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Abstract

For a nonlinear system with a singular point that is locally asymptotically nullcontrollable
we present a class of feedbacks that globally asymptotically stabilizes the system on the
domain of asymptotic nullcontrollability.

The design procedure is twofold. In a neighborhood of the singular point we use lin-
earization arguments to construct a sampled (or discrete) feedback that yields a feedback
invariant neighborhood of the singular point and locally exponentially stabilizes without
the need for vanishing sampling rate as the trajectory approaches the equilibrium. On the
remainder of the domain of controllability we construct a piecewise constant patchy feed-
back that guarantees that all Carathéodory solutions of the closed loop system reach the
previously constructed neighborhood.

1 Introduction

It is the aim of this paper to present a procedure to combine local stabilization procedures
with global ones to obtain a globally defined feedback with desirable properties near the fixed
point that are designed using inherently local arguments. Specifically, we use linearization
techniques at a singular point to find control Lyapunov functions that yield sampled feedbacks
that exponentially stabilize with non-vanishing sampling rate. Globally, we use ideas for the
construction of piecewise constant feedback in order to control the system to the neighborhood,
where the sampled feedback is in force.

It is known that asymptotic nullcontrollability is equivalent to the existence of a control Lya-
punov function, see [20], and in recent years numerous papers have appeared on the question
on how to construct stabilizing feedbacks from such functions, see e.g. [6, 7, 11, 12, 19]. A
fundamental question in this area is precisely the question of the underlying solution concept for
which the constructed feedback should be interpreted. Often sampling concepts are considered,
which have the advantage to avoid the topological pitfalls associated as well with continuous
feedbacks, see [3, 19] and [5], as with discontinuous feedback in the sense of Filippov solutions
[18]. Unless added structure like homogeneity is used [11], the sampled feedbacks often require
vanishing sampling intervals as the trajectory approaches the origin. From a practical point of
view, this appears to be undesirable.
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For our local considerations we will rely on the work of Griine, who has shown for linear and
more generally homogeneous systems how to construct discrete feedbacks that stabilize the
origin where the sampling rate can be chosen to be positive [11, 12]. In fact, in [10] Griine
also shows that this procedure works locally for general nonlinear systems if the linearization
is asymptotically null-controllable. Unfortunately, the results in that paper do not provide
feedback invariant sets, which we will need in order to construct well defined feedbacks. Here,
we will employ ideas from nonsmooth analysis already used in [6, 11] to regularize a known
control Lyapunov function.

The local method will be combined with ideas that are inherently global in nature and that
all depend in one way or another on the construction of piecewise constant feedbacks. This
line of thought can be found in [15, 4, 16, 1]. We follow the line of reasoning of the paper of
Ancona and Bessan [1] as it has the advantage of guaranteeing properties of all Carathéodory
solutions generated by the discontinuous feedback. A question that is unfortunately neglected
in the other references on this subject, which makes some statements in [15], [4, Chapter 12],
[16] somewhat imprecise, as it is unclear, to what solution set statements on “all solutions”
refer. One has to interpret these constructions carefully, by just considering the solutions that
were intended, while constructing the piecewise constant feedback, which leaves a less than clear
picture of the value of such constructions. Note, that also in the seemingly easier problem of
feedback controlling the system to a set we cannot always rely on controllers in the Filippov
or Krasovskii sense, as then extensions of the arguments in Brockett’s work provide topological
obstructions to the existence of such controllers, see [17].

The theoretical interest in this is that one obtains in this way a construction of a feedback
that globally stabilizes the system without the need for increasingly faster sampling near the
origin to ensure convergence. Also the local construction is computable as discussed in [11].
The piecewise constant approach has been implemented by Lai [15], and we expect that the
necessary refinements due to the more careful analysis necessary pose no major problems. This
remark is speculative, as we are not aware of any existing implementation. We do not discuss
perturbation problems in this paper. Outer perturbations for the local and global procedures
are discussed by Griine [10], respectively Ancona and Bessan [1]. The problem of measurement
noise, however, persists, see the discussion in [19].

In the following Section 2 we define the system class and make precise what we mean by a
feedback in the Carathéodory and in the sampled sense. The ensuing Section 3 details a special
class of Carathéodory feedbacks, that are defined by patches in a piecewise constant manner.
The key in this definition is an “inward pointing” assumption which guarantees that there are no
solutions with behavior other than the one intended in the construction of the patches. We show
that we can always construct a patchy feedback controlling to an open set B from its domain
of attraction. If we want furthermore, that there are no solutions existing for all positive times
in the domain of attraction we need a further inward pointing assumption on the boundary of
the open set B. In Section 4 we make the further assumption that the system is C? in the state
and has a singular fixed point. Under the assumption that the linearization is asymptotically
nullcontrollable we construct a feedback in the sense of sampling for the nonlinear system, which
renders a neighborhood of the fixed point feedback invariant and guarantees local exponential
stability for the closed loop system. In the final Section 5 we show that the previous constructions
can be used in a complementary fashion. In particular, the inward pointing condition is satisfied
on a suitable sublevel set of a control Lyapunov function, so that we can apply the results of
Sections 3 and 4 to obtain a global feedback strategy, that is “hybrid” in the sense that we
employ different notions of feedback in different regions of the state space.



2 Preliminaries

We study systems of the form
z = f(z,u), (1)

where f : R" x U — R" is continuous and locally Lipschitz continuous in z uniformly in u. Here
U C R™ is a compact convex set with nonvoid interior. The unique trajectory corresponding to
an initial condition ¢ € R" and u € i := {u : R — U | u measurable} is denoted by z(-; zg,u).
A feedback for system (1) is a map F : U — R". If F' is not continuous (as will be the case in
the feedbacks we aim to construct) this immediately raises the question what solution concepts
are appropriate for the solution of the discontinuous differential equation & = f(z, F(z)). A
number of concepts have been put forward to deal with these problems. We therefore propose
to always regard feedbacks along with the notion of solution that is considered.

Definition 2.1 (Carathéodory closed loop system) Consider a feedback law F : R* — U.
For an interval J C R a Carathéodory solution 7 : J — R” of

& = f(z,F(z)) (2)

is an absolutely continuous functions x : J — R" such that © = f(z, F(z)) almost everywhere.
The map F is called a C-feedback, if we consider Carathéodory solutions of (2).

Note, that the definition of C-feedbacks does not require or guarantee that there exist any
solutions to (2) or that there should be uniqueness. In the spirit of the remarks by Hajek
[13], we simply refer the statement of necessary conditions for this to possible existence results.
In a similar spirit one might define K- or F-feedbacks, where solutions are interpreted in the
Krasovskii or Filippov sense. The second notion of solution we are interested in is the following.

Definition 2.2 (Sampled closed loop system) Consider a feedback law F : R* — U. An
infinite sequence ™ = (t;)i>0 with 0 = to < ... < t; < tiy1 and t; — oo is called a sampling
schedule or partition. The values
Ai = tz'_|_1 — ti , d(7r) = Sup A«L
1EN

are called intersampling times and sampling rate, respectively. For any sampling schedule 7 the
corresponding sampled or w-trajectory x.(t,zo, F) with initial value zo € R" and initial time
to = 0 is defined recursively by solving

@(t) = fx(t), F(2(t:), t€titin], (t)=x(ti,z0, F). (3)

The map F is called a sampled (or discrete) feedback if we consider all sampled solutions of (3)
and h-sampled feedback if we consider all solutions corresponding to sampling schedules w with

d(m) < h.

Note that the definition of sampled feedbacks guarantees existence and uniqueness of w-trajectories
in forward time, on the respective interval of existence. On the other hand, nothing prevents
trajectories from joining at some time instant.

A specific point of this paper is that we allow to switch between different solution concepts
in different regions of the state space. In order to obtain a well defined global feedback we
will require, that the region where a sampled feedback is defined remains invariant under the
sampled solution in the following sense.



Definition 2.3 A set B C R" is called (forward) feedback-invariant under h-sampling for sys-
tem (1) with respect to the feedback F, if for any initial condition xy € B and any sampling
schedule w with d(w) < h it holds that

Z(t;z0, F) € B for allt > 0.

Note that it is a peculiarity of sampled feedbacks, that the corresponding trajectories may
for short times exist on regions of the state space where the sampled feedback is not defined,
simply by leaving this area and returning before the next sampling instant. This is of course,
somewhat undesirable and it is one of the aims of the paper to show how it can be prevented.
The corresponding idea has already been used in [6], [11], [12].

3 Practical feedback stabilization with patchy feedbacks

In this section we study the system

j;:f(a:,u), (4)

with the properties stated in Section 2. We are interested in applying the concept of patchy
feedbacks that have recently been introduced in [1]. We slightly extend the definition to allow
for less regularity. In particular, we replace the definition of inward pointing in terms of outer
normals by the appropriate concept from nonsmooth analysis.

Let B be a closed subset of R", if z ¢ B, and if a point y € B is closest to z, i.e. dist(z,B) =
lx — y||, then z —y is said to be a prozimal normal to B in y. The cone generated by taking all
positive multiples of these points is called prozimal normal cone to B in gy, denoted by NV g (y),
which is set to be {0} if no proximal normal to y exists. One of the interests in this cone stems
from the following characterization of strong invariance. Consider a locally Lipschitz continuous
set-valued map F : R* — 28" with nonempty compact convex values. Here Lipschitz continuity
means that for every compact set K C R” there exists a constant L such that

F(:L‘l) CF(.TQ) +L||:L‘1 —ICQHB(O,l), Vzi1,20 € K,

where as usual we denote A+ B :={z+y |z € A,y € B} for sets A, B C R". The map F gives
rise to a differential inclusion defined given by

z € F(z),

where as usual solutions 7 are absolutely continuous functions such that 4(¢) € F(vy(¢)) almost

everywhere. Then a closed set B is strongly invariant ( i.e. no trajectory leaves B) if and only
if

max{((,w) | ¢ € Nj (z),w € F(z)} <0, ()

see [8, Theorem 4.3.8].
We now introduce the notion of patchy vector fields slightly extending the notion of [1].

Definition 3.1 Let Q C R™ be an open domain with boundary 0N and let D C R™ be open. A
Lipschitz continuous vector field g defined on a neighborhood of c1€) is called inward pointing on



(0Q)\ D, if for every compact set K there ezists a constant ¢ > 0 such that for all x € KNON\ D
it holds that

max{{¢,g(x)) | ¢ € Ny ()} < —¢[[¢[l,

where n(x) denotes the outer normal of O at . The pair (2, g) is called a patch.

Definition 3.2 Let 2 C R" be an open domain. We say that g : 0 — R” is a patchy vector
field if there exists a family of patches {(Qa,9a) | @ € A} such that

(i) A is a totally ordered indez set,
(ii) the open sets Qo form a locally finite cover of €2,
(iii) it holds that

9(z) = galz) ifz € Q0 U Q.
B>a

(iv) for every a € A the vector field g, is inward pointing on (02,)\ U Q3.
B>a

Patchy vector fields g and solutions to the differential equation & = g(z) are discussed in detail
in [1] for the case that the boundaries of 2, are C'. The arguments, however, carry over to our
definition. For Carathéodory solutions it can be shown that to each initial condition there exists
at least one forward and at most one backward solution. Furthermore, along each Carathéodory
solution z it holds that ¢ — max{a € A | z(t) € Q4} is nondecreasing and left continuous (with
respect to the discrete topology on A). In an example [1, p. 457 fI.] the differences to other
solution concepts are explained®.

Note furthermore, that by [13, Lemma 2.8] the set of Krasovskii and Filippov solutions for patchy
vector fields coincide, but we will not dwell on this issue, as in this article only Carathéodory
solutions will be considered and will be henceforth called solutions for the sake of brevity.

We will now turn to the problem of practical feedback stabilization based on the concept of
patchy feedbacks. Assume we are given a totally order index A, open sets Q,,a € A and
functions F, : W, — U,a € A, where W, is an open neighborhood of ,. We say that F is a
patchy C-feedback for system (4), if

(i) F(z) = Fa(z) if 2 € Qq \ ﬂL>J O,

(ii) f(z, F(z)) is a patchy vector field on Q := UQ,.
Given a set Q C R" and an open set B C () we define the backward orbit of B relative to () by
O (B)g:=={y€R" |3t >0,uc€U:z(t;y,u) € B and z(s;y,u) € Q,s € [0,¢]}.  (6)

Note that it is obvious by definition that O™ (B)g C Q. Furthermore, it is an easy consequence
of continuous dependence on the initial value that (’)Z)(B) is open, if @) is open.

ncidentally, note that in this example not all maximal Filippov solutions are given, contrary to what is
claimed. The ones that remain in (0,0) for some interval [1,r] and then follow the parabola to the right are
missing.



Definition 3.3 System (4) is called practically C-feedback controllable if for every closed set
Q CR" and every open set B C Q there is C-feedback Fp g : O™ (B)intg \ c1B = R so that

(i) for every x € O™ (B)intq \ ¢l B there exists a Carathéodory solution y with v(0) = z,

(i) for every Carathéodory solution vy starting in £ € O™ (B)intq \ c1B of

&= f(z,Fp,q(z)),
there is a time T such that v(T) € 0B.

Note that we do not require anything with respect to controllability on the boundary of Q). The
reason will become clear in the construction of the proof, where we will approximate measurable
controls by piecewise constant ones. The following result shows that the foregoing notion of
practical feedback controllability is always fulfilled.

Theorem 3.4 System (4) is practically C-feedback controllable using patchy C-feedbacks.

The proof of this statement follows the ideas explained in [1], with the necessary modifications
for our case.

Proof: Let @ be closed and B C @ be open. Let £ € O™ (B)int @ \ ¢l B, if the set is empty there
is nothing to show. We will first construct a patchy feedback in a neighborhood of a trajectory
from z to B. In a later step we will construct the global patchy feedback from these smaller
entities.

Since B is open and the set of piecewise constant controls is dense in U there exist T" > 0 and
a piecewise constant control u such that z(T;z,u) € B and z(t;z,u) € int Q for all ¢ € [0, 7).
We may assume that v(-) := z(-;z,u) is injective on [0,7], as we may otherwise cut away
“loops”. We denote the points of discontinuity of u by tg = 0 < 1 < ... < tx = T and let
v 1= ’U,(S), ENS (tj_1,tj),j =1,...,k.

The essential idea due to Ancona and Bessan now consists in enriching the systems dynamics
around our trajectory of interest. Choosing po, xo > 0 small enough, it may be seen that for
any 0 < p < p*,0 < x < x* any solution y of the differential inclusion

#(t) € f(=(t),u(t)) + B(0,x) (7)

with initial condition y(7) =y, 7 € [0,T],y € B(y0(7), p) exists on the interval [, T]. Further-
more, a constant ¢y may be chosen such that it holds that

sup  [[7(t) = @)l <clp+x), 0<p<p0<x< X"
te[r,T+p]

From this we conclude inductively for j = 1,... ,k — 1 as follows. If
Jj—1 _
z€B (’Yo(tj)a D chx+dp+ x))
=1
and v is a solution of (7) with y(¢;) = Z, then it follows that

J
sup  [Iv(®) — (@) <Y chx+c T o +x), (8)
te [tj 1T+p] =1



provided that p, x are chosen small enough so that all sums are bounded by x*. We now choose
po > 0,x0 > 0 such that additionally

k—1
D dox + cf(p +x) < dist (%(T),0B)/2,
=1

and define
P1 = Po > ZCOQXO-l_ PO+2X0) J:277k

Now consider the differential inclusion
i € f(z,0;) + B0, x0).- )
Given z € R" the reachable set at time ¢ is defined by
Ri(z) := {y € R" | Iy solving (9) such that v(0) = z,v(t) = y} .

Then in an obvious way for a set W C R" and an interval [0, %] we denote Ry (W) := URs(z),
where the union is taken over s € [0,],z € W. We abbreviate R; := Rygs, 4,_ 1](B(fyo( 1),05))s
and define artificially Ry := B, to handle the final set.

Now consider y € (O0R;) \ Rj+1,J = 1,... ,k. By the construction of the constants p; and xo
this implies that y = v(7) for some solution of (9) with v(0) € B(yo(tj—1),p;) and 7 < t; —t;_1.
By (5), and using the fact that by definition no solution of (9) can leave R; at z we have that

{¢w) <0, for all ¢ € Ng, (y),w € f(y,v;) + B(0, x0),

which using the particular choice w¢ := f(y,v;) + x0¢/||¢|| implies immediately that

This implies that for all y € (OR;) \ Rj+1, ¢ € Ngj (y) we have

(€ f(yv5)) < —xoll<ll,

and hence f(-,v;) is inward pointing on (OR;)\ Rj+1. Now, we use the usual order on the index
set Ay :={1,... ,k} and define for some 1 > 0, the feedback F;(z) = v;,z € R; +nB(0,1),j =
,k. Then the patchy C-feedback F, defined on Q, := UleRj has the property that all
solutions starting in a €, \ B reach 0B at a time T), < T + p, using (8).
If we now take a compact subset KX C O (B)in;g, then we obtain an open cover of K by
performing the construction of €2, for every z € K. We may choose a finite subcover Q,,... ,Qy,
and define the overall index set Ax = {(¢,7) | ¢ =1,...,l;j =1,... kg, }, where k;, denotes
the number of patches composing ;.. This index set may be ordered by (i1,71) < (ig,j2) if
11 < 49 or in the case of equality ¢ = ¢; = 42 by using the original order among the index set
Ay, for the j-component. The result now follows by taking an increasing family of compact
subset K;,i € N, K; C K;41,i € N with UjenK; = O (B)int @ \ ¢l B and ordering the index set
accordingly. [l



Note that we have not shown, that there is no solution y with ¥(0) € O (B)int ¢ \ ¢l B such that
v(t1),v(t2) € cl B for some 0 < t; < t3. For this we need the added requirement that the entry
into the set is “non-tangential” in the sense of proximal normals. For our goal of stabilization
it is of course essential that such “double” touching is not possible, for otherwise we cannot
exclude the possibility that some trajectories evolve in O~ (B)in; ¢ \ B for all times under the
patchy C-feedback, we have constructed.

Corollary 3.5 Let Q C R" be closed and B C intQ be open and bounded. Assume that for
every © € OB there exists a u € U such that the inward pointing condition

max{(¢, f(y,u)) | ¢ € N (y)} < —<l]l, (10)

is satisfied for oll y € OB in a neighborhood of x, then there is a piecewise constant patchy
C-feedback F so that for every trajectory « starting in x € O™ (B)intg of

&= f(z,F(x)),

there is a time T such that v(T) € 0B. Furthermore, F' can be chosen so that there exists no
trajectory v on an interval J such that y(t1),y(t2) € OB for t; <ty € J and y(t) ¢ B else.

Proof: In view of Proposition 3.4 we only have to construct suitable patches at the boundary
0B, as we have already shown the existence of the desired patchy C-feedback away from cl B.
Let z € 0B and u € U be such that (10) is satisfied. Now this assumption guarantees that in
a sufficiently small neighborhood W, of z any solution z(-;y,u) of £ = f(z,u) with y € W,
satisfies

dist (z(t;y, u), cl B) < max{dist (y,cl B) — nt,0}

as long as z(t;y,u) ¢ clB, for a suitable n > 0, see [8, p. 220]. We may therefore construct
a patch ;. u as a neighborhood of z contained in W, as in the proof of Proposition 3.4. We
perform this for every z € 0B and invoking compactness choose a finite cover € ,,... ,§;, of
0B. Let § = min{7n;,,... ,7g, }- Then in a neighborhood of cl B we have that any solution of
the Carathéodory closed loop system approaches cl B linearly in t. Now, it is immediate that
no solution +y can exist such that y(¢) € cl B at two different time instances. g

In [15] the author proves the above result and imposes two further conditions: that the system
be affine in the controls and locally accessible. We have seen that this is indeed not necessary.
However, the aim in [15] is different, as there the feedback is defined using just extremal values
of the set U thereby reducing the complexity of actually designing such a patchy feedback (in
particular if U is a polyhedron). We note the following corollary, in which we see that local
accessibility is unnecessary in any case. We denote the set of extremal points of U by ext U.
Recall that the set of extremal points of a compact convex set need not be compact.

Corollary 3.6 Consider the system
m
& = folz) + ) uifi(w) (11)
i=1

System (11) is practically feedback controllable using patchy feedbacks, with values in ext U.



Proof: By convexity of U and using the affine structure of system (11) all trajectories can be
approximated uniformly on compact intervals by trajectories generated by controls with values
in ext U. Thus the control u at the beginning of the proof of Theorem 3.4 can be chosen in
L>®(R,ext U). Now the result follows by repeating the remainder of the proof of Theorem 3.4. U

4 A sufficient condition for local sampled feedback stabilization
with positive sampling rate

In this section we give a brief review of the result of Griine for local stabilization at singular
points. For us there remains one detail to supply, namely that the control Lyapunov functions
constructed in [11] remain control Lyapunov functions for the nonlinear system.

z = f(z,u), (12)

where we assume in addition to the assumptions previously stated that f : R* x U — R" is twice
differentiable in = and, furthermore, that 0 is a singular point for (12), i.e. f(0,u) = 0 for all
ueU.
We are interested in constructing a locally stabilizing feedback F' : R* — U that stabilizes in
the sense of sampling, see Definition 2.2. The local design procedure we will investigate relies
on linearization techniques. We thus introduce the linearization of (12) in 0 with respect to =
given by

2(t) = A(u(t))2(t) , (13)
where A(u) denotes the Jacobian of f(-,u) in x = 0. We assume that A(-) : U — R"*"
is Lipschitz continuous. The trajectories of (13) are denoted by z(-;zp,u). It is known that
asymptotic nullcontrollability of system (13), i.e. the property that for every z € R" there exists

a u € U such that z(¢; z,u) — 0, can be characterized via the use of Lyapunov exponents. These
are defined for initial conditions z # 0 and u € U by

1
Az, u) := limsup - log ||z(¢; 2, u)]| -
tooo

Indeed by the results in [10] asymptotic nullcontrollability of (13) is equivalent to the requirement

X :=sup inf \(z,u) <0. (14)
20 WEU

An approximation scheme that has been investigated in proves to be successful. The linear
system (13) can be projected to the sphere, where it satisfies § = A(u)s — (s, A(u)s)s. Denoting
the radial component g(s,u) := (s, A(u)s) we obtain that the Lyapunov exponent for z € K*\{0}
is given by

t—00

t
Mzow) = A2/ 2], u) zlimsup%/o o(s(r, 2/ 2] u), u(r))dr .

Instead of considering this infinite horizon averaged integral we approximate by

Js(z,u) = /000 e q(s(7),u(r))dr, and vs(y) := 1116115 Js(y,u) . (15)
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Then it can be shown that (14) is equivalent to the existence of a dp > 0 small enough such that

né%xvg(y) <0, forall0<d<dp. (16)
y n

In [11] it is shown that vs(y) gives rise to a control Lyapunov function for the linearized system
(13). We briefly recall the relevant notions. Given a continuous function V : R* — R and v € R”
the lower directional derivative of V in z in direction v is defined by

1
V(z;v) := liminf =~ (V(z+t') =V .
DV (x;v) t\l‘IOT’lvlln V7 (V(z+tv) (z))

Two continuous functions V,W : R" — Ry( are said to be a control Lyapunov pair for system
(12), if they satisfy the following requirements:

(i) (positive definiteness) V(z) > 0 and W(z) > 0 for all z € R*\{0}, and V(0) = 0;
(ii) (properness) The set {z|V(z) < S} is bounded for every g > 0;

(iii) (infinitesimal decrease) For all z € R" it holds that

i DV(zv) < —W(z). 17
omin DV (z0) < W (2 (17

The function V is called control Lyapunov function, if there is a W such that (V, W) is a control
Lyapunov pair. The function v gives rise to a control Lyapunov function for (13) as follows.

Lemma 4.1 [11, Lemma 4.1] For every p € (0,)) there exist a 6, > 0 such that for every
d € (0,6,) the function V5 : R* — R defined by V5(0) = 0 and

Vs(z) = e P|2)?, 2z #£0, (18)

satisfies
in  DVj(z;0) < —2pV; 19
el s(zv) < —2pV5(2) (19)

Note that by definition we have the homogeneity property Vs(az) = a?Vs(z),a > 0. In general,
Vs is only Hoelder continuous. We follow an approach originating in [6] and employed for
our special case in [11] that obtains Lipschitz continuous Lyapunov functions from V;. This
also yields Lyapunov functions that describe feedback invariant sets as already remarked in [6,
Lemma IV.2]. We introduce the (quadratic) inf-convolution of Vs given by

. 1 2
Vala) = it |Vilw) + 55l | (20)
This function is Lipschitz for 8 > 0 and converges pointwise to V5 as 8 — 0. Furthermore, the
homogeneity of V5 implies that we also have Vz(az) = a?Vj(z). For z € R* we denote by ys(z)
a minimizing vector in (20), which exists by continuity of Vj, and introduce the vector

_ 7 —yp(x)

Gpla) = =g (21)
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By [6, Lemma III.1] we have for all z,v € R” and all 7 > 0 that

v|l?

2(32
which can be interpreted as a Taylor inequality for V3 in direction v. The following statement
shows that we retain the property of being a control Lyapunov function if Vj is replaced by Vj
where § > 0 and 8 > 0 are small enough. The feedback we envisage is now given as a pointwise
minimizer of ({g(z), A(u)z), that is F(z) is chosen so that

(Ca(2), A(Fp(2))2) = min(Cs(2), A(u)2). (23)

Va(z + mv) < Va(z) + 7(Cs(x),v) +

(22)

This choice is of course not unique, nor can we expect that a regular choice is possible, we will
however always assume that we have obtained a pointwise minimizer satisfying Fjg(az) = Fj(z),
for z € R*, a > 0, which is easily seen to be possible.

We quote the following result by Griine in a slightly extended manner that also states interme-
diate statements of the proof that we will need later on. We denote

t
Ay =5 [ AEpGa))strizo, Foo) dr

and

M := max {Qma.x |A(u)||, sup ||f($,u)||} . (24)

uctl llzl[<2,ueU

Proposition 4.2 [11, Proposition 4.2] Assume that system (13) is asymptotically nullcontrol-
lable and let p € (0,)). Let 0 < § < 6,, where d, is defined in Lemma 4.1. Then there exists a
B € (0,1], such that

in  DVs(z;v) < —2pV, 25
eln 3(z;v) < —2pVs(z) (25)

for all z € R*. Furthermore, there is a t > 0 such that

2

Vilalts 20, Fp(an))) ~ Valo) < 8Gp(a0), ALy) + £ 35 < ~5toVia).

for all zo € R* and all 0 < t < t.

The previous result contains all the arguments necessary to prove that Fj is indeed a ¢-sampled
stabilizing feedback for the linearized system (13). We now wish to carry the result over to a
local statement for the nonlinear system (12).

Given that Vj is a control Lyapunov function it is no real surprise that it is also one for the
nonlinear system (12) in a neighborhood of the origin as we show now. To this end we need the
following technical lemma. We denote

c:= inf ws(z) and T:= sup ws(2).
z€R™\{0} z€R™\{0}

Lemma 4.3 For all z € R* and all 8 > 0 it holds that

lys(2) — 2Il < V2e7|z]|.
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Proof: By definition we have that V3(z) < Vs(2) for all z € R". Now the assertion follows from

#IIW(Z’) —2|” = Vj(2) — Va(ys(2)) < Va(z) — Valyp(2)) < Vs(z) < ||z, 0

Theorem 4.4 Consider the nonlinear system (12) and its linearization (13). Assume that (13)
is asymptotically nullcontrollable. Let p € (0,)), 0 < 6 < d, and assume furthermore that t > 0
and B € (0,1] are chosen such that the assertion of Proposition 4.2 hold. Then there exists
constants R > 0,t > 0, such that

in  DVy(z;0) < —pV, 26
et 3(z;v) < —pVp(z) (26)

for all z € c1 BR(0) and
Vi (z(t; 20, Fs(20))) — V(o) < —tpVs(xo) (27)

for all zg € c1 BR(0) and all 0 <t < 1.

Proof: For the sake of abbreviation we denote f := f — A and

t
oo = %/0 f(z(1; w0, F(20)), Fg(20)) dT-

Let M be as defined in (24). Then by decreasing ¢ if necessary we have that || f£ || < M for all
zo € c1B1(0) and all 0 < ¢t < ¢. By [4, Lemma 12.2.10 (iii)] there exists a constant C' > 0, such
that

12 (t; 20, Fy(x0)) — 2(t; 20, Fg(20))|| < Ctlzo]|? (28)
for all 2y € c1B;(0) and all 0 < ¢ < t. Now by Lemma 4.3, (28), and the definition of {5 we
obtain for all 7y € ¢l B1(0) and all 0 < ¢ < ¢ that

(z0) — zo|

(o), fh— ALY < lcs@)lIft, — AL | = 199 o=l - 4t

To) — bz
_ W /0f(:v(r;ﬂco,Fﬁ(iKo))aFﬁ(%))dT
< %Hﬂt; 20, Fg(z0)) — 2(t; 20, F (o))
< \/?UCH!FOH?)- (29)

Using Proposition 4.2, (22), the definition of M and (29) this implies that
V(@ (t; 2o, F(20))) — Va(wo) = Vp(zo +tfz,) — Va(@o)

17512
< t(Cﬁ(iL'o),f;O)—th 2,62
2
< t(¢p(wo), AL,) + ti‘% +t(¢s(z0), fh, — AL,)
< ~SipVaten) + tUeplao). 1L, — AL)
= <_gpvﬂ($o) + ﬁ;mnw)
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for all zy € c1 B1(0) and all 0 < ¢ < ¢. Define

sup M = sup T\/ieEC
lef=r  BV8(®)  jzi=1 AVs(z)’

where we have used the homogeneity of V5. Now choose R > 0, such that

Xr ‘=

1

XR < §P>> (30)

and it follows that
3
Valalt o, Fp(au)) ~ Va(eo) < ¢ (~3p-+ x) Valan) < ~toVia)
for all zyp with ||zg]| < R and all 0 < ¢ < {. This implies the assertion. a

The final result of this section shows that the sublevel sets of V5 describe sets that are feedback
invariant under ¢-sampling for system (12) with respect to the ¢-sampled feedback Fjg, at least
close to zero. For r > 0 we denote the r2-sublevel set by

GP = {z|Vs(z) < r?}.

Corollary 4.5 Let the assumptions of Theorem 4.4 be satisfied. Choose R > 0 according to the
assertions of that theorem. For any r > 0 such that GP B(0, R) it holds that

(i) The set G? is feedback-invariant under t-sampling for system (12) with respect to the
feedback Fg,

(i) there exists a constant C > 0 such that for any xg € Gf and any sampling schedule
with d(w) <t it holds for the w-trajectory defined by (3) that

(8, 2o, Fg)ll < Ce™"2||zo]| -

Proof: (i) This follows immediately from Theorem 4.4 via an inductive argument.
(ii) Fix a partition 7 = (£;)ien, with d(r) < . By Theorem 4.4 it follows for =g € G C ¢l Bx(0)
and all 7 € Ny that

Va(zis1) < (1= pltiv1 — ) V(@) < e Pl =8 Vy(z;),

that is we have the desired exponential bound in terms of V5. By construction it is clear that
there are constants 0 < a1 < ag such that

aillz® < Vs(z) < azfjz]?.

Now the assertion follows by comparison arguments, see e.g. [14, Proof of Corollary 3.4]. [l
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Remark 4.6 If we assume in addition to the assumptions of the previous Corollary 4.5 that
8 < %6_5, we can make possible choices for r > 0 and ai1,a2 more concrete. Denoting

k:=1—1/2e"3 > 0, we obtain with Lemma 4.3 that
lys(@)]| > |12l = lys(x) — |l > (1 = V2¢"B)||z|| = wl]] .
for all z € R™. This implies that
K2 |lz|* < Vi(yp(2)) < V(x) < Vi(z) < €|z,
In particular, if r < keZR and z € Gf we have
K%e%||z||? < Vg(x) < r? < K2e* R?, (31)

so that z € B(0, R).

5 Global feedback stabilization with positive sampling rate near
the origin
In this section the two ingredients of the final feedback design will be put together. We continue

to consider system (12) with the additional assumptions stated at the beginning of Section 4
and the associated linearization (13) in 0.

Definition 5.1 System (12) is called globally asymptotically feedback stabilizable, if for every
connected compact set Q C R™ with 0 € int Q and every open ball B(0,7) C Q there ezists a

compact connected set D C B(0,r) containing the origin, such that the following conditions are
satisfied:

(i) There exists a patchy C-feedback Fi on O~ (D)int\D, such that

(a) for every x € O~ (D)intQ\D there ezists a Carathéodory solution of
& = f(z, F1(z)) (32)

with ¥(0) = = on some interval [0,1,)

(b) for every solution y(-) of (32) with v(0) =z € O™ (D)int\D there exists a T, > 0,
with

’Y(T’Y) € aDa

(c) there is no solution vy of (32) with v(0) =z € O~ (D)int@\D such that y(t1) € 0D,
v(t2) ¢ D for some t; < to.

(i1) There exists a sampling bound t > 0 and a t-sampled feedback Fy on D, such that D is
feedback invariant under t-sampling for system (12) with respect to the feedback F, and
such that

lim z,(t;z,Fy) =0,

t—00

for every z € D and every w trajectory for sampling schedules ™ with d(w) < t.
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Theorem 5.2 The system (12) is globally asymptotically feedback stabilizable in the sense of
Definition 5.1 if its linearization (13) is asymptotically nullcontrollable.

Proof: Let  C R" be closed with 0 € int Q. Let ¢ and § € (0,1] be such that F, = Fp
is an t-sampled exponentially stabilizing feedback on D' = Gf,. We choose an 0 < r < 7/,
then the statement is obviously also true for D = GY. The linear decrease statement (27) from
Theorem 4.4 guarantees that we can satisfy the inward pointing condition (10) for BGf . Now

by Theorem 3.4 and Corollary 3.5 we have the existence of a patchy C-feedback F' with ordered
index A on O*(Gf,)Q, stabilizing to 8Gf,. This concludes the proof. a

Remark 5.3 It is of course quite unrealistic from several points of view, to demand switching
between the two controllers and solution concepts if the boundary of a set D is reached, especially
as level sets of V3 do not lend themselves easily to computation. We can, however, relax the
requirements here a bit. Take two values 0 < r1 < 7o such that for a suitable § the sampled
feedback Fj renders GEQ t-sampled feedback invariant and exponentially stabilizes to 0. As in the
proof of Corollary 3.5 we may construct a finite number of patches such that the corresponding
patchy C-feedback controls to BGEI.

Now we may just require that the switch between the Carathéodory and the sampled feedback
is made somewhere in G% \G?l, say at a point x € G?. As for all r; < r < ry the set G,@ is also
t-sampled feedback invariant we still have that the following m-trajectories remain in G2 and
converge exponentially to zero. This makes the decision of switching less delicate for the price
that we have concurring definitions for the feedback in a certain region of the state space, so
that we need a further variable, a “switch”, to remember which feedback strategy is applicable.

6 Conclusions

In this article we have presented a method to unite a local exponentially stabilizing sampled
feedback with a global piecewise constant feedback interpreted in the sense of Carathéodory
solutions. The key tools in this approach were methods from nonsmooth analysis in particular
proximal normals and inf-convolution. In general, this approach is not restricted to the feedback
types we have considered here, but can be performed for any feedback concepts that allow for
the completion of the key step in our design. This consists in the construction of feedback
invariant sets for the feedback F5 that can be entered from the outside under the feedback F,
and that have the additional property that no solutions under F; can move away (locally) from
the feedback invariant set.

Acknowledgment: The authors would like to thank Lars Griine and for numerous helpful
comments during the preparation of this manuscript.
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