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Abstract

In this paper, we are concerned with constructing interpolating scaling func-
tions. The presented construction can be interpreted as a natural generalization
of a well-known univariate approach and applies to scaling matrices A satisfying
| det A| = 2. The resulting scaling functions automatically satisfy certain Strang—
Fix—conditions.
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1 Introduction

The problem of constructing interpolating scaling functions has attracted increasing
intererst over the last few years, several construction principles for such scaling functions
habe been published recently, see, e.g., [2, 3, 4, 5, 6, 7, 13]. Interpolating basis functions
of this type are particularly needed for applications in CAGD or for collocation methods
for operator equations.
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In this note, we extend the construction principle of Lemarie and Meyer for univariate
scaling functions to the construction of multivariate interpolating scaling functions. In
general, a function ¢ € Ly(RY) is called a scaling function or a refinable function if it
satisfies a two-scale-relation

$(x) = 3 ard(Az — k),  a={artrezs € (2%, (1.1)

kezd

where A is an expanding integer scaling matrix, i.e., all its eigenvalues have modulus
larger than one. For the construction of interpolating scaling functions one requires
additionally that ¢ is at least continuous and satisfies

o(k) = oy k e Z° (1.2)

Furthermore, functions ¢ which are sufficiently smooth and well-located are preferable.

The starting point for the present paper is the natural question, to which extend
univariate construction principles carry over to the multi-dimensional case. A survey
on the major univariate construction principles and their potential for multidimensional
generalizations is contained in [2]. Most of these construction principles have been
generalized already. In this paper, we investigate an approach on how to generalise the
univariate construction principle of Lemarie and Meyer [10, 12].

This generalized approach yields compactly supported scaling functions which au-
tomatically satisfy Strang-Fix—conditions of a certain order. To satisfy Strang Fix—
conditions of high order is desirable for several reasons. First of all they serve as an
indicator for a certain smoothness, moreover, they readily imply a certain order of ap-
proximation in appropriate function spaces.

The presented approach applies to scaling matrices A satisfying |det A| = 2 in arbi-
trary spatial dimensions.

This paper is organized as follows. In Section 2, we briefly recall the setting of
interpolating scaling functions. In Section 3, we present the main construction and,
finally, in Section 4 we discuss some examples in order to demonstrate the applicability
of our approach.

For later use, let us fix some notation. Let ¢ = |det A] = 2, furthermore, let
R = {po,pr1}, R" = {po,p1} denote complete sets of representatives of Z¢/AZ? and
Z%/BZ¢, B = AT respectively. Without loss of generality, we shall always assume that

po = po = 0.

2 The Setting

In the sequel, we shall only consider compactly supported scaling functions. Moreover,
we shall always assume that supp a := {k € Z% | ay # 0} is finite. Computing the
Fourier transform of both sides of (1.1) yields

dw) = 3 Lage BTGB 1), (2.1)
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By iterating (2.1) we obtain

o(w) = [ m(B w), (2.2)
j=1
where the symbol m(w) is defined by
1 —27i(k,w)
mw) === Y age iR (2.3)
U yeza

Equation (2.2) shows that instead of trying to construct a refinable function directly
we may also start with a symbol m(w). In the following we collect some well-known
conditions on the symbol m(w) which guarantee that ¢ according to (2.2) is well-defined
in L,(R?) and has some additional desirable properties such as sufficient smoothness.
Moreover, for our purposes, we have to clarify how the interpolating property (1.2) can
be guaranteed. The following two conditions are necessary:

(C1) m(0) = 1;

(C2) Yjerr m(w+ B~ 'p) = 1.

Very often, also the convenient condition
(C3) m(w) >0

is required. This condition allows a simplified regularity estimate in Chapter 4.

Usually, conditions (C1)—(C2) are the starting point for the construction of an inter-
polatory scaling function. Unfortunately, they are not sufficient. Concerning this task,
we refer to the following theorem which goes back to Lawton, Lee, and Shen [11].

Theorem 2.1 Let m(w) be a trigonometric polynomial which satisfies condition (C1). A
necessary and sufficient condition for a continuous refinable function to be interpolatory
is that the sequence § = {0y = 1, 0y = 0 for k € ZZ\{0} } is the unique eigenvector of
the operator

(Hb)k = Z quk—lbla {bk}kezd € Zg(Zd) (24)

A

corresponding to a simple eigenvalue 1.

In general, one wants to find scaling functions, which have a certain smoothness. To
this end, one often requires that the Strang—Fiz—conditions of order L are satisfied, i.e.,
5\
(C4) (8_> m(B 1p) =0 forall [I|<L andall je R"\{0}.
w
In the univariate case, there exist five major approaches to find symbols m(w) satisfying

(C1)-C(3), see, e.g., [2] for a detailed discussion. There also exist several approaches
to generalize some of these concepts to the multivariate case [2, 4]. In this note, we



investigate a natural generalization of the following ansatz which is due to Lemarié and
Meyer [10, 12]: Define m(w) according to

mw):=1-¢ /Ow ma (t)dt (2.5)

my (t) = sin?% 1 (27t) (2.6)

—1
and choose ¢; such that m(1/2) = 0, i.e. ¢ = (01/2 ml(t)dt) . Observing that in
the univariate case R = R = {0,1}, B~'p = 1/2, we see that conditions (C1-C3) are
satisfied and that the symbol obeys Strang-Fix conditions (C4) of order L = 2K — 1.
In order to prepare this construction for an extension to higher dimensions let us

observe that conditions (C1) and (C2) are satisfied whenever the defining function m;
is of periodicity 1 and obeys

1/2

/ mi(t) dt#£0 , mi(t+1/2) = —my(2) .

0

Hence we can prepare the generralization of the Lemaire-Meyer approach by:

Lemma 2.1 Let mq and my denote integrable functions of periodicity 1, which satisfy

1/2
mi(t+1/2) = —m(t) , ma(t+1/2) = ma(t) / ma(t) dt =0 |

1/2 1/2
and / my(t)ma(t) dt #0 or resp. / my (t) dt # 0.
0 0

Define the univariate symbol m(w) by

1/2 -1

mw) = 1—cuo / ma()ma(t) dt , cip = / mi(ma(t) dt |

or resp. by

w

mw) = 1—cp /“’ my (t) dt/ me(s) ds — cl/wml(t)dt - cg/wmz(s)ds,

0

1/2 -1

C1 = / ml(t) dt , C2 = 2
0

Then m(w) satisfies (C1) and (C2).




Proof: Condition (C1) is obvious. (C2) is satisfied if

m(w) +m(w+1/2) =1 .
In the first case we exploit the definition of ¢;5 and the symmetry properties of m; and
mo:

1/2 1/24w w
m(w+1/2) =1 = e1p / ma()ma(t)dt — cu / ma () ma(£)dt = c1y / ma(Hma(t)dt

1/2

hence we obtain m(w) + m(w + 1/2) =1 in this case.

The computations in the second case proceed in a similar fashion. Expanding the
double integral in the expression for m(w + 1/2) and applying the symmetry conditions
for m; and my lead to:

/ ma(t) dt / ma(s) dS:—/ ma(t) dt/ ma(s) ds + /ml(t)dt/mg(s)ds .

0 0 0 0 0

Hence by the definition of ¢, it follows that

m(w) +mw+1/2) =1 — (26 + c1z/c1) /mQ(s)ds —1.

3 The Construction

We want to find multivariate versions of (2.5) for ¢ = |det A| = 2. In a first step, we
confine the presentation to the 2D—case. Generalizations to higher—dimensional cases
will be discussed later. For notational convenience, we shall always use the abbreviation
p1 = p. (Recall that we always choose py = py = 0).

Starting from the univariate case one might aling the coefficients of the univariate
symbol m(w) (2.5) along a coordinate axis by

m(wi,ws) =1 — CK/ 1 my (t)dt (3.1)
0
my(t) = sin?® Hx(B7'p)T't) . (3.2)
Here (B~'); denotes the first coefficient of the vector B~ 5. Using the property
sin(m(t + 1)) = —sin(nt),

it is easily checked that such an approach may work in principle. However, it has the
disadvantage that it always leads to some kind of ‘separable’ symbol. We would clearly
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prefer a ‘non—separable’, i.e., truly multivariate symbol. To this end we use the results
of the previous Lemma 2.1 as the starting point for our generalization. First we outline
the general approach, examples using this construction as well as regularity estimates
are contained in Section 4.

Theorem 3.1 Suppose that my(t1), ma(te) are trigonometric polynomials satisfying

mi((B7' o +1) = —mu(t),  ma((B7'p)2 +1t) = ma(t), (3.3)
/ O (Bt £0 / O ()t = 0, (3.4)
and .
4 mi((B™'p)i) =0 forall k<L—1,i=1,2 (3.5)
(55) mson) <p-1i=12 .

Furthermore, let the constant ¢y be defined by

o= ( / o ml(tl)du) h (3.6)

and suppose that co and ci1o are related by

C12

o (3.7)

Co =
Then the symbol

m(wl, CL)Q) =1- 612/0 /0 my (tl)mg(tg)dtldtg — Cl/() mi (tl)dtl — CQ/O mg(tg)dtg
(3.8)
satisfies (C1), (C2) and Strang—Fiz conditions (C4) of order L.

Proof: Let us start by varifying the Strang-Fix conditions (C4). For [1,l; > 0, we
obtain by exploiting assumption (3.5)

(%) (B = —en (ditl)h_lmm(B-lﬁ)l) (%) ma((B 5

e (%) (B~ 5)) - e (%) (B~ 7)s) = 0.

The cases I =0, I > 0 and I, = 0, [; > 0 can be treated analogously. It remains to
study the case l; =l = 0. By using (3.4) and (3.6) we get

(B~'5)1 (B 'p)2 (B~'hh
m(B_lﬁ) = 1-— 612/0 /0 ml(tl)mQ(tg)dtldtQ — 01/0 ml(tl)dt1
(B™1p)2
—CQ/O mg(tg)dtg

(B~'h)1

=1 —Cl/ ml(tl)dtl
0

= 0.



The next step is to check the condition (C2), which is a straightforward but lengthy

calculation by applying the symmetry properties of m; and ms: Splitting up the integrals
yields

m(w) +m(w + B™p)
w1 w2 w1 w2
= 2—- 012/0 /0 my (tl)mg (tg)dtldtg — Cl/o my (tl)dtl — 62/0 mo (t2)dt2

wi+(B™'A)1  pwrt(BT1H)2 wi+(B~' )1
—612/0 /0 ml(tl)mg(tg)dtldtg — Cl/o ml(tl)dtl
w2 +(B~1p)2
—Cy /0 mo(t2)dts
w1 w2 w1 w2
= 2- 012/0 /0 mi (tl)mz (tg)dtldtz - 01/0 my (tl)dtl - 62/0 mo (tg)dtz

(B=1p) (B~ 1p) 14w (B~1p)2 (B~15)2+ws
—C12 /0 ma (tl)dtl + my (tl)dtl /0 meo (tQ)dt2 + meo (tQ)dtQ

(B=1p)1 (B=1p)2
(B~'h)1 wi+(B~'p)1 (B~'5)2 w2+(B71p)2
—C1 / ma (tl)dtl + B my (tl)dtl —C2 / mo (tz)dtQ + _ mo (tz)dtg .
0 (B=1p)1 0 (B—1p)2

Therefore, by employing the conditions (3.3) and (3.4), we get
m(w) +m(w + B~ p)
w1 w3 w1 w2
= 2-— 612‘/0 /0 mq (tl)mg (tz)dtldtg — Cl/o my (tl)dtl — CQ‘/O mo (tg)dtg

(B~ 'h) w1 w2

—C12 (/0 m1 (tl)dtl - /0 ml(t1)dt1) /0 mg(tz)dtg
(B=1p) w1 w3

—C1 /0 ml(tl)dtl —/0 ml(tl)dtl — CQA mg(tg)dtg

w2 (B=1p)1 w2
= 2— CQ/O mg(tg)dtQ — 612/0 my (tl)dtl/() m2(t2)dt2

(B~ 1p)n w2
—01/0 ml(tl)dtl — CQ/O mz(tg)dtg.

By using (3.6), we end up with

m(w) +m(w+ B71p) =1+ (=2¢5 — cracyY) /0 ’ ma(ta)dts

and (C2) follows from (3.7). It is obvious that the symbol m(w;, ws) satisfies (C1). The
theorem is proved. O

Remark 3.1 The reader should observe that Theorem 3.1 can in fact be used simultane-
ously for a whole class of matrices satisfying | det A| = 2. Assume that a second scaling
matriz M ezists with a representative & such that A~ = M~"6 holds. Then a symbol
m constructed according to (3.8) for A also works for M. Nevertheless, from (2.2) it is
clear that the resulting refinable functions may differ dramatically.
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Theorem 3.1 obviously generalizes to higher dimensional cases, although everything
becomes more complicated from the notational point of view. Therefore we only state
one possible 3D—version of our approach. Several other variants are possible.

Theorem 3.2 Suppose that mi(t1), ma(ts) and ms(ts) are trigonometric polynomials
satisfying (3.5). Let us furthermore assume that ms and mg both satisfy (3.4) and that

mi((B™'p)1 + 1) = —mi(t), ma((B™'p)s +1) =ma(t), ms((B™'p)s +1) = ms(t).
Let ¢, be defined by (3.6) and suppose that 1235 and cy 3 are related by

C1,2,3
= 07 3.10
2,3 2, (3.10)

Then the symbol
w1 w2 [fws
m(wl, LL)Q,LL)3) = 1- (/‘1,2’3/0 /0 /0 mq (tl)mg(tg)mg(tg)dtldtht:; (311)
w2 w3 w1
—62,3/0 /0 mz(tg)mg(tg)dtzdtg — 01/0 ml(tl)dtl

satisfies (C1), (C2) and (C4).

4 Examples

First of all we apply the presented construction to the notorious quincunx case d = 2,
1 -1 . . o

A= ( 1 1 ) In this case, | det A| = 2 as required and we may choose j = ((1)) as the

second representative. Quite natural choices for m(¢1), ma(t2) are given by

my (tl) = Sin2K71(27Tt1), mg(tQ) = sin2K*1(47rt2). (41)

The case K = 1 is of minor interest, hence let us start with a discussion of the case
K =2. Then

= 37%, Cy = _30;’2 (4.2)
and (3.8) yields
m(wi, wa) (4.3)
= 1- 70217’32 (— cos(27mw;) (2 + sin?(2mw;)) + 2) (— cos(4mwy) (2 + sin® (4mws)) + 2)
1 2 C1,2 . 9
~21 (— cos(27mwy)(2 + sin”(27wy)) + 2) + 36;‘(’2 (— cos(4mws)(2 + sin”(4mws)) + 2) .

The nonvanishing coefficients of the resulting mask can be computed as follows.

1
oo = o (4.4)



8161,2 .

42 = 00,-2) T O(-12) T O(-1,-2) T T jer0 5
961’2
ae) = A1-6) T A-16) T A(-1,-6) = 03,2) T 43,-2) T 4(-32) T U-3,-2) T yun0-97
C1,2 |
a(—3,—6) = a(—3,6) = a(3,—6) = a(376) = _W’
9c1 0 9

A(-10) = 00 T 5e0 5 T 357
C1,2 1
4300 = HU=30) T Toggr2 39"

A typical symbol m(w;,w,) obtained by this procedure is displayed in Figure 1.
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Figure 1: m(wy,ws) for ¢; 0 = —5

It remains to estimate the smoothness of the resulting refinable function ¢, i.e., we want
to find
o :==sup{a: ¢ € C*}.

It is well-known that a* > Kg,p, Where kg, is defined by
Ksup := SUp{k : /Rd(l + |w))*|¢(w)|dw < oo} (4.5)
The regularity problem, i.e., the problem of estimating xg,, from below, has attracted

substantial research in the last few years, see, e.g., [1, 8, 13, 14]. A typical result in this
direction reads as follows.



Theorem 4.1 For an integer L, let
Vi i={ve€(Z : Y plk)vy =0, for all polynomials p € I},
kezd

where I1;, denotes the polynomials of total degree L. Assume that A is a dilation matriz
with a complete set of orthonormal eigenvectors. If the symbol m(w) according to (2.3)
is nonnegative and satisfies Strang-Fiz—conditions (C4) of order L, then for a suitable
choice ) with supp a C Q, Vi, is invariant under the matriz

M= [quk—l]k,leQ :

Let o be the spectral radius of H|y,. Then the exponent kg, satisfies

~ log(o)
Ksup = 10g(|/\max|). (4.6)

We used Theorem 4.1 to test several values of ¢; 2. The results are shown in the following
table.

cip | —log(o)/1og(|Amax|)
—50 | 0.26569
—10 | 0.55643
-5 | 0.60106
-3 | 0.61971
-1 | 0.63884
—0.5 | 0.6437

0 0.6486
0.5 | 0.65352

1 0.65848

3 0.67864
50 0.7298
100 | 0.0054245

Remark 4.1 i) We see that the regqularity of the resulting interpolating scaling func-
tions decreases significantly for large values of |c12|. For very large values of |y o,
one does not even get an Lo—function.

ii) We also observe that in order to increase the smoothness of the corresponding scal-
ing function it seems to be a good idea to use positive values of c1o. However, in
order to use Theorem 4.1, we have to work with a nonnegative symbol. But it can
be easily checked, that this is only the case for ¢, o in a certain interval contained in
(—00,0]. Therefore the results for positive values of ¢12 do not relate to reqularity
estimates of the corresponding scaling functions by Theorem 4.1 directly. Never-
theless, the requirement of a nonnegative symbol in Theorem 4.1 is a sufficient but
not necessary condition. FEzrperience from numerical experiments indicates, that
the given figures still give lower bounds to the order of reqularity even for positive
values of cia.
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As already stressed in Remark 3.1, the symbol computed according to Theorem 3.1

can also be used for other scaling matrices. In our case, it is easy to check that e.g. for
. 1 1 x " .

the matrix M = 1 1 and § = ((1)) the conditions of Remark 3.1 are satisfied. It

turns out that for this matrix the resulting refinable functions are in fact much smoother

as can be seen from the following table.

cip | —log(o)/log(|Amax|)
—10 | 0.96322

-5 | 1.2694

-1 1.7589

—0.5 | 1.8665

0 2

0.2 | 1.9678

1 1.8562

10 1.2073

50 0.045414

We have also studied the case K = 3. In this case, eq. (3.8) yields

m(wr, ws)
C1,2 b 5 1 4
= 122 (2 co8(2 2 — —cos(1 l
7r2 ( G cos(2mwy) + o5 cos(67w) 160 cos(107wq) + 15)
(=55 cos(dm) + =0 cos(12mwn) — = cos(20mwn) + 1= )
55 Cos(dmws) + 705 cos(12mw) — o5 cos(20mwy) + =
15 ) ) 1 4
5 (_E cos(2mwi) + % cos(6mwy) — 160 cos(10mwy) + E)
461,2 5 5 1 2
+157r2 (— 39 cos(4dmwsy) + ™ cos(12mwsy) — 320 cos(20mws) + 15) .

For the sake of completeness we state the corresponding filter coefficientes explicitely.

1

w00 = = (4.7)
250172
Guy = a-2) = A1) = 012 = ~ 5000
2501,2
aae) = 00,-6) = (=16 = U(-1,-6) = 95002
5c
%m):‘mﬂmz%&m:WAAm:_%Q&f
B¢
a(l,O) — a(fl,()) = — + 1,2 :
256 = 4872
4501,2
032 = 0(3-2) T 0(-32) = 4(=3,-2) T T9500-3’
4501,2
O-3-6) = Q(-36) = U(3,-6) = A(36) = ~razoo

11



901,2

0310) = 03,-10) = 6(-3,10) = A(-3,-10) = 50000}
" - 4 _ 901,2 _ 75.
30 = B30T T44002 T 1536
9C1 2
U52) = 02 = 0(-52) = O(-5-2) = ~55 005
9C1 2
Us6) = G5,-6) = U(-56) = 0(-5,-6) = 15000012
C
a5,10) = a(s,—un=a(—5,10)=a<—5’—10>:_m;
15 C1,2
ai,0) = 0(-50) = * 2400m2°
: 07 9560 240072

The regularity of the corresponding scaling functions can again be estimated by using
Theorem 4.1.

¢12 | —log(e)/10g(| Amax|)
—50 | 0.42988
~10 | 0.5938
~3 | 0.61571
~1 | 0.62137
—0.5 | 0.62275
0 |0.6241
3 |0.63181
10 | 0.64683
20 | 0.66002
30 | 0.625
50 | 0.4986

Remark 4.2 A MATLAB program to compute the reqularity of refin—
able functions according to Theorem 4.1 can be found on the IGPM-homepage, see
http://elc2.igpm.rwth-aachen.de/barinka/mattoys/soft.html.

Acknowledgements. The authors feel grateful to N. Mulders and A. Barinka for
helping them to develop the software which was used for the regularity estimates.
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