UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Wavelet Based Methods for Improved
Wind Profiler Signal Processing

Volker Lehmann Gerd Teschke

Report 00-12

Berichte aus der Technomathematik

Report 00-12 Mai 2000






Wavelet Based Methods for Improved Wind
Profiler Signal Processing

Volker Lehmann* Gerd Teschke*
Deutscher Wetterdienst Zentrum fur
Meteorologisches Observatorium Technomathematik

Lindenberg Universitat Bremen
D-15864 Lindenberg D-28334 Bremen
Germany Germany
May 22, 2000

Abstract- In this paper we apply wavelet thresholding for removing
ground clutter and intermittent clutter (airplane echoes) automatically
from wind profiler radar data. Using the concept of discrete multiscale
analysis and nonparametric estimation theory we develop wavelet domain
thresholding rules which allow us to identify the coefficients relevant for
clutter and to suppress them to get filtered reconstructions.
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Introduction

Radar Wind Profiler (RWP) technology has reached a stage, where Meteorological
Services consider their operational use within the Global Observing System (GOS),
see [MC98]|. In this paper, we concentrate on systems which employ the widely used
Doppler-Beam swinging (DBS) method for the determination of the vertical profile
of the horizontal wind!.

These radar systems transmit short electromagnetic pulses in a fixed beam direc-
tion and sample the small fraction of the electromagnetic field, that is backscattered
to the antenna. (Due to the nature of the acting atmospheric scattering processes,
the received signal is several orders of magnitude weaker than the transmitted sig-
nal.) The received signal is Doppler shifted, which is used to determine the velocity
component of ”the atmosphere” projected onto the beam direction. As the occu-
pied spectrum bandwidth of the transmitted electromagnetic pulse is much larger

*The work has been supported by BMBF, 01 LA 9905/9.
!Under certain conditions, the vertical wind component can be measured additionally



(o< 1/7 & 100...1000 kHz) than the Doppler shift (f; = 10...500 Hz), the frequency
shift can not be determined from the processing of a single pulse. Instead, the re-
turn of many pulses is evaluated to compute the Doppler frequency from the slowly
changing (relative) phase of the received signals [BR86]. The samples at each range
gate form a discrete time series which are the raw data of the measurement (e.g.
[DZ93]). The reflected power, the radial velocity and the velocity variance (e.g.
the first three moments of the Doppler spectrum) contained in this data is usu-
ally extracted using the well established ’classical’ signal processing, as described
by [Tsu89], among others. Finally, at least three independent beam directions are
required to transform the measured ’line-of-sight’ radial velocities into the wind
vector.

The operational experience with these systems has shown, that the ”classical”
signal processing for the DBS method is not optimal with respect to the effective
filtering of non-atmospheric signals. Especially ground and intermittent clutter sig-
nals can lead to serious degradations of the computed winds. This problem is well
known within the profiler community and several methods have been proposed so
far. Especially time domain processing has recently become a matter of increasing
interest, probably due to the improved computational capabilities of modern Digital
Signal Processors. In this contribution we deal with wavelet based techniques. Re-
lated approaches were done in the papers/works of J.Jordan et al., J.Boisse et al..
The main problem with this method is that there exist no fine-tuning procedures so
far.

Generally, the purpose of radar signal processing is to extract the desired charac-
teristics of the atmospheric echoes. The goals of signal processing are thus [KP90]:

e to provide accurate, unbiased estimates of the characteristics of the atmo-
spheric echoes

e to estimate the confidence/accuracy of the measurement
e to mitigate effects of interfering signals
e to reduce the data rate

It must be noted, that signal processing includes all operations that are performed
on the radar signal, that is analog® as well as digital processing®. However, in
the following we will only concentrate on digital signal processing. The incredible
development of fast digital processors opens up new opportunities to optimize this
latter part of the signal processing chain.

Statement of the Problem

Classical RWP signal processing is visualized in Figure 1. So far, the currently
used digital processing (at least the processing that is implemented in commercially
available systems) assumes, that the signal consists of two parts: The signal that is
produced by one (and only one) atmospheric scattering process and noise (different

2amplification, mixing and matched filtering
3after A/D conversion
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Figure 1: The figure shows the flow diagram of ’classical’ digital signal processing.

sources, mainly thermal electronic noise and cosmic noise). This is certainly not true.
Additional signal contributions emerge from ground clutter echoes due to antenna
imperfections, i.e. sidelobes, intermittent clutter echoes due to fliers (planes, birds)
both in the main lobe and in the sidelobes of the antenna and occasionally spurious
Radio Frequency (RF) signals of internal or external origin. Especially at UHF,
the atmospheric signal itself can be the result of two distinct scattering processes
(at least at times), namely scattering at inhomogenities of the refractive index and
scattering at particles like droplets or ice crystals. So, even the desired atmospheric
signal may have different characteristics. However, here we will concentrate on the
clutter problem and demonstrate this by one typical example, where the standard
signal processing yielded erroneous wind data.

The 482 MHz wind profiler whose data are used in this study was installed at
the Meteorological Observatory Lindenberg in Summer 1996. The system is the
prototype for three additional profilers, which will be installed in Germany to sup-
plement the aerological network of DWD. A summary of the main characteristics of
the system is given below. For a more detailed description, the reader is referred to
[SDE*98]. The system is operated quasi continuously using a five beam configura-
tion. All the main parameters can be freely programmed, for special investigations.
In particular, for the investigation of the detrimental clutter signal that was present
in the systems East beam from the 30th November to the 1st of December 1999, the
profiler was operated for a short period using this beam (and low mode) only, while
the huge amount of timeseries data was stored for further investigation (namely the
Wavelet filtering). We now substantiate the radar parameter settings, that were



used in collecting the radar raw data.

Site name Lindenberg 482 MHz Profiler
Latitude 52.21 N

Longitude 1413 E

Altitude 103 m msl

Frequency 482.0078 MHz

One-way beamwidth 3 degrees

Number of beams 5

Zenith distance 15 degrees

Effective antenna area 140 m?

Pulse peak power 16 kW

Altitude Range 0.5 - 8.0 km (Low Mode)
Beamdirection East (Azimuth:79 Elev. 75)
InterPulsePeriod (IPP) 61 ps

Pulsewidth 1700 ns (Low Mode)
Delay to first gate 4800 ns

Gate Spacing 1700 ns

Number of gates 30

# of coherent integrations (NCI) | 144

# of spectral integrations 1 (none)

# of points on online FFT 2048

System Delay (w/ 1700 ns pulse) | 1550 ns

Table 1: Specification of RWP.

From the table of the radar’s parameter settings, we find that the spacing of the
timeseries data is At = NCI « IPP = 8.784 ms. This corresponds to a Nyquist
frequency of fy =1/2At = 56.92 Hz, which gives in turn the maximum resolvable
radial velocity vg = A\fy/2 = 17.6 m/s.

Clearly visible in figure 2 is the detrimental impact of ground clutter at the
heights around 1400 m and 3000 m. The computed winds are obviously wrong and
we will therefore look in detail into the problem. The gap in the data shown above
was caused by this detailed investigation as the radar was programmed to store time
series data for about 30 minutes in the East beam only, thus no wind computations
were possible for that period of time.

A more detailed look into the raw data (I/Q-Timeseries) of Gate 17 and 11
and the resulting power spectra (Figure 3) shows that advanced signal processing
for RWP is necessary to increase the accuracy of wind vector reconstruction. The
timeseries at Gate 11 shows the typical signature of a slowly fading, large amplitude
ground clutter signal component, which corresponds to the narrow spike centered
around point 1024 (zero Doppler shift) in the resulting power spectrum, compare also
[MS98]. In contrast, the timeseries at Gate 17 shows a strong transient component
in the last quarter. Such a signature is quite typical for a flier echo, as was shown
by [BKA99]. This transient almost completely covers up any atmospheric signal in
the power spectrum.
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Figure 2: The figure shows the final result of the measurement with the 482 MHz
RWP at Lindenberg (Germany) on the 30th November and 01st December 1999.
This system is a prototype for a planned operational network of RWP’s of the
Deutscher Wetterdienst and is described in detail by [SDE*98].

Applying Multiscale Analysis and Statistical Estimations

The main goal of the signal processing should be signal separation, i.e. a reliable
extraction of signal components (noise, clutter, interference) automatically and sta-
ble. New developments in digital signal processing may be classified basically in
three categories: time domain, frequency domain or wavelet domain operations.

The recently proposed algorithms in the wavelet domain aim at filtering of ground
and intermittent clutter [JLC97] and filtering of intermittent clutter [BKA99]. In
the time domain, the application of (digital) linear convolution filters (e.g. FIR*
filters) (band reject) to suppress or eliminate ground clutter contribution [MS98§]
and out-of-band radio frequency interference [WMLT99] (low pass) has been pub-
lished. The main purpose of all these operations is the filtering aspect, that is we
intend to ”clean” the raw data from contaminating signals while leaving the desired
atmospheric contribution ideally intact.

Historically®, there has been more emphasis on frequency domain processing,

4Finite Impulse Response

5Technically, the access to frequency domain data (i.e. spectra) is much easier as the data
volume is significantly reduced due to the data compression effect of the periodogram computation
and the spectral integration
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Figure 3: This figure shows the East beam and a detailed look into raw data.

mainly in the process of moment estimation. The difference with these methods
is, that one does not attempt to perform any ”cleaning” of data but rather to
select the right signal and perform moment estimation only with them. Several
criteria are used to make ”an intelligent” selection of the signal. Work on frequency
domain processing has been made by [CPT94, Gos97, Gri98, CGME98, STMW99,
WMWW99.

Motivated by [AU96, Dau92, Teo98, VK95, BF94, Kai94, LMR98, Mey93, K0093,
Hol95, MTWWO00] our purpose was to embed the filtering procedure into the known
mathematical theory of wavelets. Why should wavelets be used in RWP signal pro-
cessing? In general, in case of removing contamination or denoising the experience
shows that more than time domain filtering and Fourier domain filtering techniques
is required. Existing (and implemented) methods are frequently insufficient. But
more important is the fact that contamination appears often instationary and with
a priori unknown scale structure. Thus wavelet techniques seem to be more than
promising. Further, in order to localize clutter components one may use a great
variety of wavelet filters [Dau92, DMT00, Tes98, Sta92, DM95] i.e. to choose a cer-
tain wavelet one has to determine the properties of clutter or one select a wavelet
empirically.

The main emphasis of doing wavelet domain filtering is to create a suitable, i.e.
problem matched, coefficients selecting procedure. We apply statistical estimation
theory to separate the atmospheric component. A side effect of using statistics
is to get a measure of reconstruction quality (optimization with respect to a loss
function, estimation error). This reveals a objective evaluation and a self-acting
filter algorithm.

Before we start, let us briefly repeat the basics of multi scale analysis. Let ¢ be
some function from Ly(R) (space of functions of finite energy), such that the family



of translates of ¢ is an orthonormal system. We define
din(z) :=21%p(2x — k), j €L, ke

Further we define linear spaces by

Vo = {f(@)=) aplz—k) + Y |ef* < oo}

Vi == {h(z)=f(2z) : feW},j€L
Assumed that ¢ is chosen in such a way that the spaces are nested:

V; C Vi1, j €Z and that U V; is dense in Ly(R)

>0

then the sequence {V; , j € Z} is called a multi scale analysis. This concept was
introduced by [Dau92, Mal98, Mey93]. We call ¢ the father wavelet (often one
requires some regularity conditions). Furthermore one may define subspaces W, by

Viee:=V; 0 W,
and iterating this we have

UVi=Voe @ W, and Ly(R) = Vy & P W;.
J J

Assumed that our data may be described by some f € Ly(R) we can represent the
signal as a series
f@) =) adoe(z) + D> Birtik(a),
k ik

where {1} , k € Z (1 is called mother wavelet) is a orthonormal basis in W;.

This expansion is a special kind of orthogonal series. Hence it would be useful to
search in the framework of nonparametric statistical estimation theory for a appli-
cable method to solve our problem [DNvS98, GGH97, Wu99]. In case of orthogonal
series estimation the idea of reconstructing the desired atmospheric signal is simple.
Primary we replace the unknown wavelet coefficients in the wavelet expansion by
estimates which are based on observed data. Hereafter we need a selection procedure
to select relevant coefficients.

Let us go into the details. In advance we briefly remark that in the following
section we assume that our signal belongs to some Besov scale. This guarantees
that functions (or signals) of manifoldly structure are covered in our considerations.
A Besov scale B, is a function space depending on three parameters (s >0 -
smoothness, 1 < p < oo and 1 < g < 00). The here used facts of estimation theory
are available for a great set of these spaces [DJ92, DJKP93, JS97, vSM98, HKPT98].
If we may identify our signal as an element of one of these spaces (and indeed we can)
we can adapt wavelet threshold estimators. The main advantage in this framework
is that we may use existing rules for evaluating lower and upper bounds and rates of
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convergence for our loss function (which describes the quality of our reconstructed
atmospheric signal component). Optimizing bounds and rates of convergence we get
self acting algorithms.

For our utilization it is sufficient to say that f € B, if and only if

1/q
Jopa(F) =l |ls, + (Z<2j(3+1/2‘1/p)||5j.||lp)q> < oo

j20

We are looking for optimal reconstructions for function belonging to some subspace
Fopo(M) = {f: Jspg < M}. For the simple case that the function is in Ly(R) we
determine s =0 and ¢ =p A 2.
From given measurements (Y7, ...,Y,) we want to estimate the function f in the
simple model
Y = f(Xi) +e4,

where the X; are on a regular grid and ¢ is a random variable (or more general a
stochastic process). The basic idea is to replace the wavelet coefficients in the series
expansion by empirical estimates

N T
Qj = — ZYE ~pk(Xi) and By = - ZYz' Y (Xi),
i=1 i=1

where the X; are timestamps and the Y; are observations. A straightforward linear
estimation is given by the projection onto a subspace Vj,

J1
Fin@) =" dorion(®) + DY Bistbjn(x)-

k Jj=jo k
To appraise this estimator it is known that one may solve the expected loss or the
risk (in Ly sense) E||f;, — f||3. This measure is the so-called MISE (mean integrated
squared error). To determine the MISE one may decompose it into E||f;, — Ef; |2
(stochastic contribution) and E||Ef;, — f||3 (deterministic contribution). Under
certain conditions one may find bounds for MISE:

9J1+1

sup ”th - f||2 < CMQijls and E”fjl - Ef]l”% < C
Fgo2(M) n

and hence

. - 20 .
sup B fj, — fIl} < C— + Cu277.
fEFS(M) n

A minimum of the sum is given by

A A __2s
sup  E|fj, — flls < Cn7>,
feFs, (M)

furthermore one can generalize this result for p > 2

sup  E|fy, — fIIp < Cn- 21,
e ()



This tells us by which finite number the maximum risk is limited. It becomes smaller
if the number of observation increases. For detailed computations of upper and lower
bounds see [vSM98, DJKP93, DJ92, DNvS98].

Obviously this kind of linear estimation includes oscillating components, in par-
ticular the clutter components. This phenomenon occurs, because we have taken
the whole set of wavelet coefficients , i.e. we have not performed any filtering step
so far. In the following, we need a suitable selection procedure for the coefficients
to perform the necessary filtering step.

We want to apply so-called hard thresholding and soft thresholding respectively.
These routines were introduced and adapted to several problems by Donoho and
Johnstone [DJ92, DJKP93]. Inspired by these easy to implement procedures we
adjusted it to our problem.

The functions of soft and hard thresholding are given by

n*(u) = (Ju] — A)4sgn(u) and n"(u) = ux{u>»} respectively.
Here X is a adequate threshold. Applying this rule to our linear wavelet estimator
we get a nonlinear estimator

ZT} a’jok (Pjok + ZZT/ 5jk %k

Jj=jo k
where n* is n° and n" respectively.

If the threshold A is specified according to the asymptotic distribution of the
empirical coefficients, only those coefficients remain which are supposed to carry
significant signal information. These are finally used for the reconstruction by in-
verse wavelet transform. For the right level of significance an appropriate choice
of the threshold A is needed, which in general depends not only on the sample size
n, but also on the resolution scale j and location k of the coefficients. In case of
regression with non-stationary errors we have to use a both level and location de-
pendent threshold rule [vSM98]. The resulting non-linear estimator does not only
provide local smoothers, but in very many situations achieves the near-minimax Lo-
rate for the risk of estimation, i.e. [vSM98] for (random) thresholds \;; satisfying

ojky/21log M; < A\jp < C\/k’% for any positive constant C'

sup  E[|f* — flI3 = O ((log(n)/n)**/tV)) ,
feFs, (M)

where o0, is the variance and M; denote the number of the coefficients used in the
nonlinear estimator. The optlmal threshold rate (1/n)%¥/(2s+1) is attained only for the
optimal threshold. But in practice this is unknown. Therefore we have to replace o,
by some estimation &, and this results in random thresholds Az = /2 log M;.
Hence the log-term is to understand as the price for some data-driven threshold rule
and it originates due to the estimation of the unknown variance af-k = Var(Bjk).

We conclude that we may adapt an estimation rule for our desired atmospheric
signal component where the quality is measurable in the sense of Ly-risk. This
means the used procedure displays upper and lower bounds for our reconstruction
and we may easily determine the rate of convergence. The calculation of the wavelet
coefficients can be done by using the fast wavelet algorithm which is very pleasant
for implementing.
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Figure 4: Left: The flow diagram extended by the wavelet tool. Right: The wavelet
algorithm flow diagram.

Removing clutter

In this section we want to put the theory into practice. For a better understanding
we particularize Figure 1 to see where we have inserted the wavelet tool. A more
substantiated algorithm flow diagram is shown in Figure 4.

To be more practical and concrete we want to use our example (see Figure 3) to
demonstrate our procedure. We are using I/Q-timeseries and resulting power spectra
of gate 17 and 11. The problem was that gate 17 was contaminated by intermittent
clutter (aircraft echoes) and gate 11 by ground clutter. Using customarily signal
processing the spectra were significantly biased and therefore the moment estimation
and in the end the wind vector reconstruction. Figure 5 shows exemplarily how
wavelet thresholding was realized in decomposition sequences ay4. and ;. of gate 11
and 17. The dotted lines may be identified with threshold 4.
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Figure 5: Decomposition (sequences of level 4), reconstruction and Fourier power
spectrum of gate 17 (top) and gate 11 (below). The dark curves in the power
spectra representations display the decontaminated spectra. Clearly to recognize
are the differences of moment estimations, see the computed first moment before
(red arrow) and after (blue arrow) the filtering step.

Conclusions

e We have demonstrated wavelet domain filtering using real wind profiler data

e Ideas of discrete multiscale analysis and nonlinear estimation theory were used
and developed for removing ground and intermittent clutter (aiplane echoes)

e The presented algorithm is a step toward removing clutter automatically and
stable

e Real time implementation in profiler systems is required to test the new
method with a substantially longer dataset, preferably in parallel with the
standard processing (comparison), and to demonstrate its use for operational
applications
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