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Abstract

We study nonlinear systems with an asymptotically stable fixed point subject to
time-varying perturbations that do not perturb the fixed point. Based on lineariza-
tion theory we show that in discrete time the linearization completely determines
the local robustness properties at exponentially stable fixed points of nonlinear
systems. In the continuous time case we present a counterexample for the corre-
sponding statement. Sufficient conditions for the equality of the stability radii of
nonlinear respective linear systems are given. We conjecture that they hold on an
open and dense set.

Keywords: robust stability, nonlinear systems, spectral theory, time-varying perturba-
tions.

1 Introduction

A natural question in perturbation or robustness theory of nonlinear systems concerns the
information that the linearization of a nonlinear system at a singular point contains with
respect to local robustness properties. This question has been treated for time-invariant
perturbations in [8] for continuous time, (see the references therein for the discrete time
case). The result obtained in these papers was that generically the linearization deter-
mines the local robustness of the nonlinear system, where genericity is to be understood
in the sense of semi-algebraic geometry (on the set of linearizations).

Specifically, the objects under consideration are the local stability radius of the nonlin-
ear system and the stability radius of the linear system, where as usual the stability radius
of a system is the infimum of the norms of destabilizing perturbations in a prescribed class.



The question is then, whether these two quantities are equal or more precisely when this
is case, see also [4, Chapter 11].

In this paper we treat this problem for nonlinear systems subject to time-varying
perturbations. Our analysis is based on recent results on the generalized spectral radius
of linear inclusions. In particular, we see a surprising difference between continuous and
discrete time. While the linearization always determines the robustness of the nonlinear
system if the nominal system is exponentially stable this fails to be true for continuous
time. On the other hand we are able to give a sufficient condition which guarantees
equality between linear and nonlinear stability radius on an open set of systems. As it is
known from [9] that the Lebesgue measure of those linearizations for which it is possible
that the nonlinear stability radius is different from the linear is zero it seems therefore
natural to conjecture that the set of systems where these two quantities coincide is open
and dense.

We proceed as follows. In Section 2 we recall the definition of the stability radius
for nonlinear systems with time varying perturbations and state some relevant results
from the theory of linear inclusions. In particular, we recall upper and lower bounds
of the stability radius of the nonlinear system in terms of the stability radius and the
strong stability radius of the linearization. In Section 3 we develop a local robustness
theory based on the linearization of the system for the discrete time case. It is shown
that the two linear stability radii coincide under weak conditions, demonstrating that one
need only consider the linearization in order to determine the local nonlinear robustness
properties of a system. The continuous time case is treated in Section 4. We first present
a counterexample showing that analogous statements to the discrete time case cannot be
expected in continuous time. We then present a sufficient condition for the equality of
the two linear stability radii on an open set. Concluding remarks are found in Section 5.

2 Preliminaries
Consider nominal discrete and continuous time nonlinear systems of the form

2(t+1) = fo(a(t)), teN, (1)
#(t) = folz(®), teRy, (2)

which are exponentially stable at a fixed point which we take to be 0. By this we
mean that there exists a neighborhood U of 0 and constants ¢ > 1,8 < 0 such that the
solutions ¢(t;x,0) of (1),(2) satisfy ||¢(¢;x,0)|| < ce?||z|| for all z € U.

As the concepts we will discuss do not differ in continuous and discrete time we will
summarize our notation by writing T = N, R, for the time-scale and z*(¢) := 2 (t), z(t+1)
according to the time-scale we are working on.



Assume that (1),(2) are subject to perturbations of the form

m

2 () = fole(t) + Y di(t) fil (1)) =: F(x(t), d(1)) (3)

i=1

where the perturbation functions f; leave the fixed point invariant, i.e. f;(0) = 0,7 =
0,1,...,m. We assume that the f; are continuously differentiable in 0 (and locally Lip-
schitz in the case T = R, ). The unknown perturbation function d is assumed to take
values in D C R™,

d: T — aD,

where in the case T = R; we impose that d is measurable. Here o > 0 describes the
perturbation intensity, which we intend to vary in the sequel, while the perturbation set
D is fixed. Thus structural information about the perturbations one wants to consider
can be included in the functions f;,2 =1,...,m and in the set D. For the perturbation
set D C R™ we assume that it is compact, convex, with nonempty interior, and 0 € int D.
Solutions to the initial value problem (3) with z(0) = =z, for a particular time-varying
perturbation d will be denoted ¢(t; z, d).

The question we are interested in concerns the critical perturbation intensity at which
the system (3) becomes unstable. The stability radius is thus defined as

Tai(fo, (i) = inf{la>0]|3d*: T — aD:x"(t) = F(x(t),d*(t))
is not asymptotically stable at 0} . (4)

By linearizing the perturbed system in (3) we are led to the system

This is a (discrete or differential) linear inclusion, which is in principle determined by

the set
lldll < a} :

If the matrices A; are fixed we will denote this set by M(a) for the sake of succinctness.
The inclusion (5) is called exponentially stable, if there are constants M > 1,5 < 0
such that

M(Ao,... ,Am,a) = {AO +Zd1AZ
i=1

lp@)Il < Me™|[p(0)||, VteT
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for all solutions 9 of (5).
Exponential stability is characterized by the number

pM(Ap, ... Ap, )) = sup limsup [ ()",
P t—o0

where the supremum is taken over all solutions of (5). Namely, (5) is exponentially stable
iff p(M (Ao, ..., An,a)) < 1. Again we will write p(«a) if there is no fear of confusion.

In the discrete time case the number p is known as the joint or the generalized spectral
radius. We refer to [2, 10] for further characterizations of this number and for further
references. In the continuous time case it is more customary to consider the quantity
k() := log p(«r), which is known under the name of maximal Lyapunov exponent, see [4]
and references therein.

As in the nonlinear case we now define stability radii by

riy(Ao, (Ai)) = inf{a>0]p(a) > 1},
fLy(AO; (Az)) = inf{a 2 0 | ,O(Ol) > ]_} .

The relation between the linear and the nonlinear stability radii is indicated by the
following result which is contained in [3] for the continuous and in [7] for the discrete time
case.

Lemma 2.1 Let T = N,R,; and consider system (3) and its linearization (5), then

iy (Ao, (Ai) < ry(fo, (fi)) < 71, (Ao, (Ad)) -

It is the aim of this paper to obtain further results on the information the linear
stability radii contain for the nonlinear system.
The following set of matrix sets will play a vital role in our analysis. Recall that a set

of matrices M is called irreducible if only the trivial subspaces of R" are invariant under
all A e M.
We define

I(R™™) := {M C R™" | M compact and irreducible} .

Note that this set is open and dense in the set of compact subsets of R**" endowed with
the usual Hausdorff metric.

The proof of the following statements can be found in [10]. They are the foundation
for our analysis of linearization principles.

Theorem 2.2 (i) The generalized spectral radius is locally Lipschitz continuous on

(i) The mazimal Lyapunov exponent is locally Lipschitz continuous on I(R™*™).
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Furthermore in the discrete time case a strict monotonicity property can be shown to
hold, under the assumption that the following condition can be satisfied. Given A € R"*"

we denote by P4 the reducing projection corresponding to the eigenvalues A € o(A) with
Al = r(A).

Property 2.3 The set M C KC(R"*™) is said to have Property 2.3 if n = 1,2 or if there
exists an A € M such

r(A) < p(M), or rank Py #2, or o((I — Ps)A) # {0}.

In the following statement we denote the affine subspace generated by a set M C R"*"
by aff M while int,g »s denotes the interior with respect to this affine subspace.

Proposition 2.4 Let T =N and M, My € I(R™*") satisfy M1 # My and
M C intag aq, conv M. (6)
Assume that M1 has Property 2.3 then
p(Mi) < p(Ms).

3 The discrete time case

In discrete time the situation turns out to be particularly simple. In fact, if Property 2.3
holds then we can immediately conclude the following linearization principle.

Theorem 3.1 Let T = N and consider the discrete-time system (2) and the perturbed
system (3) along with its linearization (5). If for some o < r1,(Ao, (A;)) the set M(a*)
is wrreducible and satisfies Property (2.3), then

Try(Ao, (Ai)) = ri(fo, (i) = Try (Ao, (Ai)) -

Proof. The assumptions guarantee that the map a — p(«a) is strictly increasing on
la*,00). This implies r1,(Ao, (4;)) = 7ry(Ao, (4;)). The assertion now follows from
Lemma 2.1. O

Corollary 3.2 Let T = N and consider the discrete-time system (2) and the perturbed
system (3) along with its linearization (5). If the point x* = 0 is exponentially stable for
the unperturbed system

z(t+1) = fo(z(t))
then
Ty (Ao, (Ai)) = rui(fo, (i) = Ty (Ao, (4i)) -



Proof. There exists a similarity transformation 7" such that all A;,s = 0,...,m are
similar to matrices of the form

[ Ail Azi.Q --.- .. Azid ]
0 AL, Ab ... Al
rar-t=| 0 0 4 e
| 0 ... O Agd .

where each of the sets M; := {A}; | i =0,...,m},j =1,...,d is irreducible. It holds
that ,O(Oé) = maszl,___,d p(MJ(Oé))

Thus it is sufficient to consider the blocks individually to determine rg,, resp. 7p,.
Under the assumption of exponential stability we have r(Ag) < 1. Hence for each j we have
r(AY;) < 1 and the set M;(c) has Property 2.3 for all oo > 0 such that p(M,(a)) > 7(Ao).
Now the result follows from Theorem 3.1. a

Corollary 3.3 Let T = N. The stability radius of linear systems with respect to time-
varying perturbations rr, is continuous on the set

{(Ay, ..., Ap) € (RV™)™ | r(Ag) #1}.
Furthermore, the set
{(A(), R ,Am) € (Rnxn)m—i-l | TLy(A(), R :Am) 7é fLy(A(), R ;Am)}

1s contained in a lower dimensional algebraic set.

Proof. It was shown in [7] that rp,, 7., are upper respectively lower semicontinuous
on (R™")™+1  The preceding Corollary 3.2 shows that these two functions coincide if
r(Ap) < 1, which shows continuity in this case. If 7(A4y) > 1 the statement is obvious as
both functions are equal to 0.

The second statement now follows because a necessary condition for the condition
rry(Aoy .- s Am) # Try(Ao, ..., Ap) is 7(Ag) = 1. The latter condition defines a lower
dimensional algebraic set. O

The result for the linear stability radii extends to the case of nonlinear systems as
follows. First, denote by C'(R™ R", 0) the set of continuously differentiable maps from
R™ to itself satisfying f(0) = 0. This space may be endowed with the C' topology
inherited from the topologies on the space C'(R", R?), (see [6, Chapter 17]).



Corollary 3.4 Gienn,m € N, the set W of functions (fo, f1,--- , fm) € C*(R*,R*,0)™*!
for which

rui(fos (fi)) = 71y (Ao, (A3)) (7)

m—+1

contains an open and dense subset of C'(R™, R™, 0) with respect to both the coarse and

the fine C* topology.

Proof. This is immediate from the definition of the C! topology. a

4 Continuous time

A natural question is if statements similar to those of Theorem 3.1 and Corollary 3.2 hold
in continuous time. The fundamental tool for this results is the monotonicity property
given by Proposition 2.4. This statement is unfortunately in general false in continuous
time, as any subset M of the skew-symmetric matrices generates a linear inclusion whose
system semigroup is a subset of the orthogonal group and for which the maximal Lyapunov
exponent is therefore equal to 0. Taking a set My which contains M; in its interior (with
respect to the skew-symmetric matrices) does not yield a Lyapunov exponent larger than
one, so that the strict monotonicity property fails to hold. This example leaves still some
hope that maybe a statement corresponding to Corollary 3.2 remains true in continuous
time. The following example shows that even such expectations are unfounded.

Example 4.1 Consider the matrices

Ald) = { —Od —2d+d} '

It is easy to see that A*(d) + A(d) < 0 for all d € (—o0,2). Hence for D C (—o0,2)
it is immediate that k(D) < 0 as the Euclidean unit ball is forward invariant under the
associated time-varying linear system. On the other hand while v(A(0)) = 0, we have
v(A(d)) < 0 for all d € (0,2), see Figure 1.

The consequence of this is the following. If we define Ay = A(1/2) and

0 1
Al::[—1 1]’

then

0 <T‘Ly(A0,A1) < < :fLy(AO,Al),

N | —
[NCRNeY]



spectral abscissa
o

Figure 1: The spectral abscissa of A(d) in dependence of d.

because at least Ag—1/2A4; = A(0) is not asymptotically stable. While on the other hand
for oo < 3/2 the perturbation set is a strict subset of (—oo, 2) and y(4¢) = —(3+V/5)/4 ~
—0.191 so that the unperturbed system is exponentially stable.

While this example shows that we cannot expect a continuous time counterpart to the
discrete-time results of Section 3 we are able to show that the property that the stability
radius of the linearization determines the nonlinear stability radius is true on certain
open sets. We even conjecture that it is true on an open and dense set, but this point
remains open for the moment. The following theorem strengthens the result obtained
in [9, Theorem 3.1 (i)]. Here the local Lipschitz continuity property of the maximal
Lyapunov exponent will play a vital role, as it will allow the application of the implicit
function theorem for Lipschitz continuous functions. To this end we will need the Clarke
subdifferential of a function g, which we denote by Ocig(z). Here we will not need the
most general definition. For our purposes it is sufficient to know that if we assume that
g : R? — R is locally Lipschitz continuous then

Ocrg(z) = conv {c € R”‘ dxp > xic= klim Vg(xk)} ; (8)
—00

see [5, Theorem II.1.2], where we tacitly assume that the gradient s7¢g exists in x; if we
write \7g(zx). Note that Lipschitz continuity of g implies that it is differentiable almost
everywhere by Rademacher’s theorem. For further details we refer to [5].

The following lemma ensures that the theory of the Clarke generalized gradient is

applicable in our case.
Lemma 4.2 The map
HdHSa}>

(Ao, ... Ay ) = k(Ao ... Ay @) = K ({AO +) diA
i=1
is locally Lipschitz continuous on the set I(R™*"™) x Ryg.
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Proof. Note that the map

(Agy -+, Ay ) {AO+ZdiAi
=1

ldll < a}

is Lipschitz continuous. As the composition of Lipschitz continuous maps is again Lips-
chitz continuous the claim follows from Theorem 2.2 (ii). O

Proposition 4.3 Let n,m € N. Fiz {A§,... , A} € I[(R™") and let
rry(Ao, (4;)) < 0.
Consider the map k : (A, ..., Ap, ) = K(M(a)) and denote
dcrak(z) :={c € R | Ip' € (R™)™': (v, c) € Daik(z)} .
If
inf Oc ok (A5, - - -, Ary, 7Ly (A (47))) > 0, 9)

then 11, = Ty on a neighborhood of (Ag, ..., An) € (R™™)™ ! and on this neighborhood
Try 18 locally Lipschitz continuous.

Proof. By Lemma 4.2 and (9) we may apply the implicit function theorem for Lipschitz
continuous maps [5, Theorem VI.3.1] which states that for every (By, . .. , By) in a suitable
open neighborhood of (A, ..., Ay) € (R™ ™)™ the map

a— k(M(By,...,Bn,a))

has a unique root and this root is a locally Lipschitz continuous function of (By, ... , Bp,).
In other words, this means that on this neighborhood the functions r, and 7, coincide
and are locally Lipschitz continuous.

O

Conjecture 4.4 For fized m > 1 the set L C (R™")™ ! given by
{(Ao, ..., Am) [Ty (Ao, (4)) = 1y (Ao, (4:))}

contains an open and dense set. Furthermore, the Lebesgue measure of the complement
L¢ s 0.

Remark 4.5 (i) The statement that the complement has measure zero is shown in [9,
Theorem 3.1 (i)].

(ii) With the help of Proposition 4.3 it is easy to identify open sets on which 7, = 7y,
in the continuous time case. For instance, if A; = ¢l for some ¢ = 1,... ,m this implies
that condition (9) holds. The problem is whether this conditions holds generically.



5 Conclusion

In this paper it was shown that linearization at singular points can provide information
about the stability radius of a nonlinear system with respect to time-varying perturba-
tions. In discrete time this information is complete if the nominal system is exponentially
stable, while this is false in continuous time.

The fundamental difference between discrete and continuous time lies in the fact that
the perturbation in discrete time is on the level of the systems semigroup, whereas in
continuous time the perturbations act on the level of the Lie algebra of the system. This
at least gives an indication that some differences are to be expected.

We conjecture that also in continuous time the linearization provides sufficient infor-
mation at least on an open and dense set of systems. If Conjecture 4.4 can be proved

to hold it is clear how to formulate results for the continuous time case analogous to
Corollaries 3.3,3.4.
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