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Abstract

We report on a new iterative approach for finding a global minimizer of the Tikhonov—
Phillips functional with a special class of nonlinear operators F. Assuming that the
operator itself can be decomposed into (or approximated by) a sum of a linear and a
bilinear operator, we introduce a two—step iteration scheme based on an outer iteration
over the regularization parameter o and an inner iteration with a steepest descent method.
Finally we present numerical results for the reconstruction of the emission function in
single photon emission computed tomography (SPECT).

1 Introduction

Many problems in natural science require to solve an operator equation
F(z)=y, (1)

with F': X — Y being a continuous operator between Hilbert spaces X,Y. The problem of
solving (1) is called ill posed if its solution does not depend continuously on the data y. If we
have to deal with real data, e.g. data from medical imaging, we can not hope to get exact data
but data y° with

ly — ¢’ <6 (2)

In order to control the influence of the data error we have to employ regularization methods.
For linear operators F', the theory of regularization is well developed. For a good overview we
refer to [15, 7] . Driven by the needs of applications, the computation of solutions of nonlinear
operator equations is getting more and more important. To this end, several of the known
regularization methods for linear equations were generalized. Tikhonov regularization might
be the best known method. As a solution of (1) the minimizing element of the functional

Co(z) = |F(z) = y°II” + ells — z” (3)

is taken. With appropriate parameter choice o and under slight restrictions to the operator

F, it was shown in [8, 10, 9] that even for nonlinear operators the minimizing functions z?,



of (3) converge to a solution z, of (1) for 6 — 0. From the numerical point of view, the
difficulty in this approach is to find the global minimizer of (3). An alternative are iterative
methods, which are easiest to implement. The known iteration schemes for nonlinear problems
include Landweber methods [13, 20], Levenberg-Marquardt methods [11], Gauss—Newton [1, 3],
conjugate gradient [12] and Newton-like methods [2]. However, the problem with all of these
methods is that they impose some strong restrictions on the operator F': Firstly, it is required
to have a Fréchet derivative; and secondly, certain estimates involving the operator and its
Fréchet derivative have to hold. One of the widely used assumptions is

|F(2) = F(Z) = F'(2)(@ — &) = O(|lz — Z[||| F'(«) — F(@)I]) , (4)

some slightly weaker assumptions are used in a recent article [5]. For practical applications,
it often seems impossible to prove (4). Considering bilinear operator equations (to be defined
later on), one will hardly be able to prove such estimates.

In this paper we will focus on Tikhonov-Phillips regularization. In this context, one usu-
ally encounters two problems: first, to use a proper regularization parameter «, and second,
to compute the minimizing element. For linear operator equations Ax = y and a given pa-
rameter «, the Tikhonov-Phillips functional is convex and the minimizer xi of the Tikhonov—
Phillips functional is simply computed by

2 = (A"A+al) 'A%y (5)

If « is known a priori, (5) has to be solved only once; however, by using an a posteriori
parameter strategy, (5) has to be computed quite often: Starting with ag, g > 0, one computes
a; = apq’ and z9 until ||y’ — Az} || < ¢d for the first time (Morozov’s discrepancy principle).
The focus here is to compute the minimizing functions ac‘;j fast [18, 17]. In case of a nonlinear
operator F', (3) is no longer convex and, even for simple operators, it might have several local
minima. By using an iteration scheme for minimizing (3), the iterates will usually converge to
a local minimum closest to the starting value of the iteration. This is illustrated with a simple
example in the last section. To ensure convergence to a global minimum, we will introduce a
combination of Tikhonov—-Phillips regularization and a steepest descent method. The main idea
of our approach comes from the observation that, for a certain class of operators, the Tikhonov—
Phillips functional is still locally convex in a neighborhood of a global minimum, and that the
size of this neighborhood grows with the regularization parameter «.. If we want to minimize (3)
for a certain parameter o the proposed algorithm works as follows: If we know an approximation
T to the solution of (1) which lies in the convex neighborhood of a minimizing element z°, the
steepest descent method can be used immediately. If not, we choose a sufficiently big parameter
o > a, s.t. T isin the convexity area of ®,,, and compute x‘sao via steepest descent and starting
value Z. For 0 < ¢ < 1, we set a; = ¢'ap. Under certain conditions, wio is in the convexity
area of ®,, and z?, , can be computed again with steepest descent and starting value xio. This
process is repeated until we finally have a starting value where the steepest descent iterates
converge to the minimizing element z° of ®,. By this way, we can ensure that the iteration
will always converge to a global minimum of the Tikhonov-Phillips functional and not only to
a local one.



For what follows we will restrict our attention to operator equations, which can be decom-
posed as

F(z) = Af + B(f, 1) , (6)

with x = (f, u) € X; x Xy, X1, X, Hilbert spaces, A a continuous linear operator in f and B
a bilinear operator in (f, u):

A Xi—>Y (7)

B : XixXy—>Y (8)
BA(fi+ f2), ) = MB(f1, 1) + B(f2, 1)) 9)
B(f, M1+ p2)) = MB(f, 1) + B(f, p2)) (10)
1Bl < (BN el - (11)

To shorten the notation, equation (6) will be scaled such that
[All+ 2] B]l < 1. (12)
The inner product on X; x X, is defined by

((fr, pa)s (f2 p2)) = (fry fo) + (i, p2) -

For example, the convolution operator
— [ £t~ 5)as (13)

is bilinear; twice Fréchet differentiable operators can be well approximated by

F(z) = F(z0) + F'(zo)(z) + F"(x0)(z, z) . (14)

With measured data y = F'(z) and a known approximation z, to the solution, (14) can be
transformed into

§=y— F(zo) » F'(z0)(x) + F"(20)(z, 7) (15)

which is a sum of a linear and a bilinear operator. In the first example, we have to solve
a bilinear problem; in the second, we are going to replace equation (1) by its approximation
(14) and solve the resulting problem. A third example from medical imaging is presented in
Section 3. Finally, many parameter estimation problems for partial differential equations have
a bilinear structure [4, 6, 14, 19]. We are now left with the problem of solving a ’linear—bilinear’
equation of the type

F(f,u)=Af+B(f,n) =y (16)

with two unknown functions f and p. To be more general, we will allow p to be different from
f; this will be needed for the medical application in the last section. For convenience, we will
denote the first argument of B always by f (i.e. fx, fs,...) and the second by p.



2 Convergence of the steepest descent method for min-
imizing the Tikhonov—Phillips functional for bilinear
operator equations

2.1 Error estimates for Tikhonov—Phillips—Regularization

In this section we will collect some general results about the parameter choice for Tikhonov-
Phillips regularization. We are looking for a Z-minimum-norm-solution of F(z) = y, i.e. a
solution closest to z. In the following, every minimizer of

®a(2) = Iy’ = F@)I* +allz -z, (17)

is denoted by xi We will restrict our attention to a priori parameter choice rules and give the
following main result, which will be used further on:

Theorem 2.1 Let F be a (nonlinear) continuous and weakly sequentially closed operator with
convez definition area D(F) and let x, be a T minimum norm solution of F(x) =y. Moreover,
let the following conditions hold:

1. F s Fréchet—differentiable

2. there exists a v > 0 such that ||F'(z.) — F'(z)|| < ||z — z|| for all x € D(F) in a
sufficiently large ball around x,

3. there exists w € Y satisfying x, — T = F'(x,)*w and
4 ol < 1.
Then, for the choice o ~ &, we obtain
I, = @]l = 0(V5) (18)

and

1F(z)) = 4l = O(6) - (19)

A proof can be found in [7], p.245. A somewhat closer inspection of the proof yields the
estimates

§ + aflwl|
2, — .|| < ; (20)
Vay/(1=7llwl)
1F(«) = y'll < §+2afwl]. (21)
Setting a = ¢d, (20) becomes
1+ cf|w]|

|z — 512 =: f(c)- 61/ .

SV ey

We are looking for a minimum of f(c):



1 Vellwll = 3(1 + el|w]])e*2

T == :

=0,

1.e.
1

=—. 22
o = o] .

In the following we will assume that ¢,y is known explicitly and we will always choose o = ¢,p10.
With this parameter choice, (20) and (21) become

2”‘*’”1/2 s1/2
(1 = ~llwl])/?

IF@’) -y’ < 36. (24)

é
l, — .|l

We may note that f(c,p) — 0 for ||w|| — 0.

2.2 A convexity property of the Tikhonov—Phillips—functional

Steepest descent methods are a useful tool to minimize a functional ¢. They seldom fail to
converge to at least a local minimum of ¢. A property which ensures convergence to the global
minimum is the convexity of the functional, cp. [16]. For a linear operator A, the Tikhonov—
Phillips functional is a (global) convex functional. But this property will be lost as soon as
the operator is nonlinear. As a consequence, ®, will have several local minima, and it is not
clear where a minimization process will converge. In order to find a global minimizer of the
functional

Oo(f, 1) = ly* = Af = B(f, WP + ol (f, ) = (f, B)II? (25)

with an a priori guess to a solution of (6), we want to use a steepest descent method in the
following sections. Although (25) is not convex for all inputs (f, ), we might show that it is
at least a locally convex functional. To show this, we have to examine the second derivative of
the function ¢(t) = @ ((f, ) +t-h), t € R, h = (h1, he). We get

on(t) = Iy’ = Af —t-Ahy — B(f, 1) = t - (B(f, ha) + B(h, p)) = t* - B(ha, ho)|]”
+all(f, m) +t- (has o) = (F, DI
= q)a(fa,u)

=2t ({y° — Af = B(f, 1), Ahy + B(hu, ) + B(f, b))y + (£, 1) = (F, ), (1, h2)) x:xx)
+t (|Ahy + B(h1, p) + B(f, ho) |3 — 2(4° — Af — B(f, p), B(h1, ha))y + | (h1, h2) || X, x x,)
+263(Ahy + B(hu, 1) + B(f, h), B(h1, b))y

+t*]| B(hy, ho)|1? -



Especially for the Fréchet— derivative of the Tikhonov-Phillips functional we find
@,/ (f, p)h = ¢},(0). Defining the linear operators S, and T} as

Su() == AC)+B(,p) (26)

Ty = B(f) (27)

we get

6 (0) = =2((Si (v’ = Af—=B(f, 1)) —a(f =), T; (= Af = B(f, 1)) —o(pu— i), (ha, ho)) . (28)
If we set
on(t) = ®al(f), 1) +th) (29)

where ( fj, ,ui) is a global minimizer of (25), we get ¢}, (0) = 0. The functional (25) is convex in a
neighborhood of a global minimizer if ¢, (t) > 0. We will actually show that ¢, () > 2& =: 26
holds under certain restrictions:

Theorem 2.2 Let the conditions of Theorem 2.1 hold for an operator F(x) = Af + B(f, 1)
with A, B as in (6). Moreover, let (fj, ,ui) be a global minimizer of (25) and w and n be chosen

s.t.
||w||<min{l ! } (30)

v 647
Then, with the parameter choice o = °, there ezists a ball Br(fj, ,ui) s.t. if (fj,ui +th) €

llwl]?

Br(fj, ,ui) fort € [0,t9] and ||| = 1 then ¢, (t) > nd. The radius v of B, can be estimated by

r > ry(||lw])8 + ra(lw])VE (31)
where 1,19 are defined in (46).

Proof:
It is sufficient to prove the existence of t,,;, > 0 such that gp;;(t) > 2¢ holds for ¢ € [0, ;] and
arbitrary h with ||h] = 1.

First, we have

en(t) = 2 (IlAks+ Bhi, 1) + B )} = 20y = A2 = B(f1, 1), Bk, ha))y + )
+12t3(Ahy + B(ha, i) + B(f., ha), B(ha, ha)) + 12¢*|| B(hs, ho)||? . (32)

Using the abbreviations

é 3

y = ¥ —Af —B(f, 1)
= Ahi+ B(hi, 1) + B(f. , ho)
b = B(hl,hQ),

6



u? = (u,u), |ul = Vu2, u € {a,b,y,}, we get the shorter equation
op (1) = 2(a® — 2(y1, b) + @) + 12t(a, b) + 12%b* . (33)

Because of (24), (12) we have

(y, b)) < 11y — Af — B, ) IBI (ha, b))
< 36
and therefore

en(0) > 2(a—2[(y1, b))

> 2(a—60)
1
= 21— —6]6. 34
(nwn ) (34

We already know that ¢, (0) > 0 must hold, but (34) gives us an estimate of o, (0), i.e. if
|w|| < 1/6 we do know a lower bound of ¢, (0).
For directions h with B(hq, hy) = 0 we have

on(t) = ¢4(0) ,
and for directions h with Ah; + B(h, ,ui) + B(fj, hy) =0
n(t) = @4(0) +1°5* > ¢, (0) ,t ER.

In order to show ¢, (t) > 2¢ > 0 for all h with ||h|| = 1 and ¢ € [0, t;s], We have to ensure
¢, (0) — 2 > 0 first. As in (34), we get, by setting ¢ = 7d,

0,(0) =2 > 2(a—2(y,b) —¢) (35)
> z(ﬁ—ﬁ—n)azo (36)

as long as ||w|| < 1/(6 + 7). In practice, we first need to choose w with

11
Joll < min {2, £ 1 7
v 6
then choosing n > 0 s.t.
.1 1
[w|l < min{~, =——}
v 6+7

still holds. Then we are going to find ¢,,;, > 0 with go',i(t) > 2né = 2¢. The quadratic polynomial
p(t) := @, (t) — 26 — +oo0 for [t| — co. If t1,t, denote the zeros of p(t), then p(t) > 0if ¢; € C
or t & (t1,12). According to (36) the coefficient of ¢° is bigger than zero; thus both real zeros
will have the same sign. Finally we observe that (cp. (32))

on(—t) = ot ,

7



so it is sufficient to restrict our attention to the case of positive zeros

by = \/| 2 a? =2y, b)+a—c¢
12— 2b2 4b* 602 ’

i.e. the case (a,b) < 0. Setting 7 = \<a||b| 7 € (0,1] and i, = min{t1, o}, tiae = mazx{ti, i},
we have

to: =
e 2|b| 1202

Real zeros do only exist if

2a®+a—2(y;,b) — ¢
3 p <r<1 (39)
holds. According to Vieta’s Theorem,
1a?>+a—2(y;,b) —¢
tmaz * tmin = % 40

holds. As a function of 7, ¢,,,, takes its maximum for 7 = 1 and can thus be estimated by

e < L [P0 2T

< —
= 2| 12p?

According to (35),(36), a — 2{y1, by — € is positive, and t,,4, can then be estimated by

2
s < S0 [ L VB EL (1)
2] V1202 20 3
Then, again from (36), we get
a? + 2(Copr — 6 — )0 < a’ +a — 2(y., by —
6b2 - 662
= lmin " tmaz
2B V3
or
2v/3|b 2v/3a?|b
tmin 2 2(Copt_6_77)5 \/§| ‘ + \/ga | ‘
6(v3+1)|alk?  6(v/3+1)b?|ql
_ 2(copt —6—1)0 |a| (42)

BB+ Dalll VB3

For a real zero t,,;,
0 < (37 —2)a® — 2(a — & — 2(yy, b))
holds, and especially for 7 =1

a® —2(a— e = 2{y1,b))

a® — 2(Copt —6—1)0

IAINA

8



or

Now it follows (|b| < 1) that

la| is bounded by

la| = ||Ahy + B(hy,1i’) + B(f’, ho)||
< (Al + 1Bl D) + 1B
< (JJA + 2B, 1)

and so
1 S i
allb] = la|
1
> — (45)
1A+ 201 B, )l
Inserting (44), (45) in (42) we arrive at
. 2(qy —6—n) 5+\/2(ﬁ_6—77)
- V33 +1)(||Al + 2B, 1)) V3(V3+1)
= ri(||lw]))d + ra(||w]])5Y/ . (46)
]

From the definition of ro(||w||) we observe r5(||w||) — oo for ||w|| — 0, which will be useful later
on. We might add that the assumptions of Theorem 2.2 are only slightly more restrictive then
in Theorem 2.1. Indeed, assumption 4 in Theorem 2.1 is already a condition to the smallness
of ||wl|; and it only depends on the size of v if (30) is a stronger restriction.

2.3 Analysis of steepest descent method

In this section it will be shown that the steepest descent algorithm will converge to a global min-
imum of the Tikhonov—Phillips functional, provided the starting value for the iteration process
is in the area of convexity B, ( fi, ,ui) and the step size of the iteration is chosen appropriately.

Let (fx, ux) € Br(fj, /,Li), r defined as in Theorem 2.2, and

h=(hy,ha) = (f, = fu 1, — i) - (47)



We define functions ¢ (t), pa(t) by

o1(t) = DPo((fr, ux) + th) (48)
5 5
a(t) = @u((f,,p,) —th) . (49)
According to (28) we have for an arbitrary k = (k1, k2) € X7 X X5

90'1(0) = (I)a,(fkaﬂk)k -
= =28}, (v = Afe = B(fx, i) — i = ), Tp (v° — Afi = B(fi, i) — (i — 1)), (ks k2)) -

Setting
V@l frs i) = (S}, (v° = Afx = B(frs ) — e f = f), T}k(y5 — Afe = B(fr, i) — a(pe — 1))
the steepest descent method for minimizing ®,, is then defined by

(fe+1s k1) = (fi, ) + BV a(fier ) - (50)

Here, B is a scaling parameter which has to be chosen appropriately in every iteration step.

Proposition 2.3 Assume that ( fi, ux) € B,(fj, ,ui) Then an interval I = (0, fy) erists such
that the dterate (fit1, k1) = (fi, ) + BeVPa(fr, i) s closer to (fj,ﬂi) as ([, ) for

ﬁk 6 I: S s é é
1CF, s 1) = ety e DI < (1(F, 5 10,) = (Fios i) || -
Especially, (fri1, te+1) € Br(fjalj'i)‘

Proof:
With the above definitions (47),(48),(49) we have

or(t) = ©1(0) = AVDalfier ), Y+ ap 2+ by £+ 0 - £ (51)
oa(t) = 02(0) + 2V a(f, ), )t + - 4Dy 10+ 8- (52)

and some coefficients ay,, by, cp, @p, by, €. Because (fy, i) € B,(fj,ui), ©,(t) > 0 holds for
0 <t < 1. Moreover, ¢,(t) = ¢,(1 —t) and especially 2a, = ¢, (0) = ¢,(1) > 0. Thus,
(Vo (fi; pi), B) > 0

If we assume (V®,(fr, 1x), h) < 0, then ¢1(0) < ¢1(t) would hold for small ¢. Now ¢;(0) >
¢1(1), i.e. there t, € [0,1] exists such that t. is a local maximum of ¢, (¢). But, on the other
hand, @] (t,) > 0, i.e. t, is a local minimum, which is a contradiction. Now we have

1CF2 1) = esns s DIP = 1 12) = (s i) I+ B2V B (Fis 1)
_Qﬁ <V(ba(fk,,u’k)’ (fja:u'i) o (fka,u'k)> :

:<V¢a (fk:,uk)ah)>0

Thus s s
IO 1) = (P )11 = ICF 1) = (Fis )12 < 0

10



if
9(B) = B[V ol fir ) I — 28{V Pu(fis b)), ) < 0,

or

(VO (f, i), h)
N NN AR

The function g(/) has its minimum at

(Vo (frs x), h)
IV ®a(fr, )ll?

Brmin = (53)

so we might choose By = Bin-

Of course, usually (3, is not available, so we have to find a lower bound.

For this, we need more information about ¢/ (¢):

We have already shown ¢/ (0) < 0. Because ¢ (t) has a global minimum at ¢t = 1, ¢} (1) = 0
holds. Now assume ¢/ (¢) > 0 holds for some ¢ € [0,1]. Due to the continuity of ¢! (¢), there
must be ¢, € [0,1] with ¢! (t.) > 0 and ¢ (t.) > ¢|(¢) for all ¢t € [0,1], i.e. t. is a maximum.
But this is in contradiction to ¢} () > 0 for all ¢ € [0, 1]. Thus,

01(t) <0 fort €[0,1) . (54)
According to (51), ¢ (t) is computed by
01(t) = =2(V®a(fr, k), h) + 2ap - t + 3by - £* + dep - *
and (V®,(fk, ), ) can then be estimated by

2(V<I>a(fk,,uk),h> = —QOIl(t) +2 Qap* t+3bh 't2+4 Cp* t3
>0 >2¢||h|? 20
> del|h||*t + 3by, - £,

(ch = ||B(h1, h2)||?), |br| can be estimated by
|bh| 2|<Ah/1+B(h/17/‘Lk)+B(fk)’h/2)aB(h1:h/2)>|
2[|Ahy + B(hy, pr) + B(fr, h2)||[| B(ha, ha)|]

2((A+ Bl DAl + Bl filll[2])) Bl P || oo |
2(A + 2B (fr, ) DRI

IA AN A

1Al = N ) = (foo i)l
< N i) = (F )+ 11 (e ) — (F )
5 _ 2 ~ 1/2 _
< (”y Al = Bl )| +||(fk,uk>—<f,u)||2) o) — (Fo)l = ¢

11



and this gives
[ba] < 2(A +2B||(fi, ) el lI” =: KAl - (55)

Finally we arrive at
2V (fr, ), h) > |1l (det — 3kt*) = ||]|* - g(2)
The function g(t) achieves its maximum t,,,, for

2e
tomar = — > 0.
3k

We have to consider two cases:

1. tmas > 1. Because of g(0) = 0 it follows g(1) > 0, and

2(V o (frs ), By > ||h][*(4e — 3k) > 0.

2. tmar < 1, i.e.

2V (fr, i), h) = ||hI* (detmar — 3ktp,q) > 0 .
By setting
1
c=3 min{4e — 3k, det pap — 3kt2,,.} (56)
we finally get
(VOa(fu, tx), h) = cllh|| - (57)

In a next step, ||h|| will be estimated from below by 901(02 — ¢1(1). According to (48), (49) we
have ¢1(t) = po(1 — t). Keeping in mind that V@a(fj,,ua) = 0 holds, we get from (52)

©1(0) —pi(1) = wa(1) — ¢2(0)

= C_Lh + Bh + Eh ’
with
an = [ Ahs+ Blha, i) + B ha) P+ allpl? = 20y — AfS = B(f, 1), B(hi, ho)
b = —2(Ahi+ B(h, i) + B(f., h), B(ha, ho))
o = |1B(h,ho)

and h according to (47). Using the inequalities

ly® — Afi — B(frs i) ||

I m) = (FmIP < - + | (fe ) = (£ )1
Iy’ — Af = B(f), )| < 36,
| Ay + B(hy, i)+ B(f2,ho)| < (A+ Bl IDllkall + Bl |1 al
< (A+2B||(f), 1))l
< (A+2B(I(£, 1) — (£ + I BRI

12



(07

5 . 2 ~ 1/2
< (A+2B(”y A B ) = ()
I, mn) ] == @il

the quantities ay, by, €5, can now be estimated as follows:

an < (& +a+6Bo)|h|* = cllhl?,
2¢, B|h|)* =: co||RI®

<
< BJh|*.

Ch
The minimal value of ®,, ¢1(1), is usually not known, but

Pmin 1= tIélﬂgl Do ((frs ix) + tV Lo (fr 1)) (58)

is computable. Altogether this yields

N

©01(0) = @min < ©1(0) — p1(1)
p2(1) — ¢2(0)
< cllbl]? + eollAl® + BliA|* . (59)

Now, using (57), it follows for ||A| > 1

(Vo (fk, x), h) > ¢, (60)
and for ||h|| < 1 by using (59)

<V(I)a(fkalu'k),h’> Z ¢

c1 +co+ B( 1( ) ) ( )
We mlght summarize our results in the following

Proposition 2.4 Let (fri1, tx+1) be computed by (50). If the scaling parameter By is chosen

such that (¢1(0) )
‘ c cC ©®1 — Pmin
o< e o o e B 190 G (62)

holds, the new iterate (fri1, prs1) 18 closer to (fj,,ui) as (fi, px):
s i) = (Lo DI < s ) = ()1 (63)

Proposition 2.5 Let {(f, itx) }ren be the iterates of steepest descent for the Tikhonov—Phillips func-
tional with By chosen according to (62) and (fo, o) € Br(fj,,ui) with r being the radius of
convexity of ®,. Then, there exists a constant M such that the the second derivative of

o(t) = o ((fn, in) + 1V Ra(fn, pin)) te[0,1],

18 bounded:
[ ()] < M|V ®a(fr, )| -
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Proof:
According to the choice of 5 are all iterates in B, ( fj, ,ui) Because ||V ®,(fk, tx)|| is bounded

in B,( fj, ,ui) by a constant k, the function ¢ (t) can be estimated as follows (V®, (fn, ftn) =
(ha, ho)):

') = 2‘HA’_M + B(ha, ) + B(fi, he) I + (° = Afic = B(fies 1), B(ha, h2)) + ol V@a fi, i)

+12t(Ahy + B(hg, ux) + B(fx, ha), B(h1, ha)) + 126%||B(hy, ho)||?

< ((Al+2ABII e ) D2 + 1Bl = Afi = B(fe )l + 0 )1V @ Fir )
+126]| (1Al + 20 BI oo 1) DI BIIY e Fir )PP + 1262 BI2|I Y Bar (fiey i)
< (Al + 20BN m)ID? + BNl = Afi = B(fi )| +

+126[(I1AN + 201 BI (e ) IDIBI? + 12f~€2||B||2) IV®a(fi, 1) II?
= Mk”vq)a(flcv,uk)”2-
Obviously, M, is bounded from above in BT(fZ, ui), M, < M.

Now we can state our first main result.

Theorem 2.6 Let {(fr, i) tren be the iterates of steepest descent for the Tikhonov—Phillips func-
tional,

(frt1> trs1) = (frr ) + Be Vo (fry k)

| . ¢ (1(0) = @min) L}
P < mmin { V@i 12 (e1 + 2 + B) [V (fi i) [2* M

and (fo, o) € Br(fj, ,ui) with v being the radius of convexity of ®, according to Theorem 2.2.
Then (fy, pi) converges to a global minimum of ®,:

(fir k) = (F2,18) for k — o0 . (65)

(64)

Proof:
If (fo, o) € B ( fj, ,ui) and the scaling parameters (35 are chosen according to (64), it follows

from Proposition 2.4 that (fy, pux) € Br(fj,ui). The sequence ®,(fx, px) is monotonously
decreasing and bounded from below, thus there exists ®q s.t. @ (f, x) = Po for £ — co. We
set for ¢ € [0, 1]

o(t) == o ((fn, n) + VL0 ( [, pin))
and get

olt) = 9(0) = ~tIVBalfum)lP+ 56" B, 0<E<t. (66)

According to Proposition 2.5, [¢" (t)| < M||V®4(f, ptx)||? holds. Without loss of generality we
can moreover assume M > 1.
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Now suppose V@, (fn, iin) does not converge to zero. Then there exists 9 > 0 s.t. for every
N € N exists n > N with | VOu(fn, n)|| > €0. We get

t2
o(t) = ¢(0) < —tVa(fu, ta)ll* + 5 MV a0 (frr, 1)
t2
=+ SV ) (67)
If we set esp. t =1/M, then

P(1/M) ~ 9(0) < — 5 9@l in)|F < 0.

With ¢, = min{p(t) : t € R} we find

ﬁ“v(ba(fn:,um)”? < <p(0) — (p(l/M) < (p((]) — Omin

and

BY.Y Ak 68
Vo (fie, )l — 2M (68)
1 !
IV @ (fr, ix) ] Kk’

i.e. B, is uniformly bounded from below, 3, > 8 > 0 (cp. 62). In addition to the assumption
IV ®a(fr, )| > €0 We can then assume that |p(0) — ®g| < e < Z22 holds. Setting t = 3,
in (67) we get with 5, <1/M

o8- ol0) < Bu-1+ 2 (69)
< Bu1+g)=—lna (70)
or
P(B) 00 < p(0) ~ By~ 0k ()
< @52 - &52 = —&53 <0 (72)

- 40 270 4
which is a contradiction to ®q(fr, itn) 4 Po.

Now, if we set h = (f2 — fi, 1t — py), we finally get by using (57)
cllall* < (V®@a(fr, 1x)s by < [[V@alfi ) I

and
cl|bll < IV ®a(fe )l (73)
with ¢ defined in (56) and thus (fx, ) — (fj,ui) for k — oo.
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Remark 2.7

1. Instead of computing a new scaling parameter B, for every iteration, the lower bound (8
(cp. (68)) can be used as scaling parameter for all iteration steps.

2. Estimate (73) can be used to check the accuracy of the iterates during the iteration process.

2.4 A global minimization process for Tikhonov—Phillips regulariza-
tion

With a priori given regularization parameter «, the functional ®, is convex only in a neigh-
borhood of the minimizing element ( fi, ,ui) It was shown in the last section that the steepest
descent algorithm will converge to a global minimizer of ®,, provided a sufficient good starting
value (fo, p10) for the iteration is known. For arbitrary error level ¢ this will usually not be true:
(fo, o) has to be in Br(fj, ui) and r = r(J) with r(§) — 0 for § — 0. In practice, one might
only know an approximation of the solution (fi, u.) of (6). Therefore we propose the following
ITP/SD algorithm (Iterated Tikhonov—-Phillips/Steepest Descent):

e For given ||w||,’}/, y555 and (anl'l’O) with ||(f0,,U;()) - (f*a/’l’*)” < 0 choose suffi-
ciently big dy, oy and g < 1.
o Set a=6/|w||-

n+1

e Choose n s.t. ¢"" oy < a < ¢"ay.

o (fort, uazy) = (fo, o).
e For j=0,..,n
o aj =y, §; = ¢/dy.
o (f3mb) = (fais, malh)-
o Compute ( fg?,ugf;.) as mjnimizing element of ®,, with steepest descent

and starting value (f7, ).

e Compute (fJ, %) as minimizing element of ®, with steepest descent and start-
ing value (for, un)-

In the following we are going to describe how to choose the parameters dy, g and gq.

As in the previous sections, we will assume that 4,7 is given and the regularization parameter
is defined by « = coptd With ¢, given in (22). Moreover, we will assume that an approximation
(fo, o) to the solution (f,, u,) of (6) is known,

||(f0,,u0) - (f*,,u*)H S 0 - (74)
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According to (23), we have

) 1/2
1CF2 1) = (Fu )] < ( b s2 = (ol

Tl
and d(||w]|) — 0 for w — 0. The functional () = @((fj, ,ui) + th) is convex as long as
¢l < r1(llwl)d + ra(llwll)o?

with 7 ([|w]]), r2(||w||) defined in (46). Obviously holds 7;(w) — oo for [|w|| — 0, i =1, 2.
Now, it follows for arbitrary ¢ > 0, & = copd

||( 27:&'2) - (f();,uo)” - ”(f*;/j'*) - (Ehﬂ'g)” < ||(f0aﬂﬂ) - (f*,/j,*)” <o

or

o+ ”(f*:/j'*) - (Eaﬂg)”
o+ d(|lwl)o*? .

1(f2, 28) = (fo, mo)|| <
<

If we claim 3 ~
o+ d([lwl)8"? < ra(|lwl))0*?

then we arrive at the condition

4 51/2
7o) — ael), = ° (75)

>0 for small llew]|

If we choose
sY2 . 0

P ra(llwlh = d(llwll)

Qp = Copt50 y (76)

we get
512
10722, 128) = (for o)l < ri(llll)do + ra(w]]) "

e. (fo, ito) lies in the convexity area of ®,, and the method of steepest descent converges to

(fag’ /'I’Otoo)
For 0 < ¢ <1 we set a; = qav, 61 = ¢d and (f3, i) = (f2, u2). Then we get the estimate

ICF2 1) = (foo )l < IR 1) = (Fay )] 11 (Fs 1) — (fs 1)
< d(|lwl)ai”? + d(|lwl)dy? (77)
L+ V4 ) . 78
(|l ||>( o (19)
Again, pp(t) = Do, ((f21, pdl + th) is a convex functional for

IRl < ri(llwl)ér + ra(llwl]) 6, -
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For small ||w|| (and independently of ¢;) holds

aflel) (<EE) 87 < e, (79)

and thus o
P2, 8 ) — (2, )l < (w8 (80)

(fa,u) lies in the area of convexity of ®,, . The method of steepest descent converges to

(fgll, ,ugjl). Because all our above arguments did not depend on the size of §; and a; but only

on the size of ||w||, this shows that our algorithm produces a sequence of functions ( fi;, Mi@),

j = 0..n, which are always in the area of convexity of ®,,,, (( 3;111, uij#l) + th). Finally, using

(fgz, ,ugg;) as starting value for the minimization of ®,, we find (fj, ,u,i) )

Theorem 2.8 If the parameters for the algorithm ITP/SD are chosen as described above and
|lw|| is small enough, then ITP/SD converges for every given y°,6 to a global minimizer of ®,.
3 Numerical examples

We will give two numerical examples to demonstrate the necessity of our approach. The first
one is a finite dimensional problem, where the minimizers can be computed analytically. The
second problem comes from the medical imaging area.

3.1 A (simple) 2—dimensional problem
Let F(z,y) : R2 — R be given by

F(z,y) = ax + bzy a,b € R\{0}.
With given z, a, Z, ¥ we might find the minimizer of the Tikhonov-Phillips functional
Oo(2,y) = (2 — az — bzy)* + al(z — 2)* + (y — §)*). (81)

For a minimum of ®, the partial derivatives have to vanish:

0= %@(m, y) = 2(z—ax — bry)(—a —by) + 2a(x — I)
(82)
0= %(D(x, y) = —2(z—ax — bxy)bxr + 2a(y — 7)

Ifweseta=b=1,2z=3and a =038, (z,7) = (0,0), then we get three critical points as the
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Figure 1: (a) 3D-plot of ®gg. Clearly, the local minimum has a much higher value than the
global minimum. (b) Contour plot of ®j. Between the local and the global minimum lies the
local maximum.

real solutions of (82):

(xl,yl) = (—16118,—21876),
(22,92) = (—1.0778,—0.2896) ,
(z3,y3) = (+1.2969,+0.8899) .

Figure 1 shows that (z3,ys) is the global minimum, ®(x3,y3) = 2.2805, and (x9,ys) is only a
local minimum, ®(z9, y) = 7.0858.

For a first numerical test the classical steepest descent method was used. As one might guess,
the steepest descent iterates converged to one of the minima, but to which one was depending
on the initial iterate (zo,y). For example, with (x¢,y9) = (1,1) , the algorithm converged to
the global minimum; but with (x¢,y0) = (—2,—1) only to the local one. In addition to this
test, Newton’s method for solving the system (82) was used, but here the iterates converged to
all three critical points in dependence of the initial values. It is clear from our examples that
these methods may fail for general operator equations, too.

For our ITP/SD algorithm and initial value (z¢, yo) = (—2, —1) the parameters oy = 4, ¢ = 0.8
were used. Table 1 shows that ITP/SD converges within a few steps to the global minimum of
®y 5, even with a initial value where the classical steepest descent method or Newton’s method
converge only to a local minimum.

One might think that a good starting value (fo, io) of the steepest descent method for minimiz-
ing (81) might be (fo, tto) = (f, ). At least for our 2-dimensional example this seems to work
in many cases . Choosing (g, yo) = (0,0) as starting value for the above example, the steepest
descent method converged to the global minimum. But we can give a counterexample: If we set
a=0,b=72=3 a=0.1, (Z,9) = (—2,2) and (zo,v0) = (Z, ), then the steepest descent
method converges to (z1,y1) = (—0.0095,0.0095) with ®g(z1,y;) = 9.7962 and our ITP/SD
algorithm converges to (z2,y2) = (—2.1944, —0.1944), ®¢1(z1,y1) = 0.4855. It turns out that
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Table 1: Results of ITP/SD after each outer iteration. j denotes the number of outer iterations,
o; = ¢/ap and (T, Yo,) is the minimizer of @, .

O -Ta,- ya,- (I)aj (xaj ’ yaj)
4.0000 | 0.6971 | 0.3579 6.6726
2.8000 | 0.8925 | 0.5230 5.6882
1.9600 | 1.0552 | 0.6677 4.5944
1.3720 | 1.1765 | 0.7784 3.5543
0.9604 | 1.2631 | 0.8584 2.6659
0.8000 | 1.2969 | 0.8899 2.2805

Y | W N~ O~.

(z1,71) is only a critical point of (81), and (z2,¥2) is a global minimum. Consequently, the
results demonstrate that it is necessary to use our algorithm in order to find a global minimum
of the Tikhonov—Phillips functional. Our example is only two—dimensional and it already has
two minima. In case of an operator equation in infinite dimensions there might even exist many
more extremal points.

3.2 An application from medical imaging

In the area of medical imaging, single—-photon emission computed tomography (SPECT) plays
an important role. Roughly speaking, it is used to find some abnormalities in the human body
which can be indicated by the blood flow. The patient gets some radiopharmaceutical which
will be transported by the blood and is supposed to enrich in a certain area of interest. After
some time, the distribution of the radiopharmaceutical has to be recovered by measurements
of the radioactivity outside the body. The connection between the measured data y and the
distribution of the activity f is given by the Attenuated Radon Transform (ATRT):

— ftoo ﬂ(st‘+rw)dT
e

y = R(f, i) (s,w) = / F(sw* + ) it (83)

s €R, w e S'. As for the Radon Transform, the data are represented as line integrals over all
possible unit vectors w. The (usually also unknown) function /i is called the attenuation map,
it is related to the density of the tissue and reflects the fact that the intensity of the emitted
v-rays is damped when traveling through the body. Attenuation correction has been an impor-
tant area of nuclear medicine for more than two decades. Since the early 1990’s, the move has
been toward making some measurement of the attenuation distribution using a transmission
source, and incorporating the reconstructed attenuation map, f(x), in the reconstruction
of the emission distribution. More recently, there has been renewed interest in methods that
achieve good attenuation correction without the use of transmission measurements.

In [21], a bilinear approximation R to R was introduced:

R(f,p) = / f(swh +tw)e” W MO(MHWW(I - / p(swt + Tw)dr) dt . (84)
R ¢
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Figure 2: Attenuation distribution 7 (top left), activity distribution f, (top right), initial
attenuation distribution o (bottom left), u, = i — po (bottom right).

Here, the exponential term in (83) was replaced by the first two terms of the Taylor—
expansion for ji = uy + p. For a fixed map pg, we are going to solve the equation

R(f,n) =y (85)

instead of (83). This equation has the required form (16), so we might apply our ITP/SD
algorithm.Test computations were done with the so called MCAT phantom [22]; the attenuation
distribution is given by a model of the human body (with tissue, bones, lungs) and the activity
f is assumed to have its support only in the heart (see Figure 2). The data y = R(f, i) was
blurred with 10% Gaussian noise and then the steepest descent algorithm was used to minimize
(25) with (f, i) = (0,0) for @ = 7. As starting value for the iteration (fg, u}) = 0 was taken.
The reconstruction quality of f,.. = fj (v =T7) looks good at a first glimpse, but pi. is far off
p. This is the well known phenomena that one gets a negative image of the activity function
for the reconstructed attenuation map p.

A first guess was that our algorithm converged to a local minimum of ®, instead to a global one
close to the true solution (f., /i), but an examination of ¢(t) = CIJa((fZ, /fa) +t(f. —fj, e —,ui))
(see Figure 4) shows that (f,, u.) is actually close to a local minimum of ®,. We explain this
behavior by the fact that we were actually looking for a solution close to zero ((f, ) = (0,0)).
But

L7+ Dl l1? = 9000 > [|£,117 + e |I* = 500 ,

and this suggests that (f,, i) might be not the solution closest to zero. So we might state
for SPECT that whenever an algorithm tries to reconstruct a solution closest to zero, one gets
for the reconstruction of the attenuation function the above described phenomena of a negative
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Figure 3: Reconstructed activity distribution f,e. (left), Reconstructed distribution p (right),
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Figure 4: @a((fj, ui) +t(fu — fj, i — ui)) for a = 500 (left) and « = 7 (right). The solution
(f«, pt+) is in the area of convexity of ®, only for the bigger c.

image of the activity function. In order to get a reconstruction for (f,, i), one has to choose
(f, 1) in (25) closer to the searched distributions.

In a second test we again tried to find ( fj, /j;) with steepest descent for « = 7, but now with
a starting value (fZ, u2) which was close to the solution (f,, u.). As the right picture in Figure 4
suggests, such a starting value for the iteration might not be in the area of convexity, and indeed
the iteration converged only to a local minimum of ®,, and the according functional value of
®,, was about six times as high as the value for the global minimum. Then, we used ITP/SD:
At first, for & = 500 and starting value (fZ,p3) , the minimizer ( fi, ,ui) was reconstructed
and this value was taken as starting point for minimizing the Tikhonov—Phillips functional for
a = 7. In this case, the algorithm did again converge to the global minimum of &, which was
already reconstructed in our first attempt (cp. Table 2).

In a final test, we want to demonstrate the growth of the area of convexity with increasing o.
To this end, we used the already computed minimizing functions of &, for o € {7, 20,500} and
computed the minimal real zero t,,,(h) of gpﬁf) (t) = @a(z)((fj, ui) +t(h1, hy)) for a set of basis
functions h = (hq,hs) € B, ||h|| = 1. Then, the minimal zero t,;,(a) = min{t,m(h), h € B}
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Method « starting value | @, ( f;s , ,ui)

SD 7 (fo5 o) 3825

SD 7 (f2, i2) 22956

ITP/SD | g =500 |  (f3, )
=7 3825

Table 2: Values of @, for o = 7, using steepest descent method (SD) with two different starting
values for the iteration and ITP/SD ((fg, 13) = (0,0), (f2, u2) was chosen close to (fs, fix))-

can be taken as the maximal radius of convexity of ®,. For our example, we found ¢,,;,(a =
7) = 1.5, tmin(a = 20) = 1.7 and ¢, (0 = 500) = 3.7.

To summarize our numerical results, both examples have shown that it might be essential to
use our algorithm in order to find a global minimum of the Tikhonov-Phillips functional. We
have provided examples where other algorithms only found a local minimum and demonstrated
the growth of the area of convexity with increasing regularization parameter.
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