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This paper analyzes the performance of two parallel algorithms for solving the
linear-quadratic optimal control problem arising in discrete-time periodic linear sys-
tems. The algorithms perform a sequence of orthogonal reordering transformations
on formal matrix products associated with the periodic linear system, and then em-
ploys the so-called matrix disk function to solve the resulting discrete-time periodic
algebraic Riccati equations needed to determine the optimal periodic feedback. We
parallelize these solvers using two different approaches, based on a coarse-grain and
a medium-grain distribution of the computational load.

The experimental results report the high performance and scalability of the parallel
algorithms on a Beowulf cluster.

1. INTRODUCTION
In this paper we analyze the parallel solution of the linear-quadratic (LQ) optimal control
problem for periodic control systems on parallel computers with distributed memory.
Specifically, we consider the discrete-time linear control system

Tpt1 = Apzp + Brug, x0 = 2°, k=01 (1)

yr = Crxp, Y
where A, € R**", B, € R**™ and Cy, € R"™*". The system is said to be periodic if
for some integer period p, Ay1p = A, Bryp = By, and Cr1p = Cj. The aim in the LQ
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optimal control problem is to find a periodic feedback {u, }$2, which minimizes
i=0

[10, 11]. Here, Qx € R™™, Qr = Q¥ > 0, Qx = Qi4p, and Ry € R™*™ R, = R} >
0, Ry, = Rpp.
Under certain assumptions [10, 11], the unique optimal periodic feedback is given by

ult = _(Rk + Bng+1Bk)7lBng+1Ak$ka

where X}, € R**", X}, = X}, is the unique symmetric positive semidefinite solution of
the discrete-time periodic Riccati equation (DPRE)

0 = CngCk - X + A{Xk—HAk @

—AF X141 Br(Ri + BE X1 B) 7' B Xpy1 A
see [11] for details. In case p = 1, the DPRE reduces to the well-known discrete-time
algebraic Riccati equation (DARE) [29].

Periodic linear systems naturally arise when performing multirate sampling of continuous
linear systems [18]. Large state-space dimension n and/or large period appear, e.g., in the
helicopter ground resonance damping problem and the satellite attitude control problem;
see, e.g., [9, 22, 26, 37]. The analysis and design of these class of systems has received
considerable attention in recent years (see, e.g., [10, 11, 13, 26, 33, 32, 36, 37]).

The need for parallel computing in this area can be seen from the fact that (2) represents
a non-linear system with pn? unknowns. Reliable methods for solving these equations
have a computational cost in flops (floating-point arithmetic operations) of O (pn?).

In this paper we analyze the parallelization of two DPRE solvers, introduced in [5, 6],
following two different approaches. First, we present a coarse-grain approach which
only requires efficient point-to-point communication routines and a few high-performance
numerical serial kernels for well-known linear algebra computations. A version of this
coarse-grain algorithm with computational cost of O(p2n?) flops was reported in [7, 8].
Here we extend the theoretical analysis of the parallel properties of the algorithm and
include a second variant, suggested in [6], with computational cost of O(plog,(p)n?).
Second, we investigate a medium-grain parallel approach, based on the use of parallel
linear algebra libraries; in particular, we employ ScaLAPACK [12] to obtain scalable and
portable implementations of the solvers. This approach is applied to both algorithms
mentioned above.

The paper is structured as follows. In section 2 we briefly review three numerical DPRE
solvers based on a reordering of a product of matrices associated with (2). Coarse-grain
and medium-grain parallelizations of the solvers are described and analyzed in sections 3
and 4, respectively. In section 5 we report the performance of the algorithms on a Be-
owulf cluster of Intel™ Pentium-11 processors. This class of parallel distributed computer
systems presents a better price/performance ratio than traditional parallel supercomput-
ers and has recently become a cost-effective, widely-spread approach for solving large
applications [15]. Finally, some concluding remarks are given in section 6.
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2. SOLVING DISCRETE-TIME PERIODIC RICCATI EQUATIONS
In order to solve the LQ optimal control problem for discrete-time perioidc systems, we
need to solve the DPRE (2). Here we consider the 2n x 2n periodic matrix pairs associated
with this DPRE,

Ly

—1nT

T -crQicy I, 0 AT ]2

where I, denotes the identity matrix of order n. In case all the Ay, are non-singular, the
solution matrices X, of the DPRE in (2) are given via the invariant subspaces of the periodic
matrices [23]

O = Mg Lkip i Ml oLkyp 2 M 'Ly, k=0,1,...,p—1, (3)

corresponding to the eigenvalues inside the unit disk. Under mild control-theoretic as-
sumptions, the II, have exactly n of these eigenvalues. If the columns of [ Ul VT ]T,
Uk, Vi € R™™, span this invariant subspace, and the Uy are invertible, then X, =
—VkU,;l. Note that these relations still hold in a generalized sense if any of the A, are
singular [6, 11, 23, 35]. and all algorithms presented here can still be applied in that case.

The periodic QZ algorithm is a numerically sound DPRE solver which relies on an
extension of the generalized Schur vector method [13, 23]. This is a QR-like algorithm
with a computational cost of O(pn?) flops (it has to deal with p eigenproblems). Sev-
eral experimental studies report the difficulties in parallelizing this type of algorithms on
parallel distributed systems (see, e.g., [24]). The algorithms present a fine granularity
which introduces performance losses due to communication start-up overhead. Besides,
traditional data layouts (column/row block scattered) lead to an unbalanced distribution of
the computational load. These drawbacks can partially be solved by using a block Hankel
distribution to improve load balancing [24] and multishift techniques to increase the gran-
ularity [25, 14]. Nevertheless, the parallelism and scalability of these algorithms are still
far from those of traditional matrix factorizations [12].

In this paper we follow a different approach described in [5, 6] for solving DPREs
without explicitly forming the matrix products in (3). The approach relies on the following
lemma.

Lemma 1. Consider Z,Y € R?*9, with Y invertible, and let

on o] Z1=1%) o

be a QR factorization of [V, —ZT|7; then Qy Q21 = ZY 1.

The application of this lemma to a ¢ x ¢ matrix pair requires 40¢®/3 flops and storage
for 6¢* real numbers [6]. Hereafter, we denote by Csyqp and Ciszore the computational and
storage costs, respectively, of applying the above swapping procedure to a matrix pair of
size ¢ = 2n.

We next describe three different algorithms, based on the swapping lemma, for solving
DPREs [5, 6].
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2.1. Reordering a matrix product
The basic idea in this first algorithm is to apply the swapping procedure to reorder the
matrix products in ITj, in order to obtain

O, = M 'L = (Mg Mitp1) " (Liap—1 - - L), )
without computing any explicit inverse. We describe the procedure by means of an example

of period p = 4. First, apply the swapping procedure to (L1, Mp), to obtain a reordered
matrix pair (Lgl),Mél)) such that Ly My ' = (Mél))—ngl). Then,

My = My'LsM; 'LyMT'LiM; L

-1 -1 —1/ar()y—17(1)
M3 LMy ' LoM; (My~) YLy Lo
= M3 'LyMy ' LoM Ly

Here, we borrow the colon notation from [6] to indicate, e.g., that L;.¢ is obtained by
collapsing (computing) the matrix product Lgl)Lo. Next, apply the swapping lemma to
(L, Mj.g), to obtain a reordered matrix pair (Lgl), Ml(:lo)) such that

My = M;'LsMy'LyM{ Lo
My LsMy (M) LS Lo
M3 L3M; 5 Lo.

By applying a last time the swapping procedure, to (L3, M), we obtain the required
reordering in (5).

This stage requires applying the swapping procedure p — 1 times. The solution of the
each DPRE, X, is then obtained from the associated matrix pair (Ly, My), using any
method that computes the deflating subspace corresponding to the generalized eigenvalues
inside the unit disk [28, 30, 31].

Incaseall Ay, kK =0,1,...,p—1,are non-singular, the remaining p — 1 matrix products
can be obtained from IT;, using the relation

Mpy1 = (M 'Li) "' (M, ' Ly,).
Thus, e.g.,
H _ M*lL —IH M*lL _ —1 11717 —1
k+1—( k k) k( k k)_(Mk Lk) Mk Lk(Mk Lk)a

and this matrix can be obtained from II; by applying twice the swapping procedure.

Overall, the computation of IT,, k = 0,1,...,p—1, requires 3(p — 1) Ceomp flops, where
Ceomp = Cswap + 4(2n)3, and workspace for 2(p + 1)n? + Citor real numbers [6]. The
cost of solving the DPRE depends on the method employed to compute the corresponding
deflating subspace and will be given in section 2.4.

The previous algorithm requires all Ay to be non-singular. Furthermore, a single mod-
erately ill-conditioned matrix A, may affect negatively the accuracy of the computed
solutions. This algorithm is not considered any further.

2.2. Reordering p matrix products
Next we describe an algorithm that deals with the case of singular A, matrices, at the
expense of increasing the computational cost of the algorithm in the previous subsection
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by a factor of p. We illustrate the idea in this algorithm by means of an example of period
p = 4. Consider the matrices

My = M;'LyM;? LZM—lLlMO—lLO,
M, = My'LoMj'LsMy'LyM Ly,
My, = M{'LiMy'LoM; ' LyM; " Lo,
IM; = M2_1L2M1‘1L1M 'LoM;'Ls,

and apply the swapping procedure to the matrix pairs (L3, Ms), (L2, My), (L1, M), and
(Lo, Ms3). Then, we obtain (L, M), (8Y, Yy, 28V, m{M), and (LY, MY,
which satisfy

LyMyt = (gL,
LMt = (M) 1LY,
LMyt = (M)'LEY,  and
LoM;' = (M))~'L
Therefore,
M, = M; ({1 MEI) LM (M) L L,

Mg (M) (M) (Mg )
M = Mgt (M)~ Lg) ()~ L5 ()
M = M (Mg )7 L) (") 1Ly (M) ' L5V L, and
My = My (") 'z (asg”) L3V (05"
Repeatingtheswappingprocedurewiththematrixpairs(L(l) M(l)) (L(l) M(l)) (L(()l),Mél)),
and (L{M, M{Y), we obtain (L, M), (L2, M§?), (L, M), and (L, M)
such that

Mo = My (M) () LY (M) L LV L
M = Myt (M)~ (M) L () L LV Ly,
M, = M7 (M) (M) L (M) LV LSV L, and
My = M 1(M1(1)) I(Méz))—lL(Z)(Méz))—lL@)L(l)L

Alastreordering of the matrix pairs (ng), Mé”), (Lf)z), Ml(2)), (ng), M,f)), and (Lg), Méz)),
provides the required reordering in (5).

The algorithm can be stated as follows [5]. In the algorithm we denote by (Y, Z) «
swap(Y, Z) the application of the swapping lemma to the matrix pair (Y, Z), where Y and
Z are overwritten by Q22 and @21, respectively, using the notation of Lemma 1.

Algorithm 2.1
Input: p matrix pairs (Lg, M), k=0,1,...,p—1.
Output: Solution of the p DPREs associated with the matrix pairs.
for k‘—O,l,...,p—l

Ly + Ly, M(k+1) mod p & My
end
for t=1,2,...,p—1

for k=0,1,...,p—1

(L(k+t—1) mod p» M(k4p—1) mod p) ¢ SWAP(L(k1t—1) mod ps M(k+p—1) mod p)
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]}Al(k+t) mod p M(Ak+p—1) mod pM(k+t) mod p
Ly < L(x1t) mod pLk
end
end
for £k=0,1,...,p—1
Solve the DPRE using (L, My)
end

The algorithm is only composed of QR factorizations and matrix products [20]. The
computational cost of the reordering procedure is p(p — 1) Ceomp flops and p(2n2 + Cstore)
for workspace [6].

2.3. Reducing the computational cost
In this subsection we describe an algorithm which reduces the computational cost of the
previous algorithmto O(plog, (p)n?) flops, while maintaning a similar numerical behavior.
We use an example of period p = 4 to describe the algorithm. Consider the matrices

My = Mj'LsMy'LoM{ Li My Lo,

I, = My'LoM;'LiMy'LoM; 'L,
My = M;y'LiMy'LoMy 'LsM; Lo,
My = My'LoMj'LsMy 'LyM; 'Ly,

and apply the swapping procedure to reorder the matrix products LsM;*, LoM;t,
Ly Mg and Lo M into (MSD) 1LY, (M) 1LY, ({1 LY, and ()2 LY,
respectively. Note that these matrix products appear twice in Ily, .. ., II3. Thus, we obtain
reordered matrix products

Mo = My (M) LD LM (M) LV Ly = Mg} LsaMig Lo,
m = M, " (M) (ML Ly = My Lo Mg Lo,
M = M; (M) LV LoMy (M) LY Ly = My LioMs) Ly,
I = My (M) 'L LMy (M{Y) TLV Ly = My Loa My Loa.

Now, we only need to apply the swapping procedure again, to reorder the matrix products
L3.oM g, Lo.a My, Li.oM,, Loy M, and thus obtain the required reordered matrix
products in (5).

The algorithm can be stated as follows. For simplicity, we present the algorithm for p
equal to a power of 2.

Algorithm 2.2
Input: p matrix pairs (Ly, M), k=0,1,...,p—1.
Output: Solution of the p DPREs associated with the matrix pairs.
for t =1,2,...,log,(p)
1+ 201
for k=0,1,...,p—1
(Y, Z) < swap(Li; M(k4p—1) mod p)
L = Y L(k+p-1) mod p
end
for k=0,1,...,p—1
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Lk — ]_—A/k
M, + Mk
end
end
for £k=0,1,...,p—1
Solve the DPRE using (Iik,Mk)
end

The computational cost of the reordering procedure in this case is p[log, (p)]Ceomyp flOps
and 2p(2n? + Cyore) for workspace [6].

2.4. Computing X

At the final stage of the three reordering algorithms described above, it is necessary to
solve the DPRE (2). As outlined in section 2, these solutions can be obtained from certain
invariant subspaces of the formal matrix products II;. As these subspaces are exactly
the deflating subspaces of the matrix pairs (ﬁk, Mk), the X}, are computed from the right
deflating subspace of (f,k, Mk) corresponding to the eigenvalues inside the unit disk.

Here we propose to compute the X, using the so-called matrix disk function [5]. This
matrix function can be computed using an inverse-free iteration, composed of QR factor-
izations and matrix products, which employs the rationale behind the swapping lemma.

The inverse-free iteration for the matrix disk function was introduced in [27] and made
truly inverse-free in [4]. The iterative procedure can be stated as follows.

Algorithm 3.1
Input: A matrix pair (L,M).
OQutput: Disk function of the matrix pair
j+<0
Lo+ L, Mo+ M
Ry < 0.
repeat
Compute the QR factorization

BRSNS
Q21 Q22 —L; 0
L]'+1 — Qzle
Mjq1 + Q22 M;
j+—Jj+1
until ||Rj+1 — Rj||r < 7||Rj+1llF
In the algorithm, 7 is a user-defined tolerance threshold for the stopping criterion. The
disk function of the matrix pair (L, M) is defined from the matrix pair at convergence,
denoted by (Loo, Moo), s disk (L, M) = (Le + M) *Ms [5]. Note that the QR
factorization computed at each iteration of the algorithm is exactly the same used as in the
swapping lemma.
If we apply Algorithm 3.1 to (L, M) := (L, M},), then X := X, can be computed di-
rectly from disk (L, M) without computing a basis for the corresponding deflating subspace
explicitly. Partition L, into n x n blocks as

Ly, le] )

L. =
< { Loy Lo
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then X is obtained by solving

L12 :| |: Lll :|
X = ;
[ Ly Ly
see [5] for details.

The cost of computing the matrix disk function of a ¢ x ¢ matrix pair using the inverse-
free iteration is 40¢> /3 flops per iteration. Solving the linear-least square (LLS) system for
X adds 134> /3 flops more.

3. COARSE-GRAIN PARALLEL ALGORITHMS

Our coarse-grain parallel algorithms employ a logical linear array of p processes, Py,
Py,..., P,_q, where p is the period of the system. These parallel algorithms require
efficient point-to-point communication routines, high-performance numerical serial kernels
for the matrix product and the QR factorization, like those available in BLAS [16] and
LAPACK [2], and a serial subspace extraction method based in our case on the matrix disk
function [5].

Consider first the parallelization of Algorithm 2.1. In this algorithm, each matrix pair
(Ly, My) is initially stored in a different process Py, k = 0,1,...,p — 1. During the
swapping stage, each swapping of a matrix pair is carried out locally in the process where
it is stored. Thus the coarse grain parallelism is obtained by performing each iteration of
loop k in Algorithm 2.1 (a swap of a matrix pair) in a different process. By the end of this
stage, a reordered matrix pair (Iik, J\ka), as in (5), is stored in process Py, and the solution
of the corresponding DPRE can be obtained locally.

Parallel Algorithm 4.1
Input: p matrix pairs (L, M), stored in P, k=0,1,...,p—1.

OQutput: Solution of the p DPREs associated with the matrix pairs and
stored in P, k=0,1,...,p— 1.
In process Pj:
Ly + Ly, M(k+1) mod p & Mk
Send M} to P(k+1) mod p
Receive M(xip—1)modp from Prip_1)modp
for t=1,2,...,p—1
(L(k+t—1) mod p» M(k+p—1) mod p) = $WAP(L(k+t—1) mod ps M(k+p—1) mod p)
Send L(k+t-1)modp tO Plhtp-1) modp
Mty mod p < M(k+p—1) mod pM(k+t) mod »
Receiv? L(44) mod p from Px11) mod p
Send Mk +4) modp t0 Plhtp—1) modp
Ly = L(k1+) moa pLk
Receive Mk it+41) modp ETom Pri1) mod p
end
Solve the DPRE using (L, M)

The algorithm presents a regular, local communication pattern as the only communica-
tions necessary are the left circular shifts of L, and Mk.

Assume our system consists of n,, physical processors, Po, ..., Pp,—1, With n, < p.
(Using a number of processors larger than p does not produce any benefit in this algorithm.)
In the ideal distribution a group of [(p — r — 1) /n,] + 1 consecutive processes are mapped
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onto processor P,, r = 0,...,n, — 1. As the communication pattern only involves
neighbour processes, this mapping only requires the communication of n, matrix pairs
between neighbour processors at each iteration of loop ¢. The remaining p—n , transferences
are actually performed inside a processor, and can be implemented as local memory matrix
copies.

To derive a theoretical model for our parallel algorithm we use a simplified variant of the
“logGp” model [1], where the time required to transfer a message of length I between two
processors is given by a.+ SI. (Basically, the latency and overhead parameters of the logGp
model are combined into o, while no distinction is made between the bandwidth, 51, for
short and long messages.) We also define ~y as the time required to perform a flop. Finally,
for simplicity, we do not distinguish between the cost of sending a square matrix of size
n and that of performing a matrix copy between two processes in the same processor. We
use a + Bn? in both cases, though we recognize that the matrix copy can be much faster.

An upper bound for the parallel execution time of the previous algorithm is given by

S ST (o (Cpmp + 2(20)) + 2(a + B(20)?))
(p— DT (Y(Coomp + 2(20)%) + 2(a + B(20)?) ) .

Tmax(n,p’ np)

The transference of the matrix pairs can be overlapped with the computation of the matrix
products using, e.g., a non-blocking (buffered) communication Send routine; the execution
time will then be

T (n,p,mp) = (p = D1 (7Coomp + 2 max{y(2n)%, @ + B(20)?} ) .
4
The actual degree of overlap depends on the efficiency of the communication subsystem
and the computational performance of the processors. Usually, 8 > ~ and from a certain
“overlapping” threshold 7» communication will be completely overlapped with computation
forall n > 7. For a particular architecture, this threshold can be derived as the value of n
which satisfies

Y(2n)? > o + B2n)2.

In the optimal case communication and computation will be completely overlapped and
p
T (n,p:np) = (p = D=1 7(Ceomp +2(20)°).
P

The optimal speed-up is then

T°P(n, p,1) P
t _ > _
S p) = Tt ping) 2T

np

This model will surely deviate from the experimental results obtained in section 5. We
point out two reasons for this behavior. First, in general o and 3 depend on the message
length. Second, the computational cost of a flop depends on the problem size and the
type of operation; e.g., the so-called Level 3 BLAS operations (basically, matrix products)
exploit the hierarchical structure of the memory to achieve a lower .

Let us consider now the parallelization of Algorithm 2.2. For simplicity, again we only
present the algorithm for a period p = 2 for some positive integer .
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Parallel Algorithm 4.2

Input: p matrix pairs (Lg, My), stored in P, k=0,1,...,p—1

Output: Solution of the p DPREs associated with the matrix pairs and
stored in P, k=0,1,...,p— 1.

In process FPj:

Send My to Pi1)modp
Receive M(r4p—1)modp from Pyip 1) modp
for t=1,2,...,log,(p)
1 2t7!
(Y, Z) < swap(Li, Mg +p—1) mod p)
Send Ly to Pr41) modp
Receive L(x4p 1) modp £rom Pip 1) modp
if (¢ #log,(p)) Send Mj to Px+21) mod p
L = Y L(jtp—1) mod »

if (t #logy(p)) Receive M(iip—21) mod p
end

Solve the DPRE using (L, My)

The analysis on the execution time of this parallel algorithm, the overlapping between
communication and computation, and the maximum speed-up attainable follow closely
those of Algorithm 4.1.

In the parallel coarse grain algorithms each X, is computed on a single processor, so
only a serial implementation of Algorithm 3.3 is required.

4. MEDIUM-GRAIN PARALLEL ALGORITHMS

The coarse-grain algorithms lose part of their efficiency when the parallel architecture
consists of a number of processors n,, larger than the period p of the system. Specifically,
in such a case, there are n,, — p idle processors, and the maximum speed-up attainable using
n,p, Processors is limited by p.

To overcome this drawback we propose to use a different parallelization scheme, with a
finer grain, where all the processors of the system cooperate to compute each of the matrix
operations in the algorithm. Another advantadge of the medium-grain approach in case
p < n, is that the distribution of each matrix among several processors may allow the
solution of larger problems (in n) than the coarse-grain approach.

The development of medium-grain parallel algorithms, which work “at the matrix level”,
is supported by parallel matrix algebra libraries like ScaLAPACK [12] and PLAPACK [34].
Both public libraries rely on the message-passing paradigm and provide parallel routines
for basic matrix computations (e.g., matrix-vector product, matrix-matrix products, matrix
norms), and solving linear systems, eigenproblems and singular value problems. ScaLA-
PACK closely mimics the functionality of the popular LAPACK [2], and is used as a black
box. PLAPACK basically offers parallel routines for the BLAS [16] and provides the user
with an environment for easy development of new, user-tailored codes.

In this paper we propose to use the kernels in ScaLAPACK. This library employs BLAS
and LAPACK for serial computations, PB-BLAS (parallel block BLAS) for parallel basic
matrix algebra computations, and BLACS (basic linear algebra communication subpro-
grams) for communication. The efficiency of the ScaLAPACK kernels depends on the
efficiency of the underlying computational BLAS/PB-BLAS routines and the communica-
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tion BLACS library. BLACS can be used on any machine that supports either PVM [19]
or MPI [21], thus providing a highly portable environment.

In ScaLAPACK, the user is responsible for distributing the data among the processes.
Access to data stored in a different process must be explicitly requested and provided via
message-passing. The implementation of ScaLAPACK employs a block-cyclic distribution
scheme [12]. The data matrices are mapped onto a logical p, x p. grid of processes.
Each process owns a collection of blocks of dimension mp x np, which are locally and
contiguously stored in a two-dimensional array in “column-major” order.

For scalability purposes, we map each process onto a different physical processor (i.e.,
np = pr X pc), and we use a 2-dimensional block-scattered layout for all our matrices.
We employ square blocks of size n;, for the layout, with n, experimentally determined to
optimize performance.

The parallelization of a numerical algorithm using this library consists of distributing
the matrices, and identifying and calling the appropriate parallel routines.

The reordering algorithms for the DPRE perform the following matrix operations based
on Lemma 1: QR factorization, forming Q12 and @2 (these matrices can be computed by
applying from the right the transformations computed in the QR factorization to a matrix of
the form [0,,, I,]), and matrix product. ScaLAPACK provides routines PDGEQRF, PDORMQR,
and PDGEMM for these purposes.

The computation of X, requires basically the same matrix operations plus the solution of
a consistent overdetermined LLS problem at the final stage. This problem can be solved by
performing the QR factorization of the coefficient matrix, applying these transformations
to the right-hand side matrix, [L7,, LT,]7, and solving a triangular linear system. The two
first steps can be performed using routines PDGEQRF, PDORMQR, while the last step is done
using PDTRSN.

Table 1 reports the number of subroutine calls required by the reordering procedure
in the DPRE solvers (swapping stage in Algorithms 2.1 and 2.2) and solving the DPRE
from the reordered matrix pair (Algorithm 3.1). In the table, “iter” stands for the number
of iterations necessary for convergence in the inverse-free iteration for the matrix disk
function.

Tablel
Number of calls to different parallel routines from ScaL APACK required by
the reordering procedure in the DPRE solvers and solving the DPRE
from thereordered matrix pair.

PDGEQRF PDORMQR PDGEMM PDORMQR PDTRSM
Form Q12, Q22 Apply to [LT,, LT 1T

Alg. 21  p(p—-1) p(p—1) 2p(p — 1) — —

Alg. 2.2 plogy(p) plogy(p) 2plogy(p) — —

Alg. 3.1  iter+1 iter 2 iter 1 1

In general, predicting execution time is a complex task due to the large number of factors
that have an influence on the final results (system software such as compilers, libraries,
operating system; layout block size, processor grid size, actual implementation of collective
communication routines, etc.). This is also true for ScaLAPACK, where proposed models
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Table2
Perfor mance of the communication libraries.

Library a (us.) B~1 (Mbps.)
Short messages  Long messages

MPI/GM API 37.4 2131 254.4

for the execution time of the routines are oversimplistic and neglect many of these factors;
see, e.¢., [3, 17]. We therefore do not pursue this goal any further.

5. EXPERIMENTAL RESULTS

Our experiments are performed on a cluster of Intel Pentium-11 processors at 300 MHz,
with 128 MB of RAM each, using IEEE double-precision floating-point arithmetic (e ~
2.2 x 10716).  An implementation of BLAS specially tuned for this architecture was
employed. Performance experiments with the matrix product routine in BLAS (DGEMM)
achieved 180 Mflops (millions of flops per second) on one processor; that roughly provides
a parameter v = 5.5 ns.

The cluster consists of 32 nodes connected by a Myrinet multistage interconnection
network®. Myrinet provides 1.28 Gbps, full-duplex links, and employs cut-through (worm-
hole) packet switching with source-based routing. The nodes in our network are connected
via two M2M-OCT-SW8 Myrinet crossbar SAN switches. Each node contains a M2M-
PCI-32B Myrinet network interface card, with a LANai 4.3 processor, a 33 MHz PCI-bus
interface, and 1 MB of RAM.

In our coarse-grain parallel algorithms we employed basic Send and Receive com-
munication routines in an implementation of MPI, specially tuned for the Myrinet, which
makes direct use of the GM API. This is a native application programming interface by
Myricom™ for communication over Myrinet which avoids the overhead of using MPI on
top of the TCP/IP protocol stack.

Our medium-grain parallel algorithms are implemented using ScaLAPACK. The com-
munications in this case are performed using BLACS on top of MPI/GM API.

Table 2 reports the communication performance of these libraries measured using a
simple ping-pong test, both for short (20 KB) and long (500 KB) messages.

5.1. Performance of the coarse-grain parallel reordering

In these algorithms we are interested in finding the threshold from where the communi-
cations will be overlapped with the computations. For this purpose, we use data in table 2
and v = 5.5 ns. to determine the theoretical threshold at n = 9.

In practice, the resolution of the timer that we used did not allow to obtain accurate
measurements for n < 30. For n > 30 and period p, the coarse-grain parallel algorithms
using n, processors, n, = p, obtained a perfect speed-up. As expected, for p > n,, the
speed-up of the algorithm in practice is W. The scalability of the algorithm as p is
increased with the number of processors (p/n, and n are fixed) is perfect. However, the
algorithm is not scalable as n is increased with the number of processors (n?/n, and p are

lsee http://www.myri.com for a detailed description.
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fixed). The matrix becomes too large to be stored in the memory of a single processor. For
more performance results, see [7].

5.2. Performance of the medium-grain parallel reordering
We now evaluate the parallelism and scalability of our medium-grain parallel reordering
algorithms.

2500 T T T T 500
0 —— p=4, q=2n=852
-+~ p=16, q=2n=428 450
o p=32, q=2n=304
2000 1 400r
0 %350/
| 5
o 15000 1 5300
£ : £
s . =250
K] Lo K]
£1000f \ 2200
3} 3]
2 y 0 2
o [ R | 150
5001 1001
50r
o— ) o— .
1 16 1 16

4 8 12 4 8 12
Number of processors (np) Number of processors (np)

Figure1l.  Execution time of the medium-grain parallelization of Algorithm 2.1 (left) and Algorithm 2.2
(right).

Figure 1 reports the execution time for the reordering procedures of the DPRE solvers
(Algorithms 2.1 and 2.2), for p = 4, 16, and 32. The problem size ¢ = 2n was set to the
size of the largest problem sizes that could be solved in 1 processor. The results in the
figures show an important reduction in the execution time achieved by the medium-grain
parallel reordering algorithms.

Figure 2 reports the scalability of the medium grain algorithms. To analyze the scalability
vs. the problemsize, (2n)%p/n,, is fixed at 460, and we report the Mflop ratio per node, with
p=4,0nn, =4,8,16 and 30 processors. There is only a minor decrease in performance
and the parallel algorithms can be considered scalable in n. The algorithm however is
not scalable with p: As p is increased while (2n)2p/n,, is kept fixed, the matrix size per
processor is reduced and the performance of the computational matrix kernels will become
lower.

Table 3 reports the speed-up of the medium grain reordering algorithms for p = 4 and
n = 852.

5.3. Performance of the DPRE solver

Once the reordering procedure provides the corresponding matrix pair, we only need to
use our subspace extraction method, based on matrix disk function, to obtain the solution
of the DPRE.

We have already noted that the coarse-grain parallel DPRE solvers only requires a
serial implementation of the matrix disk function. In case p > n,, the algorithm will
achieve a theoretical and experimental speed-up of |—p/p;np'|' (There is no overhead due to
syncronization or communication as the X ’s can be computed independently). Otherwise,
the attained speed-up will be p.
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L —— Algorithm 2.1
200 -+~ Algorithm 2.2

o ‘ ‘ ‘ ‘
9 16 25 30
Number of processors (np)

Figure 2. Scalability of the medium grain algorithms vs. problem size. (2n)2p/n,=460.

In the medium-grain parallel solvers all the processors in the system participate in the
computation of each Xj. Figure 3 reports the execution time of the DPRE solver for a
matrix pair of size ¢ = 2n = 700, using n, = 4, 8, 12 and 16 processors. The execution
time on 1 processor is that of a serial implementation of the algorithm. Ten inverse-free
iterations were required in all cases for convergence. The figure also reports the scalability
of the solver. In this case we set n/,/n,;=1000 and evaluate the Mflop ratio (millions of
flops per second) per node achieved by the algorithm using a square-like mesh of processors
(np=2x2,3%x3,4%x4,5x5,and5 x 6).

250t ] 2008
180¢ ]
,[;2007 %IGOL/\/ |
g 2140t ]
e o
E150 Q120
= el
2 100
5
5100 3 80
e =
i 2 gl
50 40¢
201
o— . . . . o . . . .
1 4 8 12 16 1 4 9 16 2% 30
Number of processors (n_p) Number of processors (n_p)

Figure 3. Execution time (left) and scalability (right) of the DPRE solver.

Table 3 reports the speed-up of the DPRE solver for a problem of size ¢ = 2n = 700
(see column labeled as Algorithm 3.1).

A comparison between the DPRE solver employed by the coarse-grain and the medium-
grain solvers is straight-forward. The coarse-grain solver (serial) will achieve a better
performance as long as p > n,, as overhead due to communications does not increase.
In case p < n, we would just need to compare the experimental execution time of the
medium-grain DPRE solver with that of the serial solver for p = 1.
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Table3
Speed-ups of the medium-grain algorithms.

Tp n=852, p=4 n=350
Alg. 41 Alg. 42 Alg. 3.1

4 2.58 247 3.45
8 471 4.19 6.56
12 5.98 5.49 9.47
16 8.47 7.25 11.76

6. CONCLUDING REMARKS

We have investigated the performance of two parallel algorithms for linear-quadratic

optimal control of discrete-time periodic systems. Two different approaches are used to
parallelize these solvers. A coarse-grain parallel approach is better suited for problems
of period larger than the number of available processors, and moderate dimension of the
matrices. The medium-grain parallel solver obtains better results for problems with large-
scale matrices. The period does not play an essential role in this case.

The experimental results report the high performance and scalability of the parallel

algorithms on a Beowulf cluster.
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