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Abstract

This paper is concerned with the regularity of the solutions to elliptic boundary
value problems in polyhedral domains € contained in R®. Especially, we consider
the specific scale B&(L-(f2)), 1/7 = «a/3 + 1/2, of Besov spaces. The regularity
of the variational solution in these Besov spaces determines the order of approxi-
mation that can be achieved by adaptive and nonlinear numerical schemes. It is
well-known that in polyhedral domains different types of singularities according to
edges and vertices occur. In this paper, we shall primarily be concerned with the
Besov regularity of edge singularities. We show that the corresponding singularity
functions are much smoother in the specific Besov scale than in the usual Lo—Sobolov
scale which justifies the use of adaptive schemes. The proofs are based on specific
representations of the solutions which were, e.g., derived by Grisvard [17], and on
characterizations of Besov spaces by wavelet expansions.
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1 Introduction

Quite recently, the regularity of the solutions to second order elliptic boundary value
problems

Lu = f in QCRY (1)
u = 0 on 09,

where €2 is a Lipschitz domain, in specific Besov spaces has been investigated, see, e.g.,
[4, 5, 6, 10]. The aim was to provide some theoretical foundations for the use of adaptive
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schemes for the numerical treatment of (1). This note can be interpreted as a continuation
of these studies. The order of convergence of usual (linear) Galerkin schemes obtained,
e.g., by finite element spaces based on uniform grid refinement, is determined by the
regularity of the variational solution u to (1) in the usual Sobolev scale H*(Q2),s >
1. Unfortunately, on a general Lipschitz domain, this Sobolev regularity may not be
very high, even if the right-hand side f is sufficiently smooth. This fact is caused by
singularities near the boundary. Therefore, to increase efficiency, one often uses adaptive
methods, i.e., the underlying grid is only refined in regions where the solution lacks
smoothness. In this case, one does not use the whole linear spaces, hence an adaptive
scheme can be interpreted as some kind of nonlinear approximation. Then the question
arises if nonlinear methods indeed provide some gain of efficiency when compared with
linear schemes. So far, the problem is best understood for numerical schemes based on
a wavelet basis V = {1,, p € J}. (We refer to one of the textbooks [1, 11, 19, 21]
for the definition and the basic properties of wavelets). An adaptive wavelet scheme
approximates the solution u to (1) by a linear combination of N wavelets. Therefore a
natural benchmark for its performance is given by the best N-term approzimation. Then
one approximates a function F' € Ly(R?) by the nonlinear manifolds M,, of all functions

G = Z oy

uel

with I' C J of cardinality N and studies the error
UN(F)LQ(Rd) = Glel}\ﬁn ||F - G”Lz(Rd)- (2)

For the Lo—metric and an orthonormal wavelet basis, the approximation problem (2) has
a simple solution. We order the wavelet coefficients by their absolute values and choose
I' corresponding to the N largest values. In contrary to linear schemes, the order of
approximation that can be achieved by best N—term approximation is not determined by
the Sobolev regularity but by certain non-classical scales of function spaces. Indeed, the
following characterization has been derived in [14]

e 1
> [Ns/doN(F)h(Rd)rN < oo if and only if F € BS(L.(R%), 7= (s/d+1/2)"%, (3)
N=1

where the BS(L,(R?)) are the Besov spaces (see, e.g., [15, 20] for the definition and the
main properties of Besov spaces). Similar results also hold for other norms such as L,
and Sobolev norms, see, e.g., [7, 13] for details.

Of course, best N-term approximation is not directly applicable in our setting for
catching the N biggest wavelet coefficients requires knowing all coefficients of the unknown
solution u. Nevertheless, quite recently, an implementable adaptive wavelet scheme has
been developed which produces asymptotically the same rate of convergence as the best
N—term approximation [2], see also [3, 8, 9]. Having these results and the characterization
(3) in mind, it is therefore natural to ask the following question: what is the regularity of
the solution u to (1) as measured in the scale B$(L,(Q)), 7 = (s/d+1/2)"'? Especially,
does the solution have a higher smoothness order in these spaces compared to the usual
Sobolev scale? For then, adaptive wavelet methods would definitely perform better than
linear schemes and the use of adaptive schemes is completely justified. The results in
[4, 5, 6, 10] indicate that this is indeed the case for many problems. However, most of
these investigations were concerned with general Lipschitz domains, i.e., all boundary



points are viewed as equally ‘bad’ which is often not realistic. In practice, one is typically
concerned with domains with piecewise analytic boundary, e.g., with polyhedral domains.
One would expect that in this case much sharper results are available. Indeed, in [6], a
first result in this direction for the Poisson equation in polygonal domains in R? has been
established. It turned out that the corresponding singularity functions, although not very
smooth in the usual Sobolev scale, have arbitrary high regularity in the specific Besov
scale we are interested in. The aim of this paper is to derive similar results for polyhedral
domains in R?. In this case, the situation is much more complicated since different types
of singularities according to edges and vertices occur, see, e.g., [12, 16, 17| for details.
In this paper, we shall primarily be concerned with edge singularities. It turns out that
in contrary to polygonal domains the singularity functions for the Poisson equation are
not arbitrary smooth in the nonlinear approximation scale of Besov spaces. Nevertheless,
compared to the general results for Lipschitz domains from [10], there is still some gain
of regularity. Especially, the singularity functions have much higher smoothness order in
the Besov spaces compared to the usual Sobolev scale.

This paper is organized as follows. In Section 2, we briefly recall some facts from the
classical regularity theory for polyhedral domains and state and discuss our main Besov
regularity result. Then, in Section 3, we present a detailed proof of this result which is
based on wavelet analysis.

2 Main Results

In this section, we want to present a new regularity result for the model problem

Au = f in Q (4)
u = 0 on 09,

where € is a simply connected polyhedral domain contained in R3. It is well-known that
the Sobolev regularity of the variational solution to (4) is often diminished by singularities
induced by the shape of the domain €. For polyhedral domains, two types of singularities
according to edges and vertices can occur. The basic setting can be described as follows.
First of all, we have to discuss some facts from the regularity theory for simply connected,
bounded polygonal domains T contained in R2. The segments of Y are denoted by
Iy, Iy open, [ =1,..., N, numbered in positive orientation. Furthermore, S; denotes the
endpoint of I'; and w; denotes the measure of the interior angle at S;. We consider the
auxiliary 2D-model problem

Av = g in T, (5)
v = 0 on OT.

It is well-known that for g € Ly(Y) the variational solution v to (5) can be decomposed
into a regular part vy and a singular part vg, v = vg + vg, where vp € H?(Q) and ug
only depends on the shape of the domain and can be computed explicitely. Results of this
form were first derived by Kondrat’ev [18], however, in this paper, our standard reference
will always be the book of Grisvard [17]. We introduce polar coordinates (r;,6;) in the
vicinity of each vertex S; and introduce the functions

Sl (T‘l, 0[) = Cl(T'l)’l‘l/\l sin(w@l/wl), )\l = 7T/u)l, (6)

where (; denotes a suitable C'*° truncation function. Then one has the following theorem
(see, e.g., [17], Chapter 2.4):



Theorem 2.1 For given g € Ly(Y), the corresponding variational solution to (5) has an
ezpansion v = vg + vg, where vg € H*(T) and

N
vs=Y, Y, S (7)

j=10<)<1

In this paper, we are especially interested in the singularity functions according to the
edges of a polyhedral domain in R3. It turns out that these functions can be constructed
by means of the functions defined in (6). In fact, the behaviour of the solutions to elliptic
boundary value problems in polyhedral domains in R? along edges is often studied by
considering a corresponding unbounded domain without vertices of the following type.
Let Q € R? be of the form Q = T x R, where Y is a bounded polygonal domain in R2.
Then one has the following theorem [17].

Theorem 2.2 For each f € Ly(Q) there exists a unique solution to

/~ Vu-Vudz = —/~ fudz, (8)
Q Q
and in addition there exist unique functions & € H' " (R) such that

u—>Y Y (Kx&)S € H*(Q), (9)

I 0Ll

where K = r/(n(r? + 22)), r = (22 + 22)'/? and S, denotes one of the usual singularity
functions for Y.

In other words, K * & means the function
25— = [ &lay —t)(* + ) dt.
T JR
The central aim of this paper is to determine the Besov regularity of the singular parts
W= (K*§)S (10)

introduced in (9). In the next section, we shall prove the following theorem which is the
main result of this paper.

Theorem 2.3 Fach of the functions defined in (10) satisfies
A 1 1 9 — 3\
Wl EB::(LT(Q))’ _:§+§, s < s = 2 l’ (11)

T

where ) is any domain of the form Y X Z, T C R a bounded interval.

Remark 2.1 i) Let us first compare this theorem with the general Besov regularity re-
sults for arbitrary Lipschitz domains. As a special case of the analysis in [10], it turns out
that for f € Ly(Q2) the solution u to the Poisson equation in an arbitrary Lipschitz domain
is contained in the spaces B:(L,(2)), 1/7 = s/d+ 1/2 for all 0 < s < 2. However, since
0 < A, < 1, Theorem 2.3 implies the condition s* > 3. Therefore we gain smoothness
compared with the general result, at least for the singular part of the solution.

ii) By our method, it is not possible to prove a version of Theorem 2.3 for the whole
domain . However, the unbounded domain Q according to Theorem 2.2 is only an aux-
iliary construction to treat the edge singularities of the original problem which is defined
on the bounded domain 2. Therefore the regularity on bounded subsets seems to be what
really counts in practice.



3 Proof of Theorem 2.3

First of all, let us fix [ and set W :=W,, £ =&, A ==X, S =5, ( :=(, §:=
S;. The following proof is based on wavelet analysis. We want to use the fact that
function spaces such as Besov spaces can be characterized by wavelet expansions. Let us
briefly recall the basic facts. For our purposes, it is sufficient to assume that the wavelet
basis is constructed by tensor products of the univariate Daubechies wavelets and scaling
functions. In [11], a univariate family ,,% of compactly supported wavelets has been
constructed. The smoothness of ,,7) increases without bound as m increases, as does the
support of ;1. Moreover, the wavelet ,,,4) has m vanishing moments. We fix a value of m
and let ¢ = ,,¢ be the univariate scaling function which generates the wavelet v = ,,1.
We define 4° := ¢ and +! := 1. Further, let E denote the nontrivial vertices of the square
[0,1]¢. Then, the set ¥ of 2¢ — 1 functions

d

V(1. .., 2q) = Hwej(a:j), ee€ F, (12)

=1

generates by shifts and dilates an orthonormal wavelet basis for Ly(R¢). Namely, let
D := D(R?) denote the set of dyadic cubes in R¢. Each cube I € D is of the form
I =277k +277[0,1]? with k € Z%, j € Z. The functions

nr =g =220 —k), I =27k +279)0,1)¢, k€ 2% € Z,ne T,  (13)

form an orthonormal basis for Ly(R?). Consequently, each function F' € Lo(R?) has an
expansion
F=Py(F)+ > > (Fn)n, (14)
nEV [€D+
where DT denotes the set of all dyadic cubes of measure < 1 and P, is a projector onto
the subspace of Ly(R%) spanned by the translates of ¢(z;)...¢(z4). By construction,
there exists a cube @) satistying supp(n) C @ for all . Hence one can also find suitable
cubes Q(I) satisfying
supp(nr) C QUI), Q)| < I1I. (15)
(In this paper, ‘a < b indicates inequality up to constant factors). Then, if the generator

¢ is chosen sufficiently smooth, a function F is in the Besov space B2(L.(R%)),1/7 =
a/d+1/2, if and only if

1/7
1Po(F)lz, mey + (Z > KF, 771>|T) < 00, (16)
nev [eD+

see, e.g., [19] for details.

The characterization (16) now gives us a hint how to establish Besov regularity. We
have to compute the wavelet coefficients of the singular part W and to check if their
¢.—norm is finite. To this end, the first step is to extend W to all of R?. For technical
reasons which will become clear later, we proceed as follows. We introduce the distance
to the edge S x R

op = weigfl) r(z). (17)

Furthermore, we set U := Y N B(S, R), where supp ¢ C [—R, R] and B(S, R) clearly
denotes the ball of radius R at S in R?. There exists a cone V' C R?, centered at S and
containing U, and an interval Z D Z, such that for some suitable constant C,

QUNCV T if QINWXI)#W, [I|=2"% and § >C27. (18)

5



Then the explicit expressions (6) and (10) imply that W has a trivial extension onto V x Z
which we also denote by W. It is at least contained in H%2, see again [16], and we may
use a Whitney extension to obtain a function on all of R? for which we again keep the
notation W. Then, on the old domain Q, W has an expression

W=PW)+ Y W, ), (19)

(Imen

where A denotes the set of all indices for which (U x Z) N Q(I) # 0. Therefore the task
is to estimate the right—hand side in (19). It can be shown that Py(W) does not cause
any serious trouble, see, e.g., [10] for details. Therefore it remains to establish Besov
regularity for the second term in (19). According to (16), we are left with showing that

o IWomn)|" < e (20)

(ImeA

Let us start by estimating one wavelet coefficient. By the vanishing moment property,
each wavelet 7, is orthogonal to any polynomial of total degree < m. Hence, for any

PI S Pm—l;
W) < W = Pronn | < IW = Pl Ly lImrl] Loms) -

where QQ(I) again denotes the support cube of ;. Combining this formula with a standard
Whitney-type estimate yields

(W) < W = Prll@ay ey S 27 Wiy (21)
We fix a refinement level 5 and introduce the sets
Ay o= L |1 =27), |
Aj,lc = { (I, 7’]) € A] ‘ k277 <4 < (k' + 1)2_]},
A;- = A]’\Aj’c, Aj,C = {(I, 7]) € Aj ‘ o < 02_j}.

The first step is to estimate the contribution of all wavelets corresponding to a fixed
index set Aj, C A. The Whitney estimate (21) immediately implies

T/2
YWl s X 2 </Q< > \aawpdx) ,

IeA, IeA, 4 D) \aj=4

so that, by using Hélders’s inequality with p = 2/7 and ¢ = 2/(2 — 7) and the fact that
Ajx| < 27k, we obtain

T/2
Z W, nn) | < 9—479j(2-7)/2 .(2—-7)/2 ( Z / Z |aaW|2d.’It) )

IEA]',]C IEAj,k Q(I |a\:4

By employing the set R := {x € R? | k27 <r < (k+1)277} NV, this expression may be
rewritten as

T/2
Yo lwem)T g 2CERTEmD (/I /R > \8“W\2dx1dx2dx3)

USIVRS la|=4

N

T/2
o(~(0/2)7+1)j 1, (2-7)/2 / > / 0°W|2dzsdzads, | .
R R

=4

6



Therefore, by using the definition of YW and Leibniz rule, we find

T/2
Z |<W’,r’[)|7' < o(=(9/2)7+1)j |.(2-7)/2 / Z / |aa K* |2dx3d$2dx1>
IEAj,k |Oz‘ 4
T/2
< 9(=(9/2)7+1)j }.(2-7)/2 / Z Z/ |€ %0 VK| |0”S| d$3d$2d$1)
|a\ 4v<a
< Q)= / 3D / ( / (@3 — )] |0 K (r, t)|dt) dzs

la|=4v<a
\8”S|2dx2dx1)T/

The next step is to employ the Minkowski—inequality. This yields

S W)l < < 9(-(9/2)7+1)j p.2-7)/2 (/ > (/R (/R‘f(mzs—t)|2dx3)l/2\aaVK(T,t)‘dt>2

IEAJ]C ‘a| 4v<a
|8”8|2dx2d:1;1)
T/2
< 2( (9/2)7+1) ]k(? 7)/2) (/ Z Z (/ ‘aa I/K ’f’ t)‘dt) |0”5\2dx2dx1> ) (22)
la|=4v<a
A direct computation shows that
0"’S < il (23)
and
/ 0K (r,t)|dt < r=evl. (24)

Consequently, by inserting (23) and (24) into (22) we finally obtain

T/2
S (W) < 29T / T3 220 u|>dx2d$1>

IeA; |a|=4r<a

T/2
< o-(O/2m+1)i (2~ T)/2< (2A—8) ded:rl) /
< 9(=(9/2) T+1)‘7k2 7)/2 ( k? .7 (2A—8) |R|)T/2
< 2( (9/2) T+1)]k2 7)/2 k2 _7) (2A—8)(7/2) (]CQ 27)7/2
< 2(7(9/2)7'1‘—1)]]{()\ 4)7’+12 —j7(A=3)
< 2j(1—T(3/2+)\))k()\—4)T+1 )

The next step is to treat a typical set A7. We get

S W, [T < 200T32-) N Oy

IEA;? k=k1

and we are in business if

1
T(—44+ ) <=2, ie, —<—r,



which corresponds to
9— 3\

2

We now define A° = U2, A% and sum the last inequality over all refinement levels. This
yields

s <

(25)

ST W,nn|T <Y 20 TE2EN)

IeA° j=1

and the geometric series converges if
3 .
—(§+/\)T+1 <0, ie, s<3+3\ (26)

Since 1/2 < A < 1, it turns out that 9 — 3\ < 2 + 3\, so that in the setting of Theorem
2.3 condition (26) is always satisfied.

It remains to study the sets A;c. Combining the fact that [Ajc| < 27 with Holders’s
inequality yields

T/2
Z |<W’ 771>|T SJ 2j(2iTT) ( Z |<W’ 771>|2>

(ImEA; ¢ (ImeE; c

T/2
S_, 2](2_77—)27](2”/2) ( Z 23J‘<Wa TII>|2> .

(I,W) EAj,C

Therefore summing over all refinement levels and using Hoélder’s inequality once again
gives

2—7

o0 o 2 o T/2
> X Wl g (22“1‘2‘%)) (Z > 23j\(W,771>|2> .

J=0 (I,;n)€Aj,c Jj=1 J=0(I,n)€Aj c

Since W € H3/2(R?), the second sum is finite, see again [19] for details. The first sum is

finite if
3T

2—71

1— <0, ie, s<9/2.

The theorem is proved.
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