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Abstract

This paper is concerned with the construction of smooth dual functions for
a given family of interpolating scaling functions. The construction is based on
a combination of the results in [2] and [11]. Several examples of dual functions
are presented, including a continuously differentiable dual basis for the quincunx
matrix.
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1 Introduction

The construction of multivariate wavelets and scaling functions has been a field of in-
creasing importance over the last years. A large variety of different construction prin-
ciples has been published for orthogonal wavelets, biorthogonal wavelets, wavelets on
spheres, scaling functions on general bounded and unbounded manifolds, scaling func-
tions for specific operators (Radon transform, pseudo-differential operators, vaguelette
bases) and many more.

*The work of this author has been supported by Deutsche Forschungsgemeinschaft, Grant Da 117/13—
1. He also would like to thank the Zentrum fiir Technomathematik of the University of Bremen for its
hospitality and support.

tThe work of this author has been supported by grant BMBF 03-MA7PO1-5.



Wavelets are usually constructed by means of a so-called scaling function. In general,
a function ¢ € Ly(R?) is called a scaling function or a refinable function if it satisfies a
two—scale—relation

¢($) = Z akQS(Ax - k): a= {ak}kezd € EQ(Zd)a (1'1)

keZd

where A is an erpanding integer scaling matrix, i.e., all its eigenvalues have modulus
larger than one.

Current interest centers around the construction of multivariate interpolating scaling
functions ¢, see e.g. [2, 3, 5, 6, 7, 8, 14], i.e. in addition to (1.1) one requires that ¢ is
at least continuous and satisfies

o(k) = do, ke 74 (1.2)

Interpolating scaling functions are needed for various applications e.g. CAGD or col-
location methods for operator equations. These applications also require some smooth-
ness of the scaling function. This problem has been solved satisfactory for ¢ itself, even
for the notorious quincunx matrix.

The next step of the construction process asks to find a dual scaling function ¢ which
satisfies

(6(), (- — k) = do, k€Z (1.3)
However the best result so far for the quincunx matrix yields a dual scaling function
qz € C“ with o = 0.3132, see [11]. The aim of this paper is to construct duals for
interpolating scaling functions which are continuously differentiable. In Section 5 a dual
function ¢ € C* for the quincunx matrix with o = 1.9528 is constructed.
This result is based on a combination of three different techniques:

e construction of smooth interpolating multivariate scaling functions [2],
e construction of duals for interpolating scaling functions [11],
e estimating the regularity of scaling functions using the techniques of [15].

The construction of smooth dual functions is the cornerstone for further develop-
ments. Given such a dual function, there exist several ways to construct a biorthogonal
wavelet basis, i.e., two sets {1;}ier and {¢y }ier of functions satisfying

(| det AJ7/%qp; (A7 - —k), | det A[7Pepy (AT - —K")) = 8,46, 1Ok o, (1.4)

see, e.g., [11] and [12] for details. Moreover, the existence of dual wavelets is essential
for establishing characterizations of smoothness spaces such as Sobolev or Besov spaces.
In fact, under certain regularity and approximation assumptions the existence of dual
wavelets imply the equivalence of the Sobolev and Besov norms of a function to weighted
sequence norms of its wavelet coefficients, see, e.g., [13] and [4] for details.

The construction of dual functions for interpolating scaling functions is a fairly recent
research topic. First examples were obtained in [11]. This paper mainly deals with dual
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scaling functions for the classical box splines associated with the usual dyadic dilation

. . . . 1 -1
matrix. Furthermore, some results concerning the quincunx matrix A = ( 11 ) are

included.

The results in [11] are derived by convolving a given interpolating scaling function
with a suitable distribution. This distribution does not have any smoothness, i.e. this
operation clearly diminishes the regularity of the resulting dual function o.

Therefore the whole construction only works satisfactory when the primal function
¢ is sufficiently smooth. Such a family of smooth interpolating scaling functions was
constructed in [2].

Hence we apply the construction principle of [11] to the scaling functions constructed
in [2], this leads to a new family of biorthogonal scaling functions for the quincunx matrix

A= ( 1 _11 ) which has the advantage that the dual functions are much smoother when

compared to the results in [11].

This paper is organized as follows. In Section 2, we briefly recall the basic setting
of interpolating scaling functions. In Section 3, we explain the construction of [2] as far
as it is needed for our purposes. Then, in Section 4, we recall the approach derived in
[11]. Finally, in Section 5, we combine both approaches and present a detailed regularity
analysis using the smoothness estimates of [15].

For later use, let us fix some notation. Let ¢ = |det A|. Furthermore, let R =
{pos---spg—1}, RT = {po,...,Pq-1} denote complete sets of representatives of Z¢/AZ?
and Z%/BZ¢, B = AT, respectively. Without loss of generality, we shall always assume
that Po = ﬁo =0.

2 The Setting

In the sequel, we shall only consider compactly supported scaling functions, furthermore
we shall always assume that supp a := {k € Z¢ | a; # 0} is finite. Computing the
Fourier transform of both sides of (1.1) yields

dw) = Y Lape iBT0G(B ). (2.1)

keZd q

By iterating (2.1) we obtain

b(w) = [[ ale™”™*), (2.2)
7j=1
where the symbol a(z) is defined by
1
a(z) == p > ap” (2.3)

Here we use the notation z = z(w) = e~ *) and z* is the short hand notation for
e~ k@) We will mainly use the z-notation in this paper, i.e. a(1) refers to the value of

3



the symbol at w; = ..wg = 0. It will be stated explicitly, whenever we go back to the
w-notation.

All known procedures for constructing multivariate scaling functions start with a
symbol a(z), which by Equation (2.2) determines ¢. Then the question arises which
conditions on a(z) guarantee that ¢ according to (2.2) is well-defined in Lo(R¢) and
has some additional desirable properties such as sufficient smoothness. Moreover, for
our purposes, we have to clarify how the interpolating property (1.2) can be guaranteed.
The following two conditions are necessary:

(C2) ¥ a(e P7'%) =1, where (= e 27870,
pERT

The following condition is not necessary, but it can be easily established in many cases
and it is required for the construction of [11] as well as for the regularity estimates in
Section 5. Moreover this condition already implies that the resulting scaling function is
at least continuous:

(C3) a(z) >0 .

Usually, conditions (C1)-(C3) are the starting point for the construction of a suitable
symbol and the related interpolatory scaling function. Nevertheless, we want to point
out that they are not sufficient in general.

Several procedures are known for constructing interpolating scaling functions, how-
ever the true challenge asks for constructing smooth scaling functions. To this end, one
often requires that the Strang—Fiz—conditions of order N are satisfied, i.e.,

9\

(C4) (8—> a2nB7'p) =0  forall [I|< N andall e R"\{0}.
w

This paper is concerned with the construction of pairs of biorthogonal functions (¢, q~5)

where ¢ is an interpolating scaling function and the dual scaling function ¢ satisfies

(1.3). A necessary condition for the symbol @ of the dual scaling function ¢ in order to

satisfy (1.3) is given by
1= Y alG2)alGr)- (2.4)
pERT
Therefore the usual way to find a dual function for a given scaling function is to construct
a symbol a(z) satisfying (2.4) and to check that the corresponding refinable function
exists in L, and is sufficiently regular. Indeed, we measure the success of a construction
method for the dual function by the achievable Holder regularity of ®.

3 Smooth Interpolating Scaling Functions

As outlined in the introduction our search for smooth dual functions ¢ requires a smooth
interpolating scaling function ¢. The details on how to construct a suitable ¢, resp. a,
for a given ¢, resp. a are outlined in Section 4.
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First of all we briefly recall the construction of interpolating scaling functions devel-
oped in [2]. Tt is based on Lagrange interpolation and can be interpreted as a general-
ization of the univariate approach derived in [10] to the multivariate situation.

We say that a symbol a(z) satisfies the Strang—Fiz conditions with respect to a set

of polynomials II, if (D = 2)
(p(D)a)(2rB~'p) =0 forall peTl, pe R"\{0}. (3.1)

For any subset 7 C Z% II; will always denote a finite-dimensional subspace of poly-
nomials such that the Lagrange interpolation problem with respect to 7 is uniquely
solvable. Under this hypothesis the following theorem holds.

Theorem 3.1 Let P be a subspace of Il satisfying
(1) If p € P, then p (c(Azx + p)) € Il for c € C, p € R;
(2) p(0) =0 for allp € P.

Then the symbol a(w) defined by

1 1 — —1 w
a(w)=—-+=3 3 p(-ATp)e AP (3:2)
9 9 et per\{0}

satisfies (C1), (C2), and the Strang—Fiz conditions (3.1) with respect to P.

Since Lagrange interpolation on general sets of nodes in R? is far from understood, we
restrict ourselves to very simple sets with additional symmetry. Let 7 consist of all
lattice points in a cube in RY, i.e., for N € N and 3 € Z? we set

T=Tig:={k€Z: B <k <N+8, i=1,...,d}=(B+[0,N])NZ%. (3.3)

The Lagrange interpolation problem is always unisolvable on 7 by the polynomial sub-
space
7 = span{z*, k € Z% ||k||oo < N, k; > 0,i=1,...,d}. (3.4)

The fundamental Lagrange interpolants are simply tensor products of the univariate
Lagrange polynomials and can be written explicitly as

A )
pe(2) = by (1) ey (22) - - by (wa),  l(wi) = ] 2 (3.5)
n=aingk; T

This leads to the following corollary.

Corollary 3.1 Let T and Ily be defined by (3.3) and (3.4), respectively. Then a(w)
defined by (3.2) satisfies the Strang—Fiz conditions with respect to Ily. In particular, the
usual Strang—Fiz conditions of order N are satisfied.



It has been shown in [2] that under certain symmetry assumptions on the mask
the resulting symbol is in fact real which is clearly necessary to ensure condition (C3).

. . . . . ) 1 -1
Moreover, in [2], this setting has been applied to the quincunx matrix A = ( )

1 1
Then ¢ = 2 and a set of representatives is given by py = 0,p; = ((1)) Moreover,
—A7t ((1)) = (_11/22) and T needs to be symmetric about (—1/2,1/2). This is the case

for T=[-L,L —1] x [-L+1,L]NZ2% Let £, denote the basic Lagrange interpolation
polynomial for n € {—L,—L+1,..,L —1}. With

(@)= 3 La(=1/2)e " (3.6)

n=—L
we obtain for a(w) corresponding to (3.2)

1 1 ‘
a(w) = 3 + 56*Z(w1+w2)/2qL(w1 + wz)efz(w27w1)/2qL(w2 — w). (3.7)
By construction, this symbol satisfies (C1) and (C2). Moreover, it has been shown
that for any L condition (C3) is also satisfied and that the symbol indeed gives rise to
an interpolating scaling function.
As an example, for L = 2 the nonvanishing coefficients can be computed as follows.

1
U00) = 3 (38)
81
Aoy = G = 8-10) = A0,-1) T F15
1
Us0) = 003) = 030 = 00-3) = 515}
9
Q2,1) = Q1,2) = Q(=1,2) = Q(=2,1) = Q(-2,-1) = Q(—1,—2) = Q(1,-2) = Q(2,—1) = _512

4 Construction of Dual Functions

In this section, we briefly recall the algorithm for constructing a dual basis for a given
interpolating scaling function as developed in [11]. The main result in [11] is a lifting
scheme, which allows to construct a second smoother interpolating function from a given
one.
Defining
bp(z) = a(Ge), pe BT, (4.1)

condition (C2) may equivalently be written as

1=Y bs(2). (4.2)

pERT



Hence, for any integer K,

(Z b,;(z)) = Y (CgK 11 bgﬁ(z)> =1. (4.3)

pERT Iv|=aK pERT

Here v denotes a vector of dimension ¢, the coefficients of  are indexed be p € RT =
{505 s aﬁq—l}-
By using (4.3), the following theorem was established in [11].

Theorem 4.1 Let a(z) be a symbol satisfying (4.2) for a dilation matriz A with q =
|det A|. Define

Gy = {yeN{: |y|=¢K, v >K and~ >, p€ R\{0}}

G, = {7 EN{: |Y|=qK, o> K and v >y, p€ RT\{0}, with ezxactly j equalities},
j=1,...,9—2,

and define

-2 N
Hy = (Z C;YKQ(Z)%?1 11 bZP(Z)) +C§§,...,K) I1 bf(z),

i=0J 1 \;eq, pERT\{0} peRT

where O are the multinomial coefficients. Then the symbol a(z)Hk(z) also satisfies
(4.2).

It can be checked that the symbol Hy can be factored as
Hg(2) = a(2)XTx(2) (4.4)

for some suitable symbol Tk (z). Consequently, the refinable function associated with
a(z) Hgk (z) is obtained by convolving the original function K —1-times with itself followed
by a convolution with some distribution. Since a(z) Hg (z) satisfies (4.2), it is a candidate
for a symbol corresponding to an interpolating scaling function. Indeed, the following
corollary was established in [11].

Corollary 4.1 Let a(z) be the symbol of a continuous compactly supported interpolating
refinable function and assume that a(z) satisfies (C3). If the refinable function corre-
sponding to a(z)Hk(z) is continuous, then it is interpolating.

This approach can now be used to construct dual functions for the given interpolating
scaling function ¢. Indeed, by recalling the necessary condition (2.4), we see that by
Theorem 4.1

a(z) :== Hi(z) = a(2)KTk(2) (4.5)

is a natural candidate for a symbol associated with a dual function. The following
corollary is again taken from [11].

Corollary 4.2 If the refinable function corresponding to the mask Hg is in Lo(R?),
then it is stable and dual to ¢.



5 Smooth Dual Pairs on the Quincunx Grid

In this section, we want to employ the algorithm described in Section 4 to construct

! _1). Corollary 4.2 tells us how

smooth dual pairs for the quincunx matrix A = (1 1

to proceed:
e Find a continuous interpolating refinable function ¢;
e Compute Hg according to Theorem 4.1;
e Check that the corresponding refinable function is contained in Lo(R?).

Clearly the last part is the most nontrivial step. Moreover, it is desirable to find dual
functions which are as smooth as possible. We are therefore faced with the problem of
estimating the regularity of a refinable function by only using the refinement mask. This
problem has attracted several people in the last few years, see, e.g., [1, 9, 14, 15]. Let
us briefly recall the basic ideas. We want to find

o :=sup{a: ¢ € C*}.

It is well-known that a* > kg,p, Where kg, is defined by

Koup = SUp{K : /Rd(1 + |w])*|(w)|dw < oo} (5.1)

Our aim is to estimate kg, from below. One typical result in this direction reads as
follows.

Theorem 5.1 For an integer N, let

Vi == {v € 4,(Z%) Z p(k)vg =0, forallp € iy},

keZd

where Iy denotes the polynomials of total degree N. Assume that A is a dilation matriz
with a complete set of orthonormal eigenvectors, let |Amqz| denote the eigenvalue of A
with the largest modulus. Let Q0 denote a subset of Z¢ s.t. supp a C Q and Vy is
wmvariant under the matriz

H = [quk*l]k,leQ :

Assume that the symbol a(z) according to (2.3) is non—-negative and satisfies Strang—
Fiz conditions of order N. Let o be the spectral radius of H|v,. Then the exponent kg
satisfies

log(o)

su 2_7- 2
50 2 o M) (5:2)

As already stressed in Section 4, the approach in [11] actually consists of a convolution
of the starting interpolating function ¢ with itself followed by a convolution with a

distribution. This distribution may be ugly so that it may diminish the regularity of
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the resulting function significantly. Therefore the method in [11] will only perform
satisfactory for a sufficienly smooth starting mask.

Hence we combine this construction procedure with the approach in [2], which pro-
duces interpolating functions with a small mask but with a high order of Strang-Fix
conditions. Since the Strang-Fix conditions serve as indicators for some smoothness,
there is good reason to expect that the resulting refinable functions are quite regular.
Indeed, by using Theorem 5.1 we obtained for L = 2 and L = 3, respectively

¢o € C* for all a < 1.5156 and ¢z € C* for all a < 2.3035. (5.3)

Therefore we decided to use these functions as starting points. The next step is to
compute the symbols Hg. For the quincunx matrix, we clearly have ¢ = 2 and the first
four symbols can be computed explicitly, for the definition of by and b; see (4.1):

H1 - b0(1+2b1), (54)
Hy = bj(bo+ 4b; + 6b2),
Hs; = bj(b] + 6bob; + 15b7 + 2003),
H, by (b5 + 8b5by + 28bbT + 56bybT + T0bbY ).
For details, we refer again to [11]. Given a(z), the corresponding symbols Hy, ..., Hy

can be computed by symbolic software such as MAPLE.

Figure 1: Visualization of the dual function for L = 3, K = 2, this function satisfies
¢ € C*(R?) for a = 1.9528.



As an example, for L = 2 and K = 1 we obtain a mask with 65 non-zero coefficients:

Hy 69 = —1/65536; Hy( 51y =9/32768; Hy( 51 =9/32768;
Hl,(_4’_2) = —63/65536, Hl,(_4’0) = —81/16384, Hl,(—4,2) = —63/65536,
Hy(s_3 =—41/16384;  Hy(_3_1) = 567/32768; Hi( 39 =1/256;

Hy( 31 =567/32768; Hy( 35 = —41/16384 Hy( 5 4 = —63/65536;
Hi( o 9 =369/8192; Hi( o 1y =—9/256; Hi( a9 = —3969/65536;
Hi o1y =—9/256; Hi o9 =369/8192; Hi( 94 = —63/65536;

Hl,(—l,—5) = 9/32768, Hl,(_l_g) = 567/32768, Hl,(_l,_g) = —9/256,

Hl,(l,—l) = —2583/16384, Hl,(—l,o) = 81/256, Hl,(—l,l) = —2583/16384,

Hl,(71,2) = —9/256; Hl,(fl,s) = 567/32768; H17(,15) = 9/32768;

Hl,(0,76) = —1/65536, Hl,(0,74) = —81/16384; H17(0,,3) = 1/256;

Hy 9 =—3969/65536;  Hi 1) = 81/256; H,y 00 = 6511/4096;
Hi o1y = 81/256; Hi o2 = —3969/65536;  Hijg = 1/256;

H17(0,4) = —81/16384, Hl,(O,G) = —1/65536, Hl,(l,—5) = 9/32768,

Hy o _3 =567/32768; Hy,_ 9 = —9/256; Hyq 1) = —2583/16384;
HL(L()) = 81/256, H17(1,1) = —2583/16384, Hl,(l,g) = —9/256,
H17(1,3) = 567/32768, H17(1,5) = 9/32768, Hl’(gj_4) = —63/65536,

Hip 9 =369/8192; Hio_1 = —9/256; Hi0 =—3969/65536;
Hipoyy =—9/256; Hi9) = 369/8192; Hyp4 =—63/65536;

Hi 3 =—41/16384; Hi, 1y = 567/32768; Hig =1/256;

Hy 1) =567/32768; Hi3 = —41/16384; Hi, 9 =—63/65536;
Hyuo =—81/16384; Hy o = —63/65536; His 1y =9/32768;
Hiyy = 9/32768; Higo =—1/65536.

(5.5)

We used Theorem 5.1 to estimate the regularity of the resulting refinable functions. The
results are displayed in the following table.

LK Ksup
2| 1 | —0.497
21 2| 0729
2| 3| 1.803
311 | 0.204
31 2| 1.952

We see, that the regularity of the dual functions grows rapidly as K increases. For
L =2 K =1 we do not get an Lo—function, but already the function with respect
to L = 2, K = 2 is smoother than the smoothest one constructed in [11] which was
contained in (C?-313226

For . = 2, K = 3 the dual function is continuously differentiable. To our knowledge,
examples for the quincunx matrix with these properties have not been constructed before.
For L = 3, K = 2 the dual function is almost contained in C?. It seems very likely that
enlarging the values of N and K will produce even higher orders of regularity. However
the computations become too time consuming, already the presented examples lead to
eigenvalue problems for matrices with dimension > 4 * 10%. This could only be handled
with reasonable computer time by employing sparse matrix techniques.
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