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Abstract

We consider Morozov’s discrepancy principle for Tikhonov-regularization of nonlinear
operator equations. It is shown that minor restrictions to the operator F already guarantee
the existence of a regularization parameter o such that § < |jy° — F(z2)|| < ¢16 holds.
Moreover, some additional smoothness assumptions on the solution of F(z) = y ensure
an optimal convergence rate. Finally we investigate some practically relevant examples,
e.g. medical imaging (Single Photon Emission Computed Tomography). It is illustrated
that the introduced conditions on F' will be met in general by a large class of nonlinear
operators.

1 Introduction

A large variety of technical and physical problems can be mathematically modeled by an oper-
ator equation

F(z)=y, (1)

where F' : X — Y is a (nonlinear) operator between Hilbert spaces, = the searchedfor
information and y the exact data. Typical examples of such problems arise in medical imaging
[22] or inverse scattering [5]. The available data usually stems from a measurement process.
Due to measurement errors, we have to deal with noisy data y° which satisfy

ly’ —yll <6 (2)

If the solution of (1) does not depend continuously on the data, then the problem is called
1ll — posed. In case of inexact data, this instability requires regularization methods for treating
the inverse problem.
Because F' is a nonlinear operator, equation (1) might have several solutions. We will call z,
an r-minimum-norm-solution, iff
F(z,) =y (3)
and
« — || = mi —z|: Flz) =y} . 4
|z, — ] wgg){llw |l : F(z) =y} (4)
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During the last decade most of the well known regularization methods for linear operator
equations have been generalized to special classes of nonlinear operators. E.g. iterative meth-
ods like Landweber iteration [15, 25], Levenberg—Marquardt methods [13], Gauss—Newton [1, 3],
conjugate gradient [14] and Newton-like methods [2] are easily to implement. Unfortunately,
these methods work only under relatively strong conditions on the nonlinear operator and its
Frechét derivative.

Another widely used method is Tikhonov-regularization, where the nonlinear equation (1) is
replaced by the minimization problem of finding a minimizer 2’ of the Tikhonov functional

Jo(@) = lly’ = F@)II* + aflz — z]1* . (5)

Tikhonov-regularization works for a reasonably large class of nonlinear operators. In principle,
it can be applied to weakly sequentially closed operators with Lipschitz—continuous Frechét
derivative [10]. As for all regularization methods, a main problem is the choice of the regular-
ization parameter.

To obtain convergence rates for Tikhonov-regularization, one has to assume a smoothness con-
dition z, — & = F'(z.)*w with sufficiently small ||w||. With an a priori parameter choice o = ¢4,
¢ > 0, a convergence rate

25, — .|| < k(c)VS (6)

with k(c) > 0 can be obtained [11]. An examination of the convergence proof shows that k(c)

is minimized by the optimal parameter choice o = c,pid, Copr = ||lw||™", and
2/|wl[*2
by || € —————5V0 . 7
||$a €T || = (1 —LH(A)”)I/Z\/_ ( )

(L denotes the Lipschitz—constant for the Frechét derivative). In general, the value of ||w|| is
not available , and so is ¢,,. As a consequence, one will never get the optimal constant & for
an a priori parameter choice.

An alternative are a posteriori parameter strategies. A well studied method is Morozov’s
discrepancy principle, where a regularization parameter with

ly* = F(zg)| = ¢ (8)

c > 1, is used. An advantage of Morozov’s principle is that, even without knowing ||w||, one
gets always an estimate

1/2
A+l 7 9)
(1= Lljwll)*

(see Theorem 2.9). For ¢ = 1, we get the optimal error bound (7), for ¢ > 1 this bound
is multiplied by /(1 + ¢)/2. A drawback of the discrepancy principle is that a regularization
parameter with (8) might not exist for general nonlinear operators F. Moreover, even if such
a parameter exist it requires an additional optimization process to find it numerically. The
classical algorithm for Morozov’s discrepancy principle applied to Tikhonov regularization for
linear operators A [18, 12, 19] would be to choose ¢1, ap > 0,0 < ¢ < 1, aj = ¢, and to
compute xij until

lzg — 2.l <

§ <y’ — Azo || < 16 (10)
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holds. Hence, (5) has to be minimized for a set of regularization parameters.

Let us now review some results concerning the discrepancy principle for Tikhonov regularization
of nonlinear operators. A parameter choice with (8) and ¢ = 1 was considered in [7]. It was
shown that the existence of a regularization parameter with (8) is connected with the convexity
of a functional in dependence of the noise level and the minimum norm least squares solution
of (1) within the given noise level 6. Scherzer [27] considered (8) with ¢ > 1. Under the
assumption that for every z, z, v € X there exists a k(z, z,v) € X with

(F'(z) = F'(2))v = F'(2)k(z,z,v) and (11)
[k(z, 2z, o)l < Kolle — 2[lllv]l , (12)

it was shown that a parameter o with (8) always exists. In [28] some examples of operators
which satisfy these conditions were given, but it seemed to us that it is rather difficult to
prove the above conditions for some nonlinear problems of interest, e.g. bilinear operators or
operators arising in medical imaging. We might remark that a priori parameter choices will
work without these conditions, which means that there is a big gap between the applicability
of a priori and a posteriori parameter choices.

The goal of this paper will be a relaxation of (11) and (12). In addition, we will not consider
the classical discrepancy principle. For a numerical realization it will not be possible to obtain
a parameter « such that (8) holds. As for the linear case, we will choose a trust region [d, ¢1],
c¢1 > 1, and determine the regularization parameter such that the residual ||y’ — F(2?)|| belongs
to the trust region.

In Section 2 it will be shown that for strongly continuous operators such an regularization
parameter always exists, and a convergence rate result is given. Section 3 contains several
applications. The first one fails to fulfill conditions (11), (12), but it can be shown easily
that our results apply. The last two examples stem from bilinear operator equations and
medical imaging (Single Photon Emission Computed Tomography). In both cases it will be
demonstrated that our conditions can be met. As for an priori parameter choice, we get these
results without severe restrictions to the nonlinear operator.

2 Existence of the regularization parameter

To use Morozov’s discrepancy principle, we have to find a parameter o such that
§ < ||y’ — F(d)| < 16 g >1 (13)

holds. The problem is that for arbitrary nonlinear operators F' the mapping o — ||y’ — F(z°)|
might not be continuous (although [|y° — F(2%)|| is monotonically increasing in «)[7]. To
guarantee the existence of an a with (13), we need F' to have some special properties.

2.1 Some properties of nonlinear operators

An operator F' between Banach spaces is weakly sequentially closed if for every sequence {z,} C
D(F)
z, =z and F(z,) =y for n — oo
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implies x € D(F) and F(z) = y. F is called strongly continuous, if
Tn, — x implies F(z,) — F(x) .

We might summarize some well known results about strongly continuous operators which will
be needed later on.

Proposition 2.1 Let X,Y, Z Banach spaces over R.
1. If F is a linear compact operator, then F' is strongly continuous.

2. If 'Y — Z is continuous and the embedding X — Y is compact, then F': X — Z 1is
strongly continuous, and hence also weakly sequentially closed.

For a proof, cf. [30], Propositions 21.29, 21.81 .
We might remark that the second case is common in ill posed problems when an operator F
acting on Sobolev spaces can be decomposed into

F o HYE(Q) <5 HY Q) 5 H*(Qy)
with € > 0, bounded €2;, compact embedding operator ¢ and continuous operator F. Through-

out this paper we will therefore consider strongly continuous operators only.

2.2 Some results about the Tikhonov—functional

Let ) denote a minimizing element of the Tikhonov functional J,(z). By the minimizing
property of 23, we get for au < ay

Jo @) < T (20 ) < Jo (22) . (14)

B @/ — Qo

It is well known that for general nonlinear operators F' the mapping o — ||y° — F(z°)|| might be
discontinuous. Due to the continuouity of F', the mapping o — 22, then has to be discontinuous
too. Nevertheless, o — J,(x?%) is always continuous:

Proposition 2.2 Let o — o >0 for k — oo, o > 0 for all k € R. Then
Ja, (x‘sak) — Jo(x8)  for k—oo. (15)

Proof:

We have

) — Ja(2) for a < oy

- Jak(a:‘; ) for a > ay
k

5
[ _ 0| — BN
‘Jak (xa ) Ja(xa)‘ { Ja(xg)k
and thus it follows from (14) for a < a

Joz,C (xéak) - Ja(xéa)



and for o > o,

gk‘
8
(=)
|
N
w
(=)
IA

Ja(xd ) — Ja (336 )

Oék k ak
— (a—ap)llal, —all’ .

With

apllzs, — 2l” < Jo, (22,) < Jo, (2) = Iy° — F(@)]” (16)

k

we get altogether

Ja (20 ) = Ju(at)]| < |a—ak|-max{ v — F@)I, ||xz—x||2}

min{ oy}
— 0 fork — 0.

Now let us assume that no parameter « fulfilling the discrepancy principle (13) exists. Under
reasonable assumptions to the a priori guess Z in J,(z) parameters «, > a, with

exist:
Proposition 2.3 Let T be chosen s.t.

ly* = F@@)]| > a6, (19)
If no regularization parameter o with (13) exists, then ag > a1 with (17), (18) can be found.

Proof:
We have

_ 1 _
le—ad P < o (I~ Fab)I + aollz — i, |)
1
< —|ly’ - F(®@)]?* .
< v~ F@)|

It then follows with y° # F(Z) that ac‘s% converges to Z for ag — oo and, due to the continuouity
of F,
Iy’ = Fze )l = lly’ = F@)Il -

Because of (19), |y’ — F(x‘s%)H > ¢,6 must hold for oy big enough. On the other hand, we can
estimate ||y’ — F(«?, )|| from above by

ly> = F@ )P <y’ = F@ I + enllz — 22, |I°

8+ o}z — .l

N
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which means for small oy either ||y’ — F(z3, )|| < 6 or § < |ly’ — F(23)]| < c1d. Because we

have assumed that no parameter with (13) exists, we get [|y° — F(z,, )| < 6.
U

Assumption (19) is quite natural: Indeed, if ||y’ — F(Z)|| < ¢16 holds, then  would be taken
as approximation to the solution z,.

If no parameter o with (13) exists, then ||y’ — F(2°)|| has a jump at a certain parameter @.
Because J, () is continuous, ||z’ — Z|| must have a jump of the same size.

Proposition 2.4 Assume that no parameter o with (13) exists and (19) holds. Then there
erists a parameter & such that (17), (18) holds for all o, < & < v, and «,, «, arbitrary close
to &. Moreover, we get

2 1)52
o g0 > (e =15 20
||xa1 ‘ra()“ — 4a0||$g1 _:z,” ? ( )

Proof:
Proposition 2.3 ensures the existence of «

u,l

> a,, with [jy° — F(ma“)H <d<eb <y -

—Q

. @,
F(%u,l)”‘ Setting «,, . = o, + =%
Iy’ = F(z

Lij =1,2,.., we have either ||¢° — F(z, || <6 or
m,j
am,j)” > c10; in the first case we set «,,,, = @, ;, @, ., = o, in the second case
o ;. = 0, and ayjy1 = G ;. According to the construction of both sequences, {q, } and
{au,j} converge to the same limit point, o, &, «,; | & for j — oo. Due to Proposition 2.2,
we can especially choose «,, o, with o, < & < ¢, and (17), (18) such that

Jo, (@3,) = Jag (70,) =1 (21)

and n < %, v = ¢} — 1 hold. From the definition of J, (z), (17), (18) and (21) it then follows

alled, —all* — allee, —2I* = Iy’ = F(@g )II* = lly’ = F@)I* —n

j6* — 6 —n =76 —n

AVARR VS
|2
>
N

and because of o, > o,

]

o, (||22, — zlI* = llz2,

or

lad — 3P — ot — 22> 2" 50 (22)
al ao — 2@0 :
Using (22) and
lad, — 2l — N8, — 2l = (lad, — 2l — 128, — 2 (lled, — il + 1, )
< 2lad, — (e, — all - lad, )

IN

2llzq, — Zllllzg, — 5,1l ,
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we arrive at

2
5 ) 7o
0 —x >

|| 0‘1 a0|| — 40{0||x(’ja{1 _.’EH Y

]

which shows that the distance between z,

(17), (18) is bounded from below.

and x‘;o for arbitrary close parameters ¢, > o, with

O

In the following we will show that strong continuouity of F' ensures the existence of a
regularization parameter with (13).

Proposition 2.5 Let {a, }ren, ax > 0 for all k € N be a sequence with oy, — o« > 0 for
k — oo, and :r‘sak a corresponding minimizing element of the Tikhonov—functional Jak (x). If F

S ofal

is strongly continuous, then there erists a weakly convergent subsequence x°
kn

=T,
kn
and T is a minimizing element of J,(x).
Proof:
As in (16) we get
1

6 _ =2 < J
o, =l < =y

is bounded. Thus, there exists a weakly convergent subsequence of {x‘;k} (for simplicity

F()|?,
4
@

of notation, this subsequence will be denoted by x‘sak again), a:‘;k — 7z and

le. x

1.

|z — z|| <liminf ||z — 2
Moreover, due to the strong continuouity of F', we observe

v - () — o~ F(3).
and according to Proposition 2.2 we get

0 6
Jak (xak) - ‘]Oé(xa) .

Altogether this yields

Ja@) = Jim Iy = F(3)P +allz - o
< liminf ||y’ — F(:vglk)H2 + lim inf ((a -, +a,)||z— :L"‘;k ||2>
< timinf ([ly? = F(@d )P + o[l — 23 2+ (@ — )|z — 2, |)

klggo Joz,c (m(sak) = Ja(23) -



Now we have shown J, (%) < J,(2%) and hence Z is a minimizer of J,(x).
Ul

We might note that the minimizing element of J,(z) does not have to be unique; but we are
only interested in finding a weakly convergent subsequence to an arbitrary minimizing element,
which means we can assign Z to 2. On the other hand, if J,(z) has a unique minimizer, then

every subsequence of x‘;k has a subsequence which converges weakly to to the unique minimizer

0

z°, and it follows by the convergence principles that the sequence T, converges itself weakly

)

to x,,.

Theorem 2.6 Let F' be a strongly continuous operator and T be chosen such that (19) holds.
Then there exists a parameter o for Tikhonov—regularization s.t.

§<|ly’ = F(@d)l| <eid (23)
holds.

Proof:
Let us assume there exists no such parameter. We set

M = {a: ||y’ — F(zg)|l < 6}

and & = sup M. According to Proposition 2.3, 0 < @ < oo holds. We have to consider two
cases:

M. Then we choose a sequence oy, | @. Due to Proposition 2.5 we can find a subsequence

Q€
’ }of {x‘sak} with xik — z2. It is @, > o, and because no parameter with (13) exists ,

1.
{7,

Iy = F(zg Il > i (24)
must hold for all o, . But due to the strong continuouity of F' we observe
ly* = P )l = Iy’ = Fag)l <4, (25)

which is a contradiction to (24).

2. @ ¢ M. Here we choose a; 1 @&, and we can find a subsequence {z° } of {x‘;k} with
O

xi — 4. For all k, holds then the inequality

kn

v~ Fa? )l <6 (26)

and ||y° — F(a:ik W = 1ly? — F ()|l > ¢16 for k, — oo, which is a contradiction to (26).
U

For the numerical realization of Morozov’s discrepancy principle, we can now propose the
well known iterative algorithm from linear inverse problems:
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e choose ¢; > 1,0 < gy < 1 and o with (17)
e Set oy, = ap, j=0

e while not (6 < ||y — F(IEZ)H < ¢19)
J

o If ||y5 — F(.Z‘g]_l)“ > ¢160 then q; = qj—1, O = q;051
else ¢j = qj1 + (1 —¢j1)/2, oj = gjou,

o Compute z° .
J
o If ”y(; - F(-'L'i)” > ¢;0 then o, = Q;
J

end

The algorithm produces a monotone decreasing sequence of regularization parameters o at
the beginning. Only if the norm of the residual jumps behind the trust region, ||y’ —F (z? <
i

6 <16 < |y’ — F(z° )|, a bigger parameter is used. However, if ¢ is chosen close to 1 or if ¢;
J

is reasonable big, such a jump will not occur in a numerical realization. In [28] it was outlined
that Morozov’s discrepancy principle yields sometimes a to small regularization parameter; this
can be avoided by choosing c¢; big enough.

When an iterative algorithm for minimizing J,(x) is used, then the computational effort might
depend on a good starting value for the iteration. For a1 = ;- ¢, ¢ < 1, one would like to

take the already computed minimizing element of .J,, (z), a:i , as starting value for the iteration
J

for minimizing J,,,, (). For ¢ ~ 1 this can be justified if the mapping o — z?, is continuous.
We will now show that for every sequence oy — « exists at least a convergent subsequence s.t.
xik — 22 holds. For this result we have to employ a knew property of the operator F. We
require

T, = x for n = co = F'(z,)*2 = F'(x)*z for n — oo . (27)

In the next section we will give several examples where this condition is fulfilled.

Theorem 2.7 Let the assumptions of Proposition 2.5 hold. If the Frechét derivative F' of F
1s Lipschitz—continuous,
[1F'(z) = F'(2)|| < Lllz — || , (28)

and in addition condition (27) holds, then there exists a convergent subsequence {z° } of
kn

{«1 },
. 5 ,

akn

and T is a minimizer of Jo(x). If in addition J,(x) has a unique minimizer, then the whole
sequence converges to the minimizer of Jo(z).

Proof:
According to Proposition 2.5, we can find a weakly convergent subsequence {2° } of {xik}
%



with weak limit Z, where Z is a minimizer of J,(z). For simplicity of notation, we will again

denote ) by 7, . The necessary conditions for a minimum of J,(z) and J, () are
kn

F'(z)'(y’ = F(z)) —a(z —2) =
F'@)'(y’ = F(2)) —a,(z—2) = 0.

It then follows

o, Tq, — oz — (o — )7 = F'(zg, )"(y° — Flz,, ) — F'(22)"(y° — F(z2)) (29)

k O{k ozk
The left hand side of (29) can be rewritten as

a4, To — azrl — (o — )T = (a, — a)x‘sak + a(x‘;k — %) — (o — Q)T .

We have already shown that ||:v‘;k || is bounded and therefore ||(c, — a)xikH — 0 as well as

|(cx —)Z|| — 0 for k — oc. In order to prove the strong convergence of =% to z° it is sufficient
k

to show that the right hand side of (29) converges to zero. By setting vy, := 3’ — F(2%) and

Yo, = yd — F(xik) we have

F(xg, ) (4., ) = F'(@2)"(y,) = F'(25,)" (W, — ¥a) + (F'(20,) — F'(23))" (1)

“k k k k
and
IF (@, ) (e, — vl < IF' @)y, — 9] -

By the Lipschitz—continuouity of F”, the norm of F” (xik) is uniformly bounded:

IF' @)l < I1F'(2g,) — F'@o)ll + [ F'(z)]
< Lllg, — 2ol + [1F (@)l < C.

Due to the weak convergence of x‘;k to 2 we conclude
19, = Yall = 0 for k — oo

and so [|[F'(z, )*(y., — ¥.)Il = 0.
Condition (27) yields
F'(af ) (y,) = F'(a8)"(3,) for k = o0
and thus we have shown
F(a8 ) () = F'(@8)(5,) = 0.

After the proof of Proposition 2.5 we have seen that in case of a unique minimizer of J,(z),
the whole sequence 2% did weakly converge to Z. With the above arguments the convergence

is also strongly. ’
O

At the end of this section we would like to give a convergence and a convergence rate result.
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Theorem 2.8 Let F : X — Y be a completely continuous operator and o — 0 for k — oo.
If % denotes data with ||y% — y|| < & and xi’; is a minimizer of the Tikhonov—functional
(5) with y° replaced by y°* and the parameter a, chosen by Morozov’s discrepancy principle,
then xi’; has a convergent subsequence. The limit of every convergent subsequence is an T—
minimum-norm-solution of (1). If, in addition, the Z— minimum-norm-solution x, of (1) is
unique, then s

k

xak—mv*fork—)oo.

For proof, we refer to Proposition 3.5 in [28].
In general, the convergence might be arbitrary slow. It is therefore of interest to have a
convergence rate result.

Theorem 2.9 Let F: X — Y be a completely continuous operator with convex definition area
D(F) and let z, be a T-minimum-norm-solution of F(z) =y and ||y — y°|| < 6. Assume that
(19) and (28) hold. Moreover, we require the following range conditions:

1. there exists w € Y satisfying
T —T = F'(z.)'w (30)

and
2. L||w| < 1.
If the regularization parameter o is chosen s.t.
0 < Iy’ = F()ll < erd (31)

holds, then we obtain

5 2(1+01)||w||)1/2
ot~ ol < (20 s (52)
Proof:

Theorem 2.6 ensures the existence of a parameter o with (31). The proof is a modification of
a convergence proof for an a priori parameter choice for Tikhonov regularization. As in [10],
p-246 we obtain

1y = F(ao)I* + allzg — 2" < 0% + 2alw]|d + 2aflwlllly’ — F(zo)]| + eLllwll[laq — 2.[* (33)

or
a(l = Lijwl)llzg — z.l* < 6% = Iy’ = F@)II* + 2elwl|(0 + 1ly* = F@)l) ,  (34)
and because of (31) we have 62— ||y’ — F(z2)||> < 0 and §+||y° — F(2%)|| < (1+¢1)d. Altogether

we arrive at
5 o _ 2(1+c)|wl|

e = Z]w]
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3 Examples

In the following we will give some examples which will meet the conditions of Section 2. For
the autoconvolution operator it is shown that the operator is strongly continuous and meets
(27) but not Scherzer’s conditions (12). Other examples come from bilinear operator equations
and medical imaging.

3.1 The autoconvolution operator

We consider the operator

F@XQﬁ:@*xMQ:i/x@—wm@ﬁﬁ (35)
R
For z € L%[a,b], —oo < a < b < oo, we get by setting z(t) = 0 for t ¢ [a, b] that suppF(z)(s) C
[c,d], —o0 < e¢<d< oo, and we can consider
F: L*a,b] — L?[c,d] .
Hoélders inequality yields
1E @)l 2te.a) < (d = €)' |[2]|Z2pa -
The operator F is especially a (symmetric) bilinear operator, F(x) = B(z,z) with ||B|| =
(d — ¢)'/2, and it follows immediately that F' is Frechét differentiable with derivative
F'(x)h = 2B(x, h) . (36)

To obtain a weakly sequentially closed operator, we have to assume some smoothness of the
solution of the equation F'(x) = y. Therefore we consider the autoconvolution operator between
a Sobolev space of order « > 0 and L?[c, d]: We define F by

F: Ha,b] < L2a,b) 5 12]e,d] (37)

where 7 denotes the compact embedding from H¢[a,b] to L?[a, b]. From Proposition 2.1 follows
that F' is strongly continuous and hence weakly sequentially closed.

Proposition 3.1 The Frechét derivative F' of F is Lipschitz continuous with
|1F'(z) = F'(2) < 2(d =)z = 2ll,5,, (38)

||H8‘[a,b]—)L2[c,d] -

< 2(d- )|z 2|

H'la,b]
Proof:
We have (F'(z) — F'(z))h = 2(x — z) * h and by Hdélders inequality

2

%“(F’(l‘) _ F,(Z))h“ig[ 4 / T —z s—t h(t) dt| ds

Il
O\m

< M—cmx—d| BN 1
< (@d=ollz =z, I8l .,
< (d_C)Hx_Z”Ha[ab]” ”H"‘[ab ’

12



and the last two inequalities prove the Lipschitz continuouity.

U
A by-product of (38) is
Proposition 3.2 Let x, — z in H{[a,b] for n — co. Then
| F' (z,) — F’(x)||Hg[a,b]_)L2[c,d] — 0 forn — oo . (40)
Proof:
From z,, — z in H¢[a, b] follows z,, — z in L?[a,b], and thus from (38) the proposition.
U

As a consequence, ||F'(z,)* — F'(z)*|| — 0 and we have finally shown that (27) holds. Mo-
rozov’s discrepancy principle can be used as parameter choice for Tikhonov regularization of
the autoconvolution operator, and Theorem 2.7 applies. Our results were given in one dimen-
sion only, but they easily extend to higher dimensions. Additionally, we might remark that
condition (27), which was the only new condition to the operator I, was a consequence of the
Lipschitz—continuouity of F”.

We will now see that the conditions (11), (12) from [27] will usually not hold. In case of the
autoconvolution operator, (11) reads
(x—2)xv=2zx%k. (41)

o —

Using the Fourier transform gives (r —z2) - v =72 - k. Formally, k is then given by

k= w (42)

If |Z(w)| > ¢ > 0 holds, then condition (12) will hold. But whenever Z(w) has zeros, then
z might not even belong to the proper function space. To illustrate this, let us assume the
autoconvolution operator between H[a,b] and L?[c, d] with oo > 1/2. Then k has to belong to

H!/?[a,b], especially k € L'[a,b] and it follows that % is a continuous and bounded function.
The functions x and v belong to H 1/2[a, b], and 7 - ¥ is continuous and bounded too. We choose
z,v,z and wy in such a way, that z(wo) =0and T -v(wp) # 0. For a sequence w,, — wy follows

%(wy)| — oo, which means that  is not bounded and therefore does not belong to H}/?[a,b].
As a consequence, condition (12) is violated.

3.2 Bilinear operator equation

Of great interest are operators which can be decomposed into

F(z) = Af + B(f,p) , (43)
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with x = (f, u) € X1 x Xs, X1, X5 Hilbert spaces, A a continuous linear operator in f and B
a bilinear operator in (f, u):

A X, oY (44)

B : X,xX,—5Y (45)
BA(fi+ fo) ) = MB(fi, 1) + B(fa, 1)) (46)
B(f, M1 + p2)) = MB(f, ) + B(f, p2)) (47)
IB(f, )l < BNl - (48)

The function space X; x X5 is turned into an Hilbert space by setting

((Fs1)5 (95 V) sxyuxy = (L3 9Dy + (W5 V), - (49)

Operators of type (43) occur in parameter estimation problems for partial differential operators
[6, 9, 16, 24, 17] and in the area of medical imaging (compare next section).

It is easy to see that F is Frechét differentiable with derivative
F'(f, 1) (ha, ha) = Ahy + B(hy, 1) + B(f, o) (50)

and

I(E"(f, 1) = F'(g:v)) (B, ho)l| = [|B(ha, ) + B(f, ha) = B(h,v) — B(g, ho)|
|1B(h1, pp = v) + B(f = g, ho|

Bl = vllllhall + BILf = gllllhe

21BINICS = g, =)l (ha, Ro)| -

<
<

Therefore F' is Lipschitz continuous with constant L = 2||B||. It remains to show that F
is strongly continuous and that E'(f,, pn)(h1, ko) — E'(f, 1) (h1, ho) if (fa, ptn) — (f, p) for
n — oo holds. In applications it might happen that F already meets these conditions as
operator from X; X X5 to Y. If not, this can be achieved by assuming more “regularity” of the
solution of F (z) = y, which means we have to change the definition area of F. Let us assume
that there exist function spaces X7 and Xj, and compact embedding operators 7§ : Xj7 — X,
15+ X5 — X,. Then we can consider

FoXix X328 X, x X 5y (51)

and get from Proposition 2.1 (2) that F is strongly continuous and weakly sequentially closed.
Now, exactly as for the autoconvolution operator, we obtain

1" (fs 1) = FY 9V L xgungory < LIS 1) = (95 9) Ly, (52)

<
< () = (09l (53)
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If (fn, i) = (f, p) in X5 x X3, then (fy, pn) — (f, 1) in X7 X X5 and (52) yields F'(fn, tin) —
F'(f, 1) and F'(fn, tn)* — F'(f, p)* in the operator norm. This shows that Morozov’s discrep-
ancy principle is applicable and Theorem 2.7 holds.

We might remark that our argument will apply to arbitrary nonlinear continuous and Frechét
differentiable operators F' : X — Y with Lipschitz continuous derivative as long as a function
space X*® with compact embedding to X is available. A common choice for X* might be a
Sobolev space over a bounded region 2; and for X the space L*(€y).

3.3 Single Photon Emission Computerized Tomography (SPECT)

Some of the most challenging ill-posed problems arise in the area of medical imaging. In
SPECT, one tries to reconstruct the distribution of a radiopharmaceutical inside a human
body by measuring the intensity of the radiation outside the body. As the name suggests,
SPECT is related to the Computerized Tomography (CT), where one has to reconstruct the
density of a body by measuring the outcoming intensity of X—rays through the body. In contrast
to CT, where the measured intensity depends only on the intensity of the incoming X-ray and
the density p of the tissue along the path of the X-ray, depend the measurements for SPECT
on the activity function f (which describes the distribution of the radiopharmaceutical) and the
density p of the tissue. The measured data y and the tuple (f, u) are linked by the Attenuated
Radon Transform (ATRT),

Y= R(f, 1)(s,w) = / Flswh + tw)e T gy (54)
R

s € R, w e S'. As for the Radon Transform, the data are represented as line integrals
over all possible unit vectors w. Usually both f and g are unknown functions, and R is a
nonlinear operator. During the last decade several papers on this problem were published
[4, 20, 21, 23, 29]. Dicken [8] examined the mapping properties of the ATRT and concluded
that under some reasonable assumptions to the smoothness of f and p Tikhonov regularization
with a priori parameter choice is applicable to regularize (54). In [26] a bilinear approximation
R to R was introduced:

R(f, 1) = / flswh +tw)e oo +m)dT(1 —/ f(swt +Tw)dr) dt . (55)
R t

In this approximation the exponential term in (54) was simply replaced by the first two terms
of its Taylor expansion around a guess g for the attenuation function p = py + . Moreover,
iterative methods for solving y = R( f, ) were proposed in this paper. In the following, it shall
be shown that Morozov’s discrepancy principle for Tikhonov regularization can be applied to
SPECT. The analysis will be done for the ATRT operator only; for the bilinearized version
(55) a similar result yields.

To get the desired results like strong continuouity or Frechét differentiability for the ATRT
operator, it has to be considered between proper function spaces. Additionally, there will be
some trouble with the unbounded growth of the exponential function for negative arguments.
In the following, we will summarize some results from [8]. Dicken introduces an operator R,
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by

p

R,(f, 1) (s,w) = / flswt + tw)E(—/ p(swh + Tw) dr) dt . (56)
R —p
The function E € C*(R) is chosen such that

E(z) = exp(—xz) for x € R"

and |E|, |E'| and |E"| are bounded. For SPECT, the functions f and p will be nonnegative
with compact support. If we assume that f has its support in a disc with radius p, then
the operator R, coincides with R for admissible sets (f, ). Fortunately, R, has much better
mapping properties than R. If the definition area D(R,) is given by

D(R,) = Dy, 5,0 = {(f, 1) € H* x Hp* | [|fllc < C}, (57)
then the following Proposition holds:

Proposition 3.3 Let R, : Ds, 5, c — L*(S* x [—0,0]). If s1, s2 > 2, then R, is a strongly
continuous. The Frechét derivative exists for all (f,n) € Dy, s,.c and is Lipschitz continuous.

For a proof, cnf. Theorem 4.10 in [8]. Strong continuouity of R, follows from the decomposition
of F' into a linear compact and an continuous operator. There is even a more detailed version of
the above Proposition given, with more possible combinations of s;, s such that the Proposition
still holds. An important point is to choose s; < 1/2, because for our medical application the
activity function f will usually not belong to H;* for s; > 1/2.

Theorem 3.4 Let the conditions of Proposition 3.8 hold. Then condition (27) holds.

Proof:
Let s1, so > 2/5 be given. According to Proposition 3.3, the Frechét derivative of F'is Lipschitz
continuous for every §;, S > 2/5. Thus we can find 51, 5, with

2
5<§1:§2<81:82.

Therefore
(R, (f: 1) = Ry(g,v))(ha, ho)|

IN

A = @D ),
0 0 0

) = @)y e B
0 0

0

IN

and we have again

IR, (f, 1) — Ry(g, V)]l .

8
Hol xH 2 5 12(S1x[-0,0

C<dl(fm) = (gl (58)

i 5, -
1 2
o XHg

The embedding from H,' x Hy? to Hg ' X ng_ is compact, and therefore weak convergence in
H,' x H? induces norm convergence in Hy' x H,?. We conclude for a sequence (fy,, ttn) — (f, 1)
for n — oo in Dy, 4, o C Hy' x Hy® that

”ng(fna ,un) - R,g(fa ,LL)

holds, and consequently (27).

— 0 forn —

[
Hyl xHy2 - L2(S1x[-0,0])
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3.4 Conclusions

We have shown that Morozov’s discrepancy principle for Tikhonov regularization applies to
a wide class of problems. The existence of a regularization parameter o with (13) can be
guaranteed under mild restrictions. If in addition (27) is assumed, then there exists for every
sequence ,, — « a subsequence «, with a: — 2. In the above examples was demonstrated

that (27) can often be concluded from the Llpschltz continuouity of the Frechét derivative of
the nonlinear operator. We have shown that our conditions are easy to handle and apply even
when (12) fails.
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