla-e ~ | Y27 [(ra, v2)

T\A



In our example for the inverse heat problem we have A : Ly(Q) — Ly(Q), ie. t =
0. From (4.6), we observe that the current error can be estimated by computing the
wavelet coefficients of the residual ry = f — Auy. Intuitively, the residual weights py :=
27t (ry, 1by)| serve as local error indicators. Therefore a suitable refinement strategy
can be derived by adding those wavelets which produce large entries in the expansion of
the residual, i.e., we define the new index set A in such a way that

1/2 1/2

D2 =8 D 27 ) (4.7)

AeA\A AeT\A

for some suitable parameter 3. However, this strategy is not directly numerically realiz-
able since catching the bulk of the residual requires knowing all its wavelet coefficients.
Nevertheless, in [6], it was shown that a judicious variant of this idea exploiting the
cancellation property of wavelets indeed leads to an implementable and convergent al-
gorithm, i.e., given a tolerance €, the adaptive scheme produces a final index set A, such
that
Ju—ug |l <e (4.8)

by using only information on the given data. Moreover, in [5], subtle generalizations
have been derived which yield asymptotically optimal schemes in the sense that (within
a certain range) the convergence rate of best N—term approximation is achieved at a
computational expense which stays proportional to the number N = |A| of degrees of
freedom. Furthermore, in [1], a first efficient numerical realization is documented.

As already stated above, we suggest to use this strategy for the numerical treatment
of the basic problem (4.3),

) = (A*"A+al)tA%y° . (4.9)

«

Clearly this problem fits perfectly into the framework described above. However, as
explained in detail in [5, 6], the design of an implementable refinement strategy requires
some compressibility properties of the underlying operator. For the special operators
considered here, this issue will be further analyzed in the near future. Moreover, for
an efficient implementation, the problem remains how to compute the entries of the
associated stiffness matrix

(Aa)ax = (Avx, ¥n) = (AYx, Ay) + aa, ¥a) (4.10)

and of the right-hand side
(A" )x = (', Ay). (4.11)
Fortunately, the adjoint operator A* is not needed, but nevertheless the task is nontrivial
since the operator A is induced by the forward problem (2.1), i.e., it is given as a parabolic
equation. We intend to solve this problem with another fully adaptive scheme as we shall

now explain. Following the basic investigations in [2, 3], we treat our parabolic equation
as an abstract Cauchy problem

u'(t) + Bu(t) = 0, te (0,717, (4.12)

u(0) = wuo.



Usually, this problem is treated by the method of lines. Discretization in space first
leads to a block system of ordinary differential equations. However, as already outlined
in [2, 3], for an adaptive approach the other discretization sequence, first time then space,
which is classically known as the method of Rothe [24] seems to be preferable. Then (4.12)
is viewed as an ordinary differential equation in some suitable Hilbert space which, due
to stability reasons, is solved by an implicit scheme with time-step control. Then, in each
step, a certain elliptic subproblem has to be solved. However, since these subproblems
are boundedly invertible in the sense of (4.2), they can again be efficiently discretized
by employing the well-known adaptive wavelet algorithm. Clearly, the convergence and
efficiency of this strategy has to be analyzed in detail. This will be performed in the
near future.
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