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Summary We present symmetric collocation methods for linear
differential-algebraic boundary value problems without restrictions
on the index or the structure of the differential-algebraic equation. In
particular, we do not require a separation into differential and alge-
braic solution components. Instead, we use the splitting into differen-
tial and algebraic equations (which arises naturally by index reduc-
tion techniques) and apply GauB-type (for the differential part) and
Lobatto-type (for the algebraic part) collocation schemes to obtain
a symmetric method which guarantees consistent approximations at
the mesh points. Under standard assumptions, we show solvability
and stability of the discrete problem and determine its order of con-
vergence. Moreover, we show superconvergence when using the com-
bination of Gaufl and Lobatto schemes and discuss the application of
interpolation to reduce the number of function evaluations. Finally,
we present some numerical comparisons to show the reliability and
efficiency of the new methods.
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1 Introduction

In this paper, we consider symmetric collocation methods for the solu-
tion of linear differential-algebraic boundary value problems (BVPs)
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with variable coefficients

E@)z(t) = At)z(t) + f(t) forallt el (1.1)
Cz(t) + Dz(t) =,

where I = [t,7] C R is a closed interval, E,A € CY(I,R*™*"), f €
CY(I,R*), C,D € R¥*", r ¢ R% d < n is the number of inherent
differential equations and v > 1 is the well-defined differentiation
index (see, e. g., [6]) of the DAE (1.1). A solution z is required to be
in C1(I,R").

Under these assumptions, the index reduction techniques of [10,
12] can be applied to obtain an equivalent DAE of index one. Note
that these techniques can be performed numerically at any desired
point ¢ € I. Thus, for the construction and analysis of numerical
methods we are allowed to assume that (1.1) already has differentia-
tion index one. Moreover, the reduced systems obtained in this way
have the special structure that the differential and the algebraic equa-
tions are separated. The methods we present in this paper exploit this
special structure. As consequence, their application to higher index
problems turns out to be more efficient than that of other collocation
methods, although these can be applied to the reduced problem, too
(see the discussion in [15] and the numerical comparisons below).

The main problem when using standard symmetric collocation
schemes for the discretisation of (1.1), (1.2) is that in general the
number of parameters and the number of conditions is unbalanced.
For example, one gets an over-determined discrete problem when us-
ing Gauf} collocation and requiring all approximations at mesh points
to be consistent (cp. [4]). On the other side, one gets an under-
determined discrete problem when using Lobatto collocation (cp. [5]).
The reason for this can be seen in the choice of the discrete solu-
tion space. In a correct formulation of (1.1) in terms of a Banach
space operator (see, e. g., [8,11]), the differential and algebraic solu-
tion components have different smoothness requirements for continu-
ous inhomogeneities. But this is not reflected in the discrete solution
space when we look for piecewise polynomial solutions of a certain
degree for all components. Thus, in most approaches the DAE (1.1)
is required to have separated differential and algebraic components
of the unknown function z (e. g., (1.1) is required to be semi-explicit,
cp. [2,3]), or that it can easily be transformed into such a form (e. g.,
by requiring that kernel E(t) does not depend on ¢, cp. [5,7]). But
this means a significant restriction of the class of treatable problems.
One possibility to overcome this restriction is the use of Radau-type
collocation (cp. [14,15]). The drawback there is that these schemes
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are not symmetric thus showing undesirable effects in certain (sym-
metric) applications.

The approach we will discuss in this paper can be based on the
observation that a correct Banach space formulation can also be given
when we require all solution components to have the same smooth-
ness while the components of the inhomogeneity belonging to the
differential and algebraic parts of (1.1) have different smoothness re-
quirements. Since standard index reduction techniques (see, e. g.,
[10]) yield a reduced system where we can distinguish between these
parts, we do not need to restrict the class of treatable problems.
In particular, the methods we introduce here combine a GauB-type
scheme with k knots for the differential part with a Lobatto-type
scheme with k£ 4 1 knots for the algebraic part.

The paper is organised as follows. In §2 we state some basic prop-
erties of DAEs that are obtained by index reduction techniques. In §3
we discuss solvability and convergence properties for the combination
of Gauf3-type and Lobatto-type schemes including superconvergence
for the combination of Gaul and Lobatto schemes. To improve the ef-
ficiency of the presented methods we include interpolation techniques
in §4. Finally we present some numerical comparisons in §5 and give
some conclusions in §6.

2 Basic results

Given a BVP of the form (1.1), (1.2), application of the index reduc-
tion techniques of [10,12] yields a DAE

E(t)i(t) = A@t)e(t) + f(2) (2.1)

B[] [A
p-[5) -2 - 15)

and block-sizes d and a = n — d. This equation has index one and
is equivalent to (1.1) in the sense that the solution sets are identi-
cal. Moreover, the special structure of the reduced DAE allows to
distinguish between d differential equations

Ei(t)i(t) = Ai(t)z(t) + f1(2)

with

and a algebraic equations
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For the development of the symmetric collocation methods, we as-
sume without loss of generality that the DAE is in reduced form
(2.1). The hats are omitted for simplicity of notation.

The main tool in the proofs of §3 is the transformation of (1.1) to
a canonical form (see [9]). For more details, see [14].

Proposition 2.1 For E,A € CK(I,R™™) as in (2.1), there exist
point-wise nonsingular P € C*—1(I,R**"), Q € CK(I,R™") such
that

PEQ = [{f 8] ., PAQ - PEQ = [82] . (2.2)

In particular, P has the special structure

p_ [Pn Py

0 Pzz] with Py1(t) € R, Pio(t) € R, Py(t) € R4,

Moreover, there exists Ty € C*(I, R**%) with point-wise full column
rank and ATy = 0.

If in addition f € C*~Y(I,R"), then = € C*~1(I,R?) for every solu-
tion  of (1.1).

Applying the transformation of Proposition 2.1 to the boundary
condition (1.2) yields matrices

[011 012] = CQ(E) y [D11 D12:| = DQ(E) . (2.3)

In terms of the transformed problem (2.2) (where differential and
algebraic parts are decoupled), we can characterise the well-posedness
of the considered problems as follows.

Proposition 2.2 A boundary value problem (1.1), (1.2) is uniquely
solvable if and only if C11 + D11 € Rixd g nonsingular.

Throughout the paper we use

n
Iyl = moax fwil, V] = 12%’2121 i
]:

as norms for vectors y € R” and matrices Y € R™*" | respectively.
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3 Symmetric collocation methods

The aim of the collocation methods is to construct piecewise polyno-
mials as numerical approximations to the BVP solution. For that we
choose meshes

7T:§=t0<t1<---<t]v:f (3.1)
with mesh widths h; :==t;11 —t; (i =0,...,N —1) and a maximum
width A := maxh;. We use two schemes (a GauB-type one and a

Lobatto-type one, respectively)
0<pr < <pp<l, 0=0p<---<ox=1 (3.2)

to subdivide the intervals [t;,t;11] by collocation points (for i =
0,...,N—1)

t;; :ti-l-hipj forj=1,...,k, (3.3)

Sijzti—FhiO'j for 5 =0,...,k. (3.4)

Then we compute a piecewise polynomial z, of degree k, i. e.,

Ty i= Ty|[t;,4:41) 2T€ Polynomials of degree k, which is determined by
the following set of conditions:

Eq(tij)dn,i(ti) = A (tij)zr,i(tij) + fi(tij) (3:5)
0 = Az(sij)wri(sij) + fa(si5) (3.6)
for all 4,7, i. e., the differential part of the DAE is satisfied at all

collocation points ¢;; and the algebraic part at all collocation points
sij, respectively,

Ty(ts)" (w1 () = weits) ) = 0 (3.7)
fori=1,..., N —1,1. e, the differential part of z is continuous, and
C.’L‘ﬂ,o(to) + D'Tﬂ',N—l(tN) =r, (38)

i. e., the boundary condition is fulfilled.
Altogether these are

Nkd+ N(k+1)a+ (N —1)d+_d = N(k+1)n

~
collocation continuity

conditions, and due to k£ + 1 parameters of dimension 7 in each of the
N polynomial pieces we have the same number of unknowns.

We remark that the consistency of z; at all mesh points ¢; is
already implied in the collocation conditions (3.6), since so9 = t¢ and
Sik :ti+1 fOI‘i:O,...,N—l.
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The following proposition shows that not only the differential part
(as required by (3.7)) but the whole piecewise polynomial z is con-
tinuous, if it satisfies the set of conditions (3.5)—(3.8).

Proposition 3.1 Let the collocation conditions
0= Ao(si—1,k)%r,i-1(8i—1,k) + fo(si—1,k)
be fulfilled. Then the following conditions are equivalent (for i =
1,...,N—1):
i) To(ty)” (fvw,ifl(ti) — $7r,i(ti)> =0, 0= Ax(si0)Tr,i(si0) + f2(si0)
i) Tri-1(ti) = zri(ti).
Proof : The claim follows directly from the observation that by con-

struction
28]
Ao(t;)

is nonsingular. O

In the following we use conditions ii) instead of i). The “missing”
collocation condition 0 = As(to)z, (to) + f2(to) is considered together
with the boundary condition.

We use Lagrange interpolation polynomials according to the points

(8i0,Ti0), - - - » (Sik, Zik) tO represent the pieces z.;, 1. e.,
b t—1 b T—0
(1) — . —l — — 9%
Tri(t) = E zy Ly ( > ) ,  Ly(r) = I | e (3.9)
=0 Jj=0
il

Defining vj; := Lj(p;) and uj; := Li(p;) for 1 =0,...,k, j=1,...,k,
we get

k k
Eriltiy) = = O v, Teilti) =Y upTi, Tei(si) = zij.
1=0

3

=0

If we set (for 5,1 =1,...,k)

% < 7 i T~ Pm
wji ::/ Li(r)dr, Li(r):= H — (3.10)
0 m—1 Pl — Pm
m#l

then we see that V := (v;;),, is regular with V=! = (w;;);,;. Finally
we introduce zn 1= Zng := Zx N-1(tN)-
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Summarizing the discussion and using the notation introduced
above, the collocation method reduces to the solution of the system
of linear equations (with j =1,...,kandi=0,...,N — 1)

k k
i Z’UﬂEl(tz‘j)ivz‘l - ZUﬂAl (tij)zi = f1(tij) (3.11)
1=0 1=0
—AQ(Sij)ICZ’]’ = fg(sij) (3.12)
Tik — Tip1,0 =0 (3.13)
CIEOO + D.’L‘N() =T (314)
(3.15)

—Aa(to)zoo = fa(to)

3.1 Solvability of the collocation problems

The examination of system (3.11)-(3.15) according to existence and
uniqueness of solutions is divided into two steps: First we look at the
local systems (for 1 =0,...,N — 1)

Ti1
Bi | ¢ | =aizio+ b (3.16)
Zik
which are built of the collocation conditions (3.11),(3.12) for j =

1,..., k. Their solvability is examined in Lemma 3.1. The solutions
lead to relations

zig = [0 Oi] B;lai-@+l0 Oi] By b (3.17)
=W; =i =ig;

which yield continuity conditions
Tip1 = Wizi + g5 (3.18)

that are used instead of (3.13). Representations for W; and g; are
given in Lemma 3.2. In the second step we look at the global system
To
K, =g (319)
TN
representing the continuity conditions (3.18), the boundary condi-

tion (3.14) and the consistency condition (3.15) (see (3.22) for the
definition of Kj, gp). Its solvability is examined in Lemma 3.3.
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Setting Elj = El(tij), Alj = Al(tij), AQj = AQ(Sij), flj =
fi(tij) and fo; = fo(si;) for selected fixed i, the data of the local
systems (3.16) have the form

v v v 7]
B —unAn |[3EEN —uizdn B —uigdn

—Ao 0 0
FrEi — ugiAro .
0
B; :=
L Evg — ug1 A Kk En g, — uprArg
i 0 —Agg,
c Rknxkn ,
[ 2B +uioAn | fi
0 fa1
a; = : e R p=| 1| e RFP .
— P2 B, + ugo A1k fik
i 0 ] fok

In the following lemma we prove the regularity of B; for sufficiently
small h; using multiplications from the left and from the right, re-
spectively, with

o Pi1(ti;) Pra(sij) — g
Tp := diag <[ 0 Pulsiy) j:l,...,k, Tg := dlag<Q(5”)>j:1,...,k

where P, transform the DAE into canonical form (2.2). We also
need reordering of the rows and columns done by multiplication with

I; 0 00
00 I, 0
I, 0
Uy == 0 I € REnxkn (3.20)
I 0
I 0 I,
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Lemma 3.1 Let the smoothness assumptions As, P € C', Q € C?
be fulfilled. Define

Al A2 k
A; = [ o 01] , A= (hi;wﬂc‘fm)j (s=1,2)

ym=1,...k
and (form=20,...,k, l,7=1,...,k)
(vu(Uz —p1) — 1)(P11E1Q)(t,~l)

|G, G2, | == —<Ull - 1) (P11A1Q)(ty) + O(hi)) 1=m
Vim(om — o) (P E1Q) (i)
—Un (P11 A1Q)(ti) + O(hy) L#m

Then the representation

RV-lerI 017"

0 -1

holds true, and for sufficiently small h; the matriz B; is reqular with

B ViRl 0],
BilzTQUk(I—Ai—{—O(h?)) i 0® _I]UkTp.

B; =Tp' Uy [ (I+Az~) Ui Tg'

Proof : With Ay, P € C!, Q € C? we can expand
Q(sim) = Q(t) + O(hs) = Q(ta) + hi(om — p)Q(tu) + O(R),

(P2 A2Q)(si1) = (P12 A2Q)(ti O (h) = (P11 E1Q— P11 A1 Q)(tiy)+O ().
This leads to
By — wm Ay

[ Pr1(tir) Pra(sir) | 0 ] Q(8im)
= %= (P B1) (ta) Q(sim) — wim(Pr141) (ti) Q(sim)
= Y= (P E1Q)(ti) + vim(om — p1) (P11 B1Q) (ta)

— U (P11 A1Q) (i) + O(hs)
- %Zu [IO] + [Gllm GlQm] for m #1.

Analogously, we get

v,
By —uyAy
1

[ Pr1(ta) Pra(sir) ] [ Ay, ] Q(sa)
= H(PuEr)(ta)Q(si) — uu(PriAr) (ta) Q(su) — (Pr2A2Q)(si)

3

= W(PLE1Q)(ta) + vul(or — p) (P B Q) (ta)

—uy(P11A1Q) (ty) — (P11 E1Q — P11 A1Q) () + O(hy)
= %Lf [IO] + [Glll Glzl] for m=1.
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By multiplication of B; with Tp from the left and Ty from the right
and reordering of the rows and columns using U, we obtain

AVel o ] [Gl 02]

U,ijBiTQUk:[ o g 00

with G* := (Glsm) . Since V is regular with V1 = (w;;);, we have

lym
-1
[’“V 0 ©1 _OI] Up Tp B; To Uy = I + A (3.21)

with A; as given above. Multiplication with the inverses yields the
representation of B;.

Since (for all I,m and s = 1,2) G}, is bounded for h; — 0, we
have ||4;|| = O(h;). Thus I + A; is regular for sufficiently small h;
and has the inverse (I + 4A;)~! =1 — A; + O(h?) . By this and (3.21)
we see that B; is regular for sufficiently small h; and that B, ! has
the given representation. O

Lemma 3.2 If a transformation to canonical form with Q € C? is
possible then the following representations for Wy, g; defined in (3.17)
hold true:

Wi = Q(tiy1) [I_OEI _(fri ]Q(ti)1 with Fj = O(h?), Fis = O(hy),

&)

9i = Q(ti+1) [—(P22f2)(ti+1)] with ¢; = O(h;) .

Proof : Using the representation of B, ! given in Lemma 3.1 we com-

pute W;Q(t;) = [0...01]B; 'a;Q(t;). _

With Q(t:) = Q(tu) + O(hi) = Q(ta) — phiQ(t) + O(h7) we have
—H2 By + upAy

[ Pr1(tir) Pra(sq) ] [ 0 ] Q(t:)

= —Y(P F1Q)(tu) +uiop(Pi1E1Q) (ta) +ui (P11 A1Q) (ti) + O (i)
e

1

= - [IO] - [Gllo Gl20] )

hence ol
* _ 1 |%® 10
Up Tpa; Q(t:) = —5; [ 0 0] - [ 0 00]
with vy = (’l)lo)lzl’_“,k and GS = (Gf())lzl,...,k for s = 1,2.
By considering vy = =V [1 1]*, A;O = h; Zle wjGjy = O(hy)
as in Lemma 3.1 and defining

Fo [@imk 0] 4 [(Al)imk (Ao,
) 0 0]’ v 0 0 ’
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this leads to
LBV 1eI 0
0 I

The next step yields

6= (1- A+ 0} (I - &) =1~ A~ Al + 0(12)

T107 [4Al 4% 124,071 fomyomdy | &7 F
10| |4y 4z | | ab.of, oy omy| | %
=lool™| 0 o || 0o "ot o o |T|Fn-Fe

. - . - - O 0

ool Lo oll o oll o o | oo

with Fyy := Y8 AL+ O(h2), Fip := Ay + O(h?).
Altogether this yields

WiQ(t:) = [0...011B; a;Q(t;) = [O...OI]diag(Q(sij))Uin

and hence (since s;; = t;j+1)

Wi = Q(ti+1) [I_OFH _OFi ] Qt) L.

In order to show F;; = O(h?), we use interpolation according to
00, - - - ,0k of the polynomials p(t) = 1, ¢(t) = ¢ and obtain

k k k
> Lmlp)=1, Y Ln(p)=0, Y L.(o)om=1.
m=0 m=0

m=0

By inserting the definitions of Lemma 3.1 we see

k k k
Z A,lcm = Z hz Zwlellm
m=0 =1

m=0
k k
= hizwkl< > [Ulm(Um—Pl)(P11E1Q1)(til)—UZm(P11A1Q1)(tu)]
=1 m=0
m#l

+ (Ull(al —p1)— 1)(P11E1Q1)(tu) — (uy—1) (P11 A1Q1) (tar) +O(hi)>
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(P E1Q1)(t)

Kk K
= h; Zwkl( [Z L (o) (0m — p1) — 1

. J
~"

=0

k
- [Z Lm(pl) -1

~ vl

(P11 A1Q1)(ta) + O(hi)> = O(h3)

and therefore

k
Fi=)_ A, +0(0)=0(h).
m=0
Looking at the definition of Aio, it is obvious that Fjo = O(hy).
The representation

_ : Ci

9i = Qltin) [—(Pzzfz)(tiﬂ)
can be derived analogously by inserting the representation for B; !
given in Lemma 3.1 into g; = [O OI] Bz-_lbi. O

The data K, € RVTUnx(N+1n and g, € RV+DR of the global
system (3.19) are defined as

:| with ¢; = O(hz)

r C D 7 o or 7]
—As(to) 0 fa(to)
Wy, -1 —90
Ky = . gh = . (3.22)
L Wn_1 —1] [ —gN—1.

To prove the regularity of Kj; and the boundedness of K Lon, we
multiply from the left and from the right, respectively, with

Ty := diag ([é PQQO(tO)] LQ(t)™. ,Q<tN)—1) T, = diag(Q(1)),

where P, (@ transform (E, A) to canonical form (2.2). We also use
Uy € RVHnX(N+1)n - which is defined accordingly to Uy in (3.20),
to reorder rows and columns. Finally, we set

Cn Dy Cia Dy
I -1 —Fp O
Mh, = - 3 Nh = .. .. 3

I —I ~Fy 19 0
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0

—Fy O
Dh = . . ;

—Fn_110
with 0117012aD111D12 given in (23) and E]_,F«LQ given in Lemma

3.2, and Ah = [J\gh Nh:| Ah [l?)h 8:|

Lemma 3.3 The matriz Ky of the global system (3.19) given in
(8.22) has the representation

Ky =T 'Ux (Ah + Ah) UNT .

For a uniquely solvable BVP (2.1),(1.2) and a smooth transformation
function Q € C?, the matriz Ky, is reqular for sufficiently small h with

Kb =T, Uy (I - 4,1 A, + O(h) ) 4, Uy .

Furthermore, K;lgh is bounded by a constant which depends on the
data E, A, f,C,D,r and the transformation functions P,Q, but not
on the mazimum mesh width h.

Proof : By multiplication with 7; from the left and 7). from the right
we get block-wise

bl o591

0 o] [ 000 55

[I-F; —F
Q)W) = |17 .

if we use the representation of W; given in Lemma 3.2. Reordering of
the rows and columns yields

UNn T Ky T, Uy = Ap + 4y,

and by multiplying with the inverses we get the representation of K.
By Proposition 2.2, the matrix S := C}1 4+ D11 is regular, thus My,
is regular with inverse

I Dy -+ Dy
: —Chi1 :

' S—l D11
I-Cy-—Ciy
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Using Lemma 3.2, it follows

N-1
1M, Dyl < |5~ max{[|Cuall, | Duall} - D 1], = O(h).
=0

=0(h3)
Since M}, is regular, the same holds for A;,. We obtain ||A,:1Ah|| =
||Mh_1Dh|| = O(h), thus A, + A}, is regular for sufficiently small A
and

(4n+ Ah)_l = (1- 43" an+ 00h%)) 47"

This proves the regularity of K} and the representation of K, L
Using

Ci
;= Q(t; ; = O(h;), Fp=0(h;
gi = Q(tit1) |:—(P22f2)(ti+1)] y G (hs), 12 (hs)
(see Lemma 3.2) together with the representations of K ' and M, ',
the boundedness of K, g1, independent of h can be proved (cp. [15],
proof of Lemma 3.3). O

The existence and uniqueness of solutions of collocation problems
(3-5)—(3.8) is equivalent to the unique solvability of the local systems
(3.16) and the global system (3.19). Thus the following theorem can
be proved by combining Lemma 3.1 (concerning the local systems)
and Lemma 3.3 (concerning the global system). For smooth data,
i. e., B, A € C?, the existence of a transformation to canonical form
with P € C',Q € C? is guaranteed by Proposition 2.1.

Theorem 3.1  Consider a uniquely solvable BVP (2.1),(1.2) with
smooth data E,A € C?, f € C. For N € N and k > 1 define a mesh
as in (3.1) and fori =0,...,N —1 collocation points t;j,j =1,...,k
as in (8.8) and s;5,5 =0,...,k as in (3.4), respectively, according to
knots pj,0; as in (3.2).

Then for sufficiently small mesh widths hg,...,hy_1, there exists
one and only one continuous piecewise polynomial x, of degree k that
satisfies the collocation conditions (3.5),(3.6), fulfills the boundary
condition (3.8) and is consistent at all mesh points t;.

A collocation method is said to be stable, if the approximations
x;, ;; remain bounded (independent of ) for decreasing mesh widths
h; (see, e. g., [1]). In this sense, the symmetric collocation methods
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(3.11)—(3.15) are stable, since the z; are bounded (see Lemma 3.3)
and the z;; satisfy the relation

mij= (Q(sij) [I ‘fl’ﬂ _g"ﬁ] Q(ti)‘l) zi+Q(si5) [_(pmc}i)(sij)] ’

which is similar to z;, = Wz; + g;-

3.2 Convergence results

In this section we examine the collocation methods concerning con-
vergence. Assuming a smooth solution of the BVP, we prove conver-
gence of order k£ and for special schemes order k£ + 1 together with
superconvergence of order 2k at mesh points.

Theorem 3.2 Consider a uniquely solvable BVP (2.1),(1.2) with a
smooth solution x € C*T1(I,R"). Let 7 be a mesh as in (3.1) with suf-
ficiently small mesh widths h; and use schemes pj,o; as in (3.2). Let
zn be the unique solution of the corresponding symmetric collocation
method. Then we have

Iz — zxlloo = sup 2(t) — 2 ()] = O(R®).
tel

Proof : Interpolation of z analogous to (3.9) yields

k k
t—t; zk+1) (6
= E :‘T(Sil)Ll ( h z) k—l— 1 | I Szg

1=0 ¢ =0

_7/’1()

for some 0;(t) € [t;,ti+1]. Inserting this representation into the DAE
at the collocation points #;; and s;; delivers the local system

z(si1) Ti1 )
z(six) Tik

with Bj, a;, b; defined in (3.16). Obviously we have 1;(t;;) = O(hF™)
and ’(ﬁz(tm) = O(hf), thus Tij = O(hf)
Since the collocation problem is uniquely solvable for sufficiently

small h;, i. e., B; is regular, we can can solve for z(s;;) = z(t;1+1). We
get (with Wj, g; defined in (3.17))

z(tiv1) = Wiz(ti) +9i — 7i -
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For the error 7; := [0 e OI] B! (T,-j) a representation

2

j=1,...,k
7 = Q(tiv1) [%z] ., i = ORIt

can be derived analogously to that of g; given in Lemma 3.2. The
continuity, boundary and consistency conditions for z lead to the
global system (comparable to (3.19))

0
z(to) 7o
Kp, : =gh+Th, Th:i= :
z(t )
( N) TN-1

According to the unique solvability of the collocation problem for
sufficiently small h, the matrix K} is regular and the difference of the
global systems for z and z,, respectively, gives
.’L'(t()) — X
Kp : =T. (3.23)
$(t N) — N
Due to 7, = O(h¥*!) we have K, '7, = O(h¥) (this can be proved

like the boundedness of K Lgn in Lemma 3.3, use order k+ 1 instead
of gi = O(hy)), i. e.,

max ||z (t;) — z;]| = O(hF).

Looking at the difference in the local systems we obtain

z(si1) — Ti1 Ti1
: = Bi_lai (.’E(tz) — .’IIZ) —Bi_l (3.24)
z(sik) — Tik o) Tik
= ——r’
—O(h¥)
and hence max; ||z(s;;) — zij|| = O(hF) .

From this the convergence order k for any ¢ € I can be derived easily
by looking at the differences of the interpolation representations for
z and x,, respectively. 0O

For special choices of the schemes in (3.2), this result can be im-
proved to a higher convergence order at mesh points %;, so-called
superconvergence.
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Theorem 3.3 Consider a BVP (2.1),(1.2) with unique solution x.
Let w be a mesh as in (3.1). Use Gauf knots 0 < pg < ... < pp <1
and Lobatto knots 0 = o9 < ... < o = 1 to construct the colloca-
tion points t;;,8;;. Suppose furthermore that the mesh widths h; are
sufficiently small, such that the corresponding symmetric collocation
method has a unique solution x.

If the data is smooth, i. e., if E, A € C?**1 f € C%, then

Nl — 2%k
022X [l (te) — 2l = O™ .

Proof : Let P € C%,Q € C%+1, which exist by Proposition 2.1,
transform the DAE to canonical form (2.2). Since z; is consistent,
the initial value problem Ey = Ay + f, y(t;) = x; is uniquely solvable
and the solution v has a representation (using the transformation
(2.2) to canonical form)

o :[mMmm%ﬁﬁwmmal ‘
(@ v)(®) [ Pt ;2>

The approximation z, is the solution of the initial value problem
Ey= Ay + (Ei; — Azy), y(t;) = x;, and has the form

Sy - (1107 (@) w4 f (P(Bin — A:cw))(s)ds)]
(@ e [ (P Asz,) (2)

for t; <t < t;41. Since z, is consistent at the mesh point ¢;,1, the
difference of these representations at ¢ = ¢;11 gives

24 ga(s)ds + [ ¢a(3)ds] . (3.25)

v(tit1) — zip1 = Q(tit1) [ 0

with functions

bq = Pu(fi — Brir + A1zr), g := Pro(fo + Agzr) .

Due to the smoothness of the data, we have ¢4, ¢, € C?*. Since z,
satisfies the collocation conditions, the collocation points #;1,...,tk
are zeros of ¢4 and s;,...,S; are zeros of ¢,, respectively. From
this follows (see, e. g., [14]) the existence of smooth functions wy €
C*, w, € C*~1 with

k
$a(s) = wa(s) [[(s —tij),  dals) =wals) [J (s — si5) -
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Taylor expansion yields wg = 94 + O(hF), w, = s + (’)(hf*l) with
polynomials 4 of degree < k—1 and 1), of degree < k—2, respectively.
By inserting this into (3.25) and using the orthogonality properties
of the GauBl and Lobatto schemes we obtain

tit1 tiy1 k
| etras = [ [t [T s = ) + 00 as

t; ¢
1 k

= phtL / alts + hir) [[ (7 = pj)dr +O(RZ+)

0

=1

/

=0

tit1 tiy1 k
/t' ba(s)ds = /t [qpa(s) H(s — si) + (’)(h?k)]ds

7=0
1 k
_ h§+2/ alti + hir) [[ (7 — oy)dr +O(RZHY)
0

=0

vl

-~

=0

Altogether we have

ft:+1 ¢d(8)d8+ftii+l ¢a(8)d8]

¢i = v(tiv1) — Tiv1 = Q(tit1) [ 0

=0 ( h?k—l—l) )
Considering a fundamental solution W ( -, t;), i. e., a solution of

EW = AW, W (t;,t;) = Q(t;) [é 8] Qti)™!,

we see that xz(t) — v(t) = W(¢t, t;)(x(t;) — v(t;)) for all £ > ¢;. Setting
t = t;41, we particularly get

W (tit1,ti) (56(tz') - fliz) = z(tit1) — v(tiv1) = o(tit1) — Tiz1 — ¢

for ¢ =0,..., N — 1. This together with the boundary condition and
the consistency condition in ¢y builds the system

C D 0
—Ag(to) 0 :L‘(t()) — Xy 0
W(t1,t0) —1 : — | —¢o

) ) .’E(tN) — TN :

W(tn,tn—1) —1 —¢N_1



Symmetric collocation for differential-algebraic BVP 19

comparable to (3.23). From this we derive (as in Lemma 3.3)
max [lz(t;) — || = O(h*),
2

since now the inhomogeneity is of order O(h2¢*1). O

To show a higher convergence order for a special choice of the
schemes, we need a simple lemma.

Lemma 3.4 For Gauf knots 0 < p; < ... < px < 1 and Lobatto
knots 0 = 09 < ... < o = 1 we have
/ H(T—pl)d'rzo, j=0,....k.
0 =1
Proof : The Gaul and Lobatto knots are defined via the zeros of the
Legendre polynomials and their derivatives, respectively. The claim
follows directly from the Legendre differential equation. O

Corollary 3.1 Under the assumptions of Theorem 3.3 it follows that
max ||z (s;;) — zi;]| = O(h¥2) + O(R?*)  for k> 2
J

and
|z — zxlloo = O(RF*).
Proof : Looking at (3.24) in the proof of Theorem 3.2 and using
z(t;) — z; = O(h?*) due to Theorem 3.3, it is obvious that we must
show B; ' (7i;); = O(h¥*?) to prove the first assertion. For this we
exploit the special choice of the knots.
The transformation to canonical form yields

Piy(Eyvpi— Arti) = (PLEQ) HQ 7 ) — (PiAiQ— PuEQ)(Q ™ 4)
=[10]4(Q ') + (P2 42Q)(Q '4hi)
=+ O,
when defining ¢ := [T0](Q~'4;). For smooth data E, A € C?+1
f € C?* we get a smooth solution z € C?* (see Proposition 2.1), thus
the interpolation error v; is smooth. Since Q € C?**! by Proposition
2.1, it follows that ¢ € C?*, in particular ¢ € C¥*2 for k > 2. By

interpolation of ¢ according to p; and by a Taylor expansion of the
interpolation error we obtain

Rty . _ &) (0(1)) £
l:Z1Ll( 3 )‘P(til) = p(t) — % 11;[1(t —tq)

k
=¢(t) — cH(t —ty) + O(hiﬁ_l)

=1
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with the constant ¢ := %(p(k"'l)(ti) and Lagrange polynomials L; as
in (3.10). Inserting the definition of w;; given in (3.10) leads to

k g k B L Sij k - t—t;
> wpg(ta) Z/ ZLI(TW(til)dT:h—i/ ZLl( »
=1 0 =1 tioi=1 ’

s s k
_ h%/ " o(t)dt — h—/ "T1 - tadt + OE)

i i

) O(ta)dt

(si) — p(t) o
_ plsi) — o) _ / [[(r = p)dr + OREHY)
hi 0 1

= O(hi™),

since s;;,t; = s;0 are zeros of 1; and thus of ¢, and the second term
is zero by Lemma 3.4, respectively. Altogether we have (recalling
Vo= (wjt) )

U]:TP (Tij)jz

([Pn (E14h; — Ar4;)] (tz'j)>j ] _ [(¢(tij) + 0(h§+1)>j]
0 0

+ O(hfT?)

= {hivol o1 _OI] UpTp (Tij)j =h; [ (EL wgl¢(til))j

=0(h;*?)

= Bi_l (Tz'j)j = TQUk (I—Aﬁ—@(h?)) [hiV_Ol e! _OI:| U;;TP (Tij)j

= O(h1?).

The convergence order k + 1 for any ¢ € I can now be proved by
considering the difference of the interpolation representations for z
and z (cp. end of proof for Theorem 3.2). O

4 Collocation with interpolation

A drawback of the symmetric methods may be the number of evalu-
ations of the data F, A, f needed to construct the matrices B;. Since
we have two schemes p;,0; and two sets of collocation points #;;, s;;,
we need 2Nk + 1 evaluations instead of only Nk + 1 for conventional
collocation.
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To overcome this drawback, we can, for smooth E, A, f € Ck+1
interpolate the data using the collocation points s;;:

k t_t, 2 gy
= X:OL ( ) E1(sim) + l(kf(l)(!))ml__lo(t — Sim)

7 . 7
-~ -~

=pg(t) =pp(t)

and A; = pa + vYa, fi = pr + ¢y analogously. If we replace E(t;;),
Aq(tiz), fi(tij) by pe(ti;), pa(tij), ps(ti;) in the collocation condition
(3.11), we obtain the following problem (Withz' =0,...,N—landj =

1,...,k), for which data evaluations at the points s;; are sufficient:
k i k k
> [hi > wuim B (sim) — it Y ujmAr(sim)| i
1=0 L' m=0 m=0
k
= Z Ujm f1 (sim) (4.1)
m=0
Ao 32])531'3' fQ(SZJ) (4'2)
Zik — Tip10 = 0 (4.3)
CZoo+ DIng = 1 (4.4)
—As(to)Zoo = falto) (4.5)

For this problem we prove results analogous to Theorem 3.1 (unique
solvability), Theorem 3.2 (convergence order k) and Theorem 3.3 (su-
perconvergence of order 2k).

Theorem 4.1 Consider a uniquely solvable BVP (2.1),(1.2) with
solution = and smooth data E,A € C**2 f ¢ Ck*1 k > 1. For
N € N define a mesh 7 as in (3.1) and collocation points s;; for
i=0,...,N—1,5=0,...,k as in (3.4) according to knots o; as
in (3.2). Use knots p; as in (3.3) to compute vjym = L}, (p;) and
ujm = Lm(pj) (see (3.9) for definition of Ly,).

i) For sufficiently small mesh widths hg,...,hn_1, there exists one
and only one continuous piecewise polynomial T, of degree k that
satisfies the interpolated collocation conditions (4.1), the colloca-
tion conditions (4.2), fulfills the boundary condition (4.4) and is
consistent at all mesh points t;.

i1) If the mesh widths are sufficiently small, the symmetric collocation
method using interpolation is of convergence order k, i. e.,

lz — &l = O(n*) .
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ii1) If we use Lobatto knots 0 = 0y < ... < o = 1 and Gauf knots
0 < p1 <... <px <1 and if the data fulfills the smoothness
conditions E, A € C?***1, f € C?F, then the symmetric collocation
method using interpolation is superconvergent of order 2k, i. e.,

Nl — o(n2k
orgnz?gva(tZ) $z|| O(h )

for sufficiently small h.
Proof : As in §3, we start by considering local systems
Ti1
Bi| + | =aiZio+b;
Tik

built of the collocation conditions (4.1),(4.2) (for j = 1,...,k). Due
to the interpolation errors ¥g 4 r(tij) = O(RF™) we have

Bi :Bz'-l-O(hi'c)a a; :ai-l-O(hf)a l;z :bi+0(hf+1)
with B;, a;, b; of the local system (3.16). Applying Lemma 3.1, we see
that B; is regular for sufficiently small h; and B; * = B; ' + O(hF*?)
since B; ! = O(h;). This yields continuity conditions

Tit1,0 = Tig = Widio + G

with W; = W; + (’)(hf“), Gi = gi + (’)(hf”). Thus we get a global
system

with K, = Kj,+O(hF+1), g, = gn + O(h*¥*2) and K, g of the global
system (3.19). Here we apply Lemma 3.3 to achieve that K}, is regular
for sufficiently small h with

~ —1
Kt = (KT +0(09)) = (I+O00)K; "
From this follows that
K, 'gn = (I +O(W") K, (gn + O(W*T2)) = K, g, + O(RF)

is bounded independent of h, because the same holds for K, ! gh- Since
the unique solvability of the collocation problem with interpolation is
equivalent to the regularity of B; (i = 0,..., N —1) and K}, assertion
i) is proved.
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Convergence order k can be proved as in Theorem 3.2.
To prove superconvergence we argue analogously to the proof of
Theorem 3.3. Here we define three functions

ba = Py (py — PEix +PaFa),  $a = Pia(fo+ Asiin),
by = Pi1 () — YuZx + Pada)

and obtain a local discretisation error

V(tit1)—Ziv1 =Q(ti+1) fttiiﬂ éd(s)d‘g—l_ft?ﬂ dz“(s)ds—i_fttjﬂ qNS,p(s)ds
0

Due to the collocation conditions, <;~Sd has zeros ;; and q~5a has zeros

sij, respectively. The s;; are also zeros of J)w, since they are zeros of
the interpolation errors. O

5 Numerical examples

To illustrate the practicability and effectiveness of the described sym-
metric collocation methods we present three representative exam-
ples. The results are compared to that of Radau collocation [15] and
COLDAE [3].

A MATLAB code for the construction and solution of local sys-
tems (3.16) and global systems (3.19) has been developed, including
a simple strategy for the generation and refinement of the meshes 7.
The package DGELDA [13] is used for the regularisation of the data
E, A, f at discrete points t;;, s;;, thus FORTRAN subroutines for the
evaluation of E, A, f and its derivatives up to order v — 1 at discrete
points are needed. Furthermore, the data t,t, C, D,r are needed as
input, and the parameter 1 < k < 5 and a tolerance for the mesh
selection must be chosen.

As said in §4, the symmetric methods need 2Nk + 1 evaluations
of the data FE, A, f instead of Nk + 1 for Radau collocation, since
two sets 1;5, s;; of collocation points are used. Besides this, the com-
putational effort is the same for symmetric and Radau collocation,
respectively, because the local and global systems have the same di-
mensions and structures. If data evaluations are expensive, we can
apply collocation with interpolation (i. e., we solve (4.1)—(4.5)). For
the following three examples, we report only the results of symmet-
ric collocation without interpolation (i. e., solutions of (3.11)-(3.15)),
since we obtained comparably accurate results when we worked with
interpolation.
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Ezample 5.1 In order to demonstrate the potential drawbacks of the
asymmetric Radau methods, we consider the ordinary boundary value
problem ([1], p. 394)

eu'(t) = =2t/ (), wu(-1)=-1,u(1)=1

with small parameter 0 < ¢ < 1. The solution is u(t) = erf(¢t//€).

x 1077 Mesh and error of Radau collocation

I
o) \/\J\/\/ 7

L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8 1

x10°° Mesh and error of symmetric collocation
5
o + +
-5 L L L L . I I I I
-1 —-0.8 —0.6 —-0.4 —-0.2 (o] 0.2 0.4 0.6 0.8 1
Fig. 5.1.

With Radau collocation, we can compute approximations only
for moderate values of ¢, i. e., ¢ > 1073, For ¢ = 1072, Figure 5.1
shows the errors u(t;) — ur(t;) of Radau and symmetric collocation,
respectively, according to kK = 5 collocation points per subinterval,
five subintervals in the initial meshes and a tolerance 10~* for the
mesh refinement. While the mesh that results by the Radau method
is much coarser in the right subinterval [0,1] than in the left half
[—1, 0], the result of the symmetric collocation method is a symmetric
mesh and a symmetric approximation.

For ¢ = 1074,107%,1075, the Radau method failed, but we got
approximations by use of symmetric collocation or COLDAE.

Ezample 5.2 The second example is

00 0 -1 ¢t 0 et/?
1—t 0la=| 00 O|lz+]| 0 |,te[-5,0]
-1 t 1 0t 1 0

[170]2(~5)+ [041]2(0) =6.
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This is an index-two problem with d = 1 differential and a = 2
algebraic equations. The solution is

z(t) =2 (1 - L, -1, 2+ 4t +8)*.

For k =1, ..., 5 collocation points per subinterval and uniform meshes
with appropriate numbers N of subintervals, we computed approxi-
mations using symmetric collocation, Radau method and COLDAE.
Since this index-two problem is not semi-explicit, COLDAE can
not be applied directly. The index reduction technique must be used
to obtain the index-one formulation. But this is not semi-explicit
either, thus we need to transform it into the semi-explicit index-two
problem A
=y, Ozﬁj’y—fl:z;—f,
which is of doubled dimension. Furthermore, the consistency condi-
tion Ay(to)z(to) + f2(to) = 0 at tp = —5 must be considered as an
additional boundary condition. In other words, this problem can not
be attacked by COLDAE without applying the index reduction and
even by doing this, more computational work in comparison to Radau
or symmetric collocation is needed.

Symmetric Coll. | Radau Collocation COLDAE
k N | err; order | err; order | err; order
1 50 | 0.26e-2 0.17 0.28¢-2
100 | 0.65e-3 2.0 | 0.82e-1 1.0 | 0.71e-3 2.0
200 | 0.16e-3 2.0 | 0.41e-1 1.0 | 0.18e-3 2.0
2 20 | 0.16e-4 0.74e-3 0.18¢e-4
40 | 0.10e-5 4.0 | 0.90e-4 3.0 | 0.11e-5 4.0
80 | 0.64e-7 4.0 | 0.11e-4 3.0 | 0.71le-7 4.0
3 10 | 0.39¢-6 0.13e-4 0.44e-6
20 | 0.61e-8 6.0 | 0.38¢-6 5.1 | 0.68e-8 6.0
40 | 0.95e-10 6.0 | 0.12e-7 5.0 | 0.11e-9 6.0
4 6 | 0.17e-7 0.43e-6 0.19e-7
12 | 0.68e-10 8.0 | 0.34e-8 7.0 | 0.77e-10 7.9
24 | 0.26e-12 8.0 | 0.26e-10 7.0 | 0.29e-12 8.0
5 4 | 0.13e-8 0.28e-7 0.14e-8
8 | 0.12e-11 10.0 | 0.50e-10 9.1 | 0.14e-11 10.0

Table 5.1. Errors according to uniform meshes for Example 4.2

In Table 5.1 the errors err;(N) := maxo<;<n ||z(t;) — ;|| and
the corresponding orders log (%) /log(2) are given. We clearly
see that the theoretical superconvergence results (2k for symmetric

collocation and COLDAE, 2k — 1 for the Radau method) can be
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verified for this example. We also recognize that not only the orders
but also the absolute values err; are approximately the same for
symmetric collocation and COLDAE, while the results of the Radau
method are less accurate.

Ezample 5.3 For the third example we transform a DAE given in [3,
Example 1] and obtain

1 — 0
Et)=| t 1 —
| p(t)—2 —t(p(t)—2) 0
i m—%_t QEt—mt (2—-1t)k
A)=| =L-t-1 sl t+x — 20
| k(12 —3) - 2072 2”( )22y, KV( (t)(2—t)—t3+6t—4)
B 3 t
2—¢
fl)= | 2+ etpitn 220 | ¢
| (p(t) —2)3=% — k(> +1—2)

with ¢ € [0, 1], parameter x € R and a smooth function p € C1(I, R).
The boundary condition is z1(0) = 1.

This problem is of index two and consists of d = 1 differential and
a = 2 algebraic equations. We set k = 20 and choose

p(t) =— (1 +erf(t?/_216/3>> , e=107°.

Thus a layer region around ¢t = % occurs in p and also in the solution

1+t — o + B
t
— t
o(t) = po |[1-t— 55+ )
1241
2—1

We examine this problem according to k& = 4 collocation points per
subinterval and five subintervals in the initial meshes. The tolerances
for mesh refinement are chosen such that comparable numbers N of
subintervals in the final meshes occur. In Table 5.2 we report these
numbers N together with the errors err := max ||z(t) — z,(t)|| mea-
sured at 101 equidistant points ¢ € I.

As in Example 5.2, COLDAE cannot be applied to this problem
directly. It has to be regularised and the reduced BVP must be trans-
formed into a semi-explicit index-two problem of doubled dimension.
Thus the application of COLDAE is more expensive regarding the
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Symmetric Collocation Radau Collocation COLDAE
tol N err tol N err ‘ tol N err
3-107° 69 0.83e-8 | 1077 68 0.67e-7 | 10°* 66 0.1le-5
107" 161  0.21e-9 ‘ 107 144  0.10e-8 ‘ 107 160  0.40e-6

Table 5.2. Errors for Example 5.3

computational work. Moreover, the results of COLDAE are less ac-
curate when we compare approximations due to similar numbers of
subintervals.

6 Conclusions

In this paper, we have developed symmetric collocation methods for
the solution of linear differential-algebraic boundary value problems
as they occur by index reduction. Thus, in combination with index
reduction, we can solve BVPs of arbitrary index. The key point was
to use a GauB-type scheme for the differential part and a Lobatto-
type scheme with one more knot for the algebraic part. We showed
that the results known for differential equations also hold in the case
of differential-algebraic equations including superconvergence for the
combination of Gaul and Lobatto schemes. In order to reduce the
number of function evaluations that are needed when using two dif-
ferent schemes, we introduced interpolation and showed that the con-
vergence properties are not influenced by this modification. Finally,
we showed the applicability and accuracy of these methods in com-
parison to other approaches.
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