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Abstract: We derive a method for the computation of robust domains of attraction based on
a recent generalization of Zubov’s theorem on representing robust domains of attraction for per-
turbed systems via the viscosity solution of a suitable partial differential equation. While a di-
rect discretization of the equation leads to numerical difficulties due to a singularity at the stable
equilibrium, a suitable regularization enables us to apply a standard discretization technique for
Hamilton-Jacobi-Bellman equations. We present the resulting fully discrete scheme and show a
numerical example.

1 Introduction

The domain of attraction of an asymptotically stable fixed point has been one of the central
objects in the study of continuous dynamical systems. The knowledge of this object is
important in many applications modeled by those systems like e.g. the analysis of power
systems [1] and turbulence phenomena in fluid dynamics [2, 8, 17]. Several papers and
books discuss theoretical [19, 20, 5, 12] as well as computational aspects [18, 13, 1, 9] of
this problem.
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Taking into account that usually mathematical models of complex systems contain model
errors and that exogenous perturbations are ubiquitous it is natural to consider systems
with deterministic time varying perturbations and look for domains of attraction that are
robust under all these perturbations. Here we consider systems of the form

z(t) = f(z(t),a(t)), zeR"

where a(-) is an arbitrary measurable function with values in some compact set A C R™.
Under the assumption that z* € R" is a locally exponentially stable fixed point for all
admissible perturbation functions a(-) we try to find the set of points which are attracted
to z* for all admissible a(-).

This set has been considered e.g. in [14, 15, 4, 7]. In particular, in [14] and [7] numerical
procedures based on optimal control techniques for the computation of robust domains of
attraction are presented. The techniques in these papers have in common that a numer-
ical approximation of the optimal value function of a suitable optimal control problem is
computed such that the robust domain of attraction is characterized by a suitable sublevel
set of this function. Whereas the method in [14] requires the numerical solution of several
Hamilton-Jacobi-Bellman equations (and is thus very expensive) the method in [7] needs
just one such solution, but requires some knowledge about the local behavior around z* in
order to avoid discontinuities in the optimal value functions causing numerical problems.

In this paper we use a similar optimal control technique, but start from recent results in
[4] where the classical equation of Zubov [20] is generalized to perturbed systems. Un-
der very mild conditions on the problem data this equation admits a continuous or even
Lipschitz viscosity solution. The main problem in a numerical approximation is the inher-
ent singularity of the equation at the fixed point which prevents the direct application of
usual numerical schemes. Here we propose a regularization of this equation such that the
classical schemes [6] and adaptive gridding techniques [11] are applicable without losing
the main feature of the solution, i.e. the sublevel set characterization of the robust domain
of attraction. It might be worth noting that in particular our approach is applicable to
the classical Zubov equation (i.e. for unperturbed systems) and hence provides a way to
compute domains of attraction also for unperturbed systems.

This paper is organized as follows: In Section 2 we give the setup and collect some facts
about robust domains of attraction. In Section 3 we summarize the needed results from [4]
on the generalization of Zubov’s equation for perturbed system. In Section 4 we introduce
the regularization technique and formulate the numerical scheme, and finally, in Section 5
we show a numerical example.

2 Robust domains of attraction

We consider systems of the following form

{ i(t) = f(z(t),a(t)), te]0,00), (2.1)
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with solutions denoted by z(¢, zg,a). Here a(-) € A = L*°([0,4+00), A) and A is a compact
subset of R™, f is continuous and bounded in R” x A and Lipschitz in z uniformly in a € A.
Furthermore the fixed point z = 0 is singular, that is f(0,a) = 0 for any a € A.

We assume that the singular point 0 is uniformly locally exponentially stable for the system
(2.1), i.e.

(H1) there exist constants C,o,r > 0 such that ||z(¢,zg,a)|| < Ce™||xo|
for any =y € B(0,7) and any a € A.

The following sets describe domains of attraction for the equilibrium z = 0 of the system
(2.1).

Definition 2.1 For the system (2.1) satisfying (H1) we define the robust domain of at-
traction as

D= {zy €R" : z(t,z9,a) = 0 as t = +oo for any a € A} ,

and the uniform robust domain of attraction by

Do =m0 € R - there exists a function §(t) — 0 as t — oo
L " s.the ||z(t, 20,a)]| < B(t) forallt >0, a€ A |~

The following proposition summarizes several properties of (uniform) robust domains of
attraction as proved in [4, Proposition 2.4]. Observe that several of these properties are
very similar to those of the domain of attraction of an asymptotically stable fixed point of
a time-invariant system, compare [12, Chap. IV].

Proposition 2.2 Counsider system (2.1) and assume (H1), then

(i) clB(0,7) C Dy.
(ii) Dy is an open, connected, invariant set. D is a pathwise connected, invariant set.

(iii) supyea{t(z,a)} = +oo for x — zy € 9Dy or ||| — oo,
where t(z,a) := inf{t > 0: z(¢,z,a) € B(0,r)}.

(iv) clDy, clD are invariant sets.

(v) Dy, D are contractible to 0.

(vi) If for some ag € A f(-,ap) is of class C", then Dy is C"-diffeomorphic to R™.
(vii) If for every z € 0Dy there exists a € A such that z(t,z,a) € 9Dy for all t > 0
then D = Dy.

(viii) If for all z € D the set {f(z,a) : a € A} is convex then Dy = D.
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3 Zubov’s method for robust domains of attraction

In this section we discuss the following partial differential equation

21613 {Dv(z)f(z,a) + (1 —v(z))g(z,a)} =0 z €R? (3.1)

whose solution will turn out to characterize the uniform robust domain of attraction Dy.
This equation is a straightforward generalization of Zubov’s equation [20]. In this general-
ity, however, in order to obtain a meaningful result about solutions we have to work within
the framework of viscosity solutions, which we recall for the convenience of the reader (for
details about this theory we refer to [3]).

Definition 3.1 Given an open subset {2 of R” and a continuous function H : € X R x
R" — R, we say that a lower semicontinuous (l.s.c.) function u : @ — R (resp. an upper
semicontinuous (u.s.c.) function v : 2 — R) is a viscosity supersolution (resp. subsolution)
of the equation

H(z,u,Du) =0 z €N (3.2)

if for all ¢ € C1(Q) and z € argming(u — ¢) (resp., z € argmax(v — ¢)) we have
H(z,u(z), Dp(z)) 20  (resp., H(z,v(z), Dé(x)) < 0).

A continuous function u :  — R is said to be a viscosity solution of (3.2) if u is a viscosity
supersolution and a viscosity subsolution of (3.2).

We now introduce the value function of a suitable optimal control problem related to (3.1).

Consider the following nonnegative, extended value functional G : R* x A — RU {400}

+00
G™(z,a) = / g(x(), a(t))dt
0
and the optimal value function

v(z) ;== supl — e G (@a), (3.3)
acA

The function g : R” x A — R is supposed to be continuous and satisfies

(i) For any a € A, ¢(0,a) =0 and g(z,a) > 0 for z # 0.
(ii) There exists a constant gg > 0 such that inf,gp(0 ), «c4 9(%, @) > go-

(iii) For every R > 0 there exists a constant Lg such that
lg(x;a) = g(y, a)|| < Lgllz —y| for all [lz], [ly|| < R, and all a € A.

Since ¢ is nonnegative it is immediate that v(z) € [0,1] for all z € R®. Furthermore,
standard techniques from optimal control (see e.g. [3, Chapter III]) imply that v satisfy a
dynamic programming principle, i.e. for each ¢ > 0 we have

v(z) = sup {(1 = G(2,1,0) + G(z, 1, a)v(a(t, 2, )} (3-4)



ZUBOV’S METHOD FOR ROBUST DOMAINS OF ATTRACTION 5

with

G(t, 5, a) == exp (— /0 tg(x(T,x,a),a(T))dT) . (3.5)

Furthermore, a simple application of the chain rule shows
(1 -G(x,t,a)) / G(z,7,a)g9(x(T,z,a),a(T))dT
implying

v(z) = sup {/Ot G(z,1,a)9(z(7,z,a),a(T))dr + G(m,t,a)v(m(t,x,a))} (3.6)

acA

The next proposition shows the relation between Dy and v, and the continuity of v. For
the proof see [4, Proposition 3.1]

Proposition 3.2 Assume (H1), (H2). Then

(i) v(z) <1 if and only if z € Dy.
(ii) v(0) =0 if and only if z = 0.
(iii) v is continuous on R™.
(iv) v(z) = 1 for z — ¢ € 0Dy and for |z| — oo.
We now turn to the relation between v and equation (3.1). Recalling that v is locally
bounded on R” an easy application of the dynamic programming principle (3.4) (cp. [3,

Chapter III]) shows that and v is a viscosity solution of (3.1). The more difficult part is to
obtain uniqueness of the solution, since equation (3.1) exhibits a singularity at the origin.

In order to get a uniqueness result we use the following super- and suboptimality principles,
which essentially follow from Soravia [16, Theorem 3.2 (i)], see [4, Proposition 3.5] for
details.

Proposition 3.3

(i) Let w be a l.s.c. supersolution of (3.1) in R”, then for any z € R”

w(z) = supsup{(1 — G(z,t,a)) + G(z,t,a)w(z(t))} . (3.7)
a€A t>0

(ii) Let u be a u.s.c. subsolution of (3.1) in R", and % : R* — R be a continuous function
with u < @. Then for any z € R” and any T' > 0

u(r) < 21613%1[18% {(1-G(=z,t,a)) + G(z,t,a)u(z(t))} . (3.8)
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Remark 3.4 If u is continuous or the set of the control functions A is replaced by the set
of relaxed control laws A", assertion (ii) can be strengthened to

u(r) = sup f{(1 = Gla,t, 1)) + Gz, 8, pu(=(t))}

which follows from [16, Theorem 3.2(iii)].

We can now apply these principles to the generalized version of Zubov’s equation (3.1)
in order to obtain comparison principles for sub and supersolutions. Since these are the
essential properties for our theory, we recall the proofs from [4].

Proposition 3.5 Let w be a bounded l.s.c. supersolution of (3.1) on R" with w(0) > 0.
Then w > v for v as defined in (3.3).

Proof: First observe that the lower semicontinuity of w and the assumption w(0) > 0
imply that for each e > 0 there exists a § > 0 such that

w(z) > —e for all x € R" with ||z]| < 4. (3.9)

Furthermore, the upper optimality principle (3.7) implies

w(zo) > supinf {1 + G(zo,t,a)(w(z(t,z0,a)) — 1)} . (3.10)
acAt20
Now we distinguish two cases:
(i) zo € Dy: In this case we know that for each a € A we have z(t,z9,a) — 0 as t — 0.
Thus from (3.9) and (3.10), and using the definition of v we can conclude

w(zg) > sup { lim (1 — G(zo,t, a))} = v(zp) .

a€A t—o0

which shows the claim.

(ii) zo & Dy: Since v(z) € [0,1] for all z € R” it is sufficient to show that w(zg) > 1.
Now consider the time ¢(z,a) as defined in Proposition 2.2(iii). By the definition of Dy
we know that for each 7' > 0 there exists ap € A such that t(xg,ar) > T, which implies
G(zo,T,ar) < exp(—Tgp) which tends to 0 as T — oo. Thus denoting the bound on |w)|
by M > 0 the inequality (3.10) implies

w(zo) > (1 —exp(—Tgo)) — exp(—Tgo) M

for every T > 0 and hence w(zg) > 1. [

Proposition 3.6 Let u be a bounded u.s.c. subsolution of (3.1) on R” with »(0) < 0.
Then u < v for v defined in (3.3).
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Proof: By the upper semicontinuity of u and 4(0) < 0 we obtain that for every ¢ > 0
there exists a § > 0 with u(z) < € for all z € R" with ||z|| < d. Thus for each ¢ > 0 we
find a bounded and continuous function %, : R* — R with

%(0) < € and u < G,. (3.11)

Now the lower optimality principle (3.8) implies for every ¢ > 0 that

u(zg) < sua{l + G(zo, t,a)(Ge(x(t, zo,a)) — 1)} . (3.12)
ac
Again, we distinguish two cases:
(i) zo € Dy: In this case ||z(t,zp,a)|| — 0 as t — oo uniformly in a € A. Hence for each
€ > (0 there exists t. > 0 such that

Ue(x(te, zo,a)) <€ and |G(zo,te,a) — G(zp,00,a)] <€
for all @ € A. Thus from (3.11) and (3.12), and using the definition of v we can conclude

u(zo) < Sug{l — (1= €)G(xo,te; a)} < (o) + (1 —v(z0)) + €,
ac

which shows the claim since v is bounded and € > 0 was arbitrary.

(ii) zo & Dy: Since in this case v(xy) = 1 (by Proposition 3.2(i)) it is sufficient to show that
u(zp) < 1. By (i) we know that u(y) < v(y) < 1 for each y € Dy, hence analogous to (3.11)
for each € > 0 we can conclude the existence of a continuous %, with u < % and 4 (y) < 1+¢
for each y € Dp; w.l.o.g. we may choose 1, such that M := inf,cpn\p, te(x) > 1. Now fix
e > 0 and consider a sequence ¢, — co. Then (3.12) implies that there exists a sequence
an € A with

u(zo) — € < 1+ G(20, tn; an) (Te(z(tn, To, an)) — 1).

If z(ty,zo,a,) € Dy we know that de(z(ty,,zo,a,)) < 1+ €, and since G < 1 we obtain
u(zg) —e < 1+4e If z(tn,x0,ay) & Do then G(xg, ty,an) < exp(—goty), thus
1+ G(0,tn, an)(Ge(@(tn, 20, an)) — 1) < 1+ exp(—gotn)(M —1).
Thus for each n € N we obtain
u(zo) < 2e + 1+ exp(—gotn)(M — 1),

which for n — oo implies u(zg) < 1+ 2e. This proves the assertion since € > 0 was
arbitrary.

O

Using these propositions we can now formulate an existence and uniqueness theorem for
the generalized version of Zubov’s equation (3.1).

Theorem 3.7 Consider the system (2.1) and a function g : R* x A — R such that (H1)
and (H2) are satisfied. Then (3.1) has a unique bounded and continuous viscosity solution
v on R” satisfying v(0) = 0.

This function coincides with v from (3.3). In particular the characterization Dy = {z €
R" |v(z) < 1} holds.
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Proof: This is immediate from Propositions 3.5 and 3.6. 0

The following theorem is an immediate consequence of Theorem 3.7. It shows that we can
restrict ourselves to a proper open subset O of the state space and still obtain our solution
v, provided Dy C @. This is in particular important for our computational approach as we
will not be able to approximate v on the whole R™.

Theorem 3.8 Consider the system (2.1) and a function g : R* x A — R. Assume (H1)
and (H2). Let O C R™ be an open set containing the origin, and let v : clO — R be a

bounded and continuous function which is a viscosity solution of (3.1) on O and satisfies
v(0) =0 and v(z) =1 for all z € 90O.

Then v coincides with the restriction v|p of the function v from (3.3). In particular the
characterization Dy = {z € R" |v(z) < 1} holds.

Proof: Any solution ¥ meeting the assumption can be continuously extended to a viscosity
solution of (3.1) on R™ by setting o(z) = 1 for z € R" \ O. Hence the assertion follows. U
We end this section by stating several additional properties of v as proved in [4, Sections

4 and 5.

Theorem 3.9 Assume (H1) and (H2) and consider the unique viscosity solution v of (3.1)
with v(0) = 0. Then the following statements hold.

(i) The function v is a robust Lyapunov function for the system (2.1). More precisely
we have

w(@(t 20, a())) — v(z0) < [1 _exp (— /()Tg(:v(t),a(t))dt)] (w(@(t 0, a(-))) — 1) < 0
for all zy € Dy \ {0} and all a(-) € A.

(ii) If f(-,a) and g(-,a) are uniformly Lipschitz continuous in R", with constants Ly,
Ly > 0 uniformly in a € A, and if there exists a neighborhood N of the origin such
that for all z, y € N the inequality

9(z,a) — g(y,a)| < K max{|[z]], [[y]}*[lz -yl
holds for some K > 0 and s > Ly/o with ¢ > 0 given by (H1), then the function v
is Lipschitz continuous in R" for all g with gg > 0 from (H2) sufficiently large.

(iii) If f(-,a) is C" for some a € A and B C Dy is such that dist(B, 9Dy) > 0, then there
exists a function g : R* — R such that v is C" on a neighborhood of B.

4 Numerical solution

A first approach to solve equation (3.1) is by directly adapting the first order numerical
scheme from [6] to this equation. Considering a bounded domain 2 and a simplicid grid T’
with edges z; covering clf) this results in solving

o(m;) = I;leazc{(l — hg(z,a))o(z; + hf(zi,a)) + hg(zi,a)} (4.1)
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where ¥ is continuous and affinely linear on each simplex in the grid and satisfies 9(0) =
0 (assuming, of course, that 0 is a node of the grid) and o(z;) = 1 for all z; € 0.
Unfortunately, since also (4.1) has a singularity in 0 the fixed point argument used in [6]
fails here and hence convergence is not guaranteed. In fact, it is easy to see that in the
situation of Figure 4.1 (showing one trajectory and the simplices surrounding the fixed
point 0 in a two-dimensional example) the piecewise linear function v with

N 1, z2;#0
”(“):{0 mZiO

satisfies (4.1), since for all nodes z; # 0 the value z; + hf(z;,a) lies in a simplex with nodes
zj # 0, hence 9(z; + hf(z;,a)) = 1 implying

(1 —hg(zi,a))v(z; + hf(zi,a)) + hg(zi,a) = 1 = o(x;),

i.e. (4.1). As this situation may occur for arbitrarily fine grids indeed convergence is not
guaranteed.

Figure 4.1: A situation of non-convergence

In order to ensure convergence we will therefore have to use a regularization of (3.1). The
main idea in this is to change (3.1) in such a way that the “discount rate” (i.e. the factor
g(z) in front of the zero order term v(z)) becomes strictly positive, and thus the singularity
disappears. To this end consider some parameter € > 0 and consider the function

9¢(z,a) = max{g(z,a), e}.
Using this g. we approximate (3.1) by

sup {Dv(x) f(z,0) + g(z,a) — v(0)g. (z,0)} =0 =z € R". (4.2)
a€A

The following proposition summarizes some properties of (4.2). We state it in a global

version on K", the analogous statements hold in the situation of Theorem 3.8.

Proposition 4.1 Let the assumptions of Theorem 3.7 hold and let v be the unique solution
of (3.1) with v(0) = 0. Then for each € > 0 equation (4.2) has a unique continuous viscosity
solution v, with the following properties.
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(i) ve(z) < wv(z) for all x € R”

)
(ii) ve — v uniformly in R* as e — 0
(iii) If e < go from (H2)(ii) then the characterization Dy = {z € R" |v.(z) < 1} holds
)

(iv) If f(-,a) and g(-,a) are uniformly Lipschitz on Dy (uniformly in A with Lipschitz
constants Ly and Ly) and g is bounded on Dy and satisfies the inequalities

l9(2;a) = g(y,a)| < K max{ljz]], [ly]l}*[lz —y] (4.3)

for all z, y € B(0,Cr) and
l9(z,a)| > g1 > Ly (4.4)

for all z ¢ B(0,7/2) with C, o and r from (H1), then the function v, is uniformly
Lipschitz on R™.

Proof: Since the discount rate in (4.2) is strictly positive it follows by standard viscosity
solution arguments [3, Chapter III] that there exists a unique solution v, which furthermore
for all ¢ > 0 satisfies the following dynamic programming principle

= sup {/ Ge(z,1,0)9(z(7,2,0),a(7))dT + G:(2, 1, a)’ug(az(t,x,a))} (4.5)

acA
with .
G.(z,t,a) = exp (— /0 gg(m(T,m,a),a(T))dT) . (4.6)

Since v satisfies the same principle (3.6) with G(z,t,a) > G.(z,t,a) from (3.5) and g > 0
the stated inequality (i) follows.

In order to see (ii) observe that the continuity of g and v implies that for each § > 0 there
exists € > 0 such that

{z € R" | ge(z,a) > g(z,a) for some a € A} C {z € R" |v(z) < d}.

Now fix § > 0 and consider the corresponding ¢ > 0. Let z € R" and pick some v > 0 and
a control a,, € A such that

o
2) < [ Gla,ra)gla(r,z,a), a0 () + 7,
0
Now let T' > 0 be the (unique) time with v(z(T,z,a,)) = 6. Then we can conclude that

z) —ve(z) —
Aoo -’E T, a'y ( (T;$;a7)7a7(7)) - GE(‘T’Ta a”y)g(a"(T’m’a”Y)ﬁa’Y(T)))dT
e

<
—

IN

T

AN

(z,7,ay)9(2(T,2,ay),a,(T)) _Ge(m,Taav)g(x(T,ﬁcaav)aav(T)))JdT

v~

=0
+G(z,T,ay)v(z(T,z,ay)) < 4.
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Since v > 0 and x € R"® were arbitrary this shows (ii).
Y

To prove (iii) let € < go. Then for all z ¢ Dy and all T > 0 there exists a € A such that
G(z,t,a) = Ge(z,t,a) for all ¢t € [0,T] which immediately implies Dy = {z € R" |v:(z) <
1}.

In order to see (iv) first note that (4.3) holds for g. for all ¢ > 0 (with the convention

go = g). Hence by straightforward integration using the exponential stability and (4.3) we
can estimate

t t
| se(etr.z,a),alm)dr - [ g.(o(ry,0),a(r)dr| < Loflo =yl
for all z,y € B(0,r) and some Ly > 0 independent of € and a, which also implies
|GE(‘T7 ta a’) - GE(y7 ta 0,)| S LOH‘T - y”

for all ¢ > 0 and consequently

sup | [ Gl m)glalr, z,0),ar))dr — [ Gty lglalr, v a),alr))dr
acA /0 0
<sup [ [Gela,7,0) = Gely, 7, 0)| gla(r,2,0),a(r)) dr
acAJO h ~~ g
SLgCemo7 |||

o
+/ G:(y,7:a) |9(x(T, 2, a),a(7)) — 9(z(7, y, ), a(7))|dT
0 N>
<1
< Li||z —y| (4.7)
for some suitable L; > 0 and all z,y € B(0,r), implying in particular
|ve(2) = ve(y)| < Lallz — -

For all ¢ > 0 with z(s,z,a) ¢ B(0,7/2) and z(s,y,a) ¢ B(0,7/2) for all s € [0,t] we can

estimate
Ge(z,t,a)| < e, |Ge(y,t,a)| < e (4.8)

and using |e”® — e7°| < max{e™%, e "}|a — b| it follows
t
|Ge(2,t,0) — Ge(y,t,0)| < e_t““/o |9:(z(7, 7, 0),a(7)) — ge(2(7,y,0), a(7))|dT
t
< e [ Lyetia—ylr
0

L L
< etz —y| = ey (4.9)
L L
Now define T'(z,a) := inf{t > 0: z(¢t,z,a) € B(0,7/2)}. Then by continuous dependence

on the initial value (recall that f is Lipschitz in z uniformly in a € A) for each z €
Dy \ B(0,7) there exists a neighborhood N (z) such that z(¢(z,a),y,a) € B(0,r) and
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z(t(y,a),z,a) € B(0,r) for all y € N(z) and all a € A. Now pick some z € Dy \ B(0,7)
and some y € N'(z). Then for each v > 0 we find a, € A such that

ve(z) — ve(y)| —
/0 Gs(xaTv a’Y)g(x(T"Taa”Y)’a’Y(T))dT _/0 Gs(yaTa a’Y)g(x(Tayaa’Y)aa’Y(T))dT

<

Now fix some v > 0 and let 7' := min{7'(z, a),T(y,a,)}. Abbreviating z(t) = z(t,z,a,)
and y(t) = z(t,y,a,) we can conclude that z(7') € B(0,r) and y(T") € B(0,r). Hence we
can continue

|ve(2) = ve ()| =

<[ et anotar),an(r)ir — [ Gelyma)o(r),ar(r))dr

+ Ga(xaTa a”)’)

/0°° Go(@(T), 7,0, (T + ))g(@(T +7),a, (T + 7))dr

- /0 G (T, 70y (T + ))g(T + 1), ay (T + 7))dr
T
< /O G, 7, 0) — Ge(y, 7, 0y)|g(2(7), ay (7)) dr
+ / L Gy, a9 2 01), 0 (7)) — g(y(r), ay (7))dr
+e 9Tl T L |z —y|

T
< [ 16, ma) = Gelyma)| glalr)an () dr
0 | ——

Ssupmevo,aeA g(w,a)::g*

T
[ e glatr) (1) = gly(r), ()] dr
0

~~

<Lge'™f ||lz—y]|
+L1|lz -yl
“\7 Li(gr — L) g1 — Ly

since g1 > Ly. Here the first inequality follows by splitting up the integrals using the
triangle inequality, the second follows by the triangle inequality for the first term and
using z(T), y(T) € B(0,r), ||z(T) — y(T)| < eX/T, and (4.7) for the second term, and the
third and fourth inequality follow from (4.8) and (4.9).

+ L1> [z =yl

Since v > 0 was arbitrary the Lipschitz property follows on Dy, thus also on clD; and
consequently on the whole R” since v =1 on R” \ Dy. a

Remark 4.2 Note that in general the solution v, is not a robust Lyapunov function for the
origin of (2.1) anymore. More precisely, we can only ensure decrease of v, along trajectories
z(t, g, a) as long as g(z(t,zg,a),a(t)) > ¢, i.e. outside the region where the regularization
is effective. Hence although many properties of v are preserved in this regularization, some
are nevertheless lost.
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We now apply the numerical scheme from [6] to (4.2). Thus we end up with
U (:) = max{(1 — hge(2i, 0))0: (z + hf(2i, a)) + hg(zi, a)} (4.10)

where again 7. is continuous and affinely linear on each simplex in the grid and satisfies
7e(0) = 0 and 9. (z;) = 1 for all z; € ON.

A straightforward modification of the arguments in [3, 6] yields that there exists a unique
solution ¥, converging to v. as h and the size of the simplices tends to 0. Note that the
adaptive gridding techniques from [11] also apply to this scheme, and that a number of
different iterative solvers for (4.10) are available, see e.g. [6, 10, 11].

Remark 4.3 The numerical examples show good results also in the case where we cannot
expect a globally Lipschitz continuous solution v, of (4.2). The main reason for this seems
to be that in any case v, is locally Lipschitz on Dy. In order to explain this observation in
a rigorous way a thorough analysis of the numerical error is currently under investigation.

5 A numerical example

We illustrate our algorithm with a model adapted from [17]

(-1 el (¢ " ) es( O
- 0 —2/25 )T 0 )TN aziz

where z = (z1,72)7 € R%2. The unperturbed equation (i.e. with a = 0) is introduced in
order to explain the existence of turbulence in a fluid flow with Reynolds number R = 25
despite the stability of the linearization at the laminar solution. In [17] simulations are
made in order to estimate the domain of attraction of the locally stable equilibrium at the
origin. Here we compute it entirely in a neighborhood of 0, and in addition determine the
effect of the perturbation term ax; x5 for time varying perturbation with different ranges A.
Figure 5.1 shows the corresponding results obtained with the fully discrete scheme (4.10),
setting g(r,a) = ||z|?, e = 1071°, h = 1/20. The grid was constructed adaptively using the
techniques from [11] with a final number of about 20000 nodes. Note that due to numerical
errors in the approximate solution it is not reasonable to take the “exact” sublevel sets
Te(x) < 1, instead some “security factor” has to be added. The domains shown in the
figures are the sublevel sets 9. (z) < 0.95.
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Figure 5.1: Approximation of Dy for a) A = {0}, b) A =[-1,1], ¢) A = [-2,2], and d)

A=

[_3’ 3]

References

1]

M. Abu Hassan and C. Storey, Numerical determination of domains of attraction
for electrical power systems using the method of Zubov. Int. J. Control 34 (1981),
371-381.

J.S. Baggett and L.N. Trefethen, Low-dimensional Models of Subcritical Transition to
Turbulence. Physics of Fluids 9 (1997), 1043-1053.

M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman equations, Birkhaduser, Boston, 1997.

F. Camilli, L. Griine, and F. Wirth. A Generalization of Zubov’s method to perturbed
systems. Preprint 24/99, DFG-Schwerpunkt “Ergodentheorie, Analysis und effiziente
Simulation dynamischer Systeme”, submitted.

H.-D. Chiang, M. Hirsch, and F. Wu. Stability regions of nonlinear autonomous dy-
namical systems. IEEE Trans. Auto. Control 33 (1988), 16-27.



ZUBOV’S METHOD FOR ROBUST DOMAINS OF ATTRACTION 15

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Falcone. Numerical solution of dynamic programming equations. Appendix A
in: M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997.

M. Falcone, L. Griine and F. Wirth. A maximum time approach to the computation
of robust domains of attraction. Proceedings of the EQUADIFF 99, Berlin, to appear.

T. Gebhardt and S. GroBmann. Chaos transition despite linear stability. Phys. Rewv.
E 50 (1994), 3705-3711.

R. Genesio, M. Tartaglia, and A. Vicino. On the estimation of asymptotic stability
regions: State of the art and new proposals. IEEE Trans. Auto. Control 30 (1985),
747-755.

R.L.V. Gonzédles and C.A. Sagastizdbal, Un algorithme pour la résolution rapide
d’équations discreétes de Hamilton-Jacobi-Bellman. C. R. Acad. Sci., Paris, Sér. I
311 (1990), 45-50.

L. Griine. An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation.
Numer. Math. 75 (1997), 319-337.

W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967.

N.E. Kirin, R-A. Nelepin and V.N. Bajdaev, Construction of the attraction region by
Zubov’s method. Differ. Equations 17 (1982), 871-880.

A.D.B. Paice and F. Wirth. Robustness analysis of domains of attraction of nonlinear
systems, Proceedings of the Mathematical Theory of Networks and Systems MTNS98,
pages 353 — 356, Padova, Italy, 1998.

A.D.B. Paice and F. Wirth. Robustness of nonlinear systems subject to time-varying
perturbations, In F. Colonius et al. (eds.), Advances in Mathematical Systems Theory,
Birkhauser, Boston, 2000. To appear.

P. Soravia, Optimality principles and representation formulas for viscosity solutions of
Hamilton-Jacobi equations, I: Equations of unbounded and degenerate control prob-
lems without uniqueness, Advances Diff. Equations, 4 (1999), 275-296.

L.N. Trefethen, A.E. Trefethen, S.C. Reddy and T.A. Driscoll, Hydrodynamic stability
without eigenvalues, Science 261 (1993), 578-584.

A. Vannelli and M. Vidyasagar. Maximal Lyapunov functions and domains of attrac-
tion for autonomous nonlinear systems. Automatica, 21 (1985), 69-80.

F.W. Wilson. The structure of the level surfaces of a Lyapunov function. J. Differ.
Equations 3 (1967), 323-329.

V.I. Zubov, Methods of A.M. Lyapunov and their Application, P. Noordhoff, Gronin-
gen, 1964.






Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 6. Marz 2000

98-01. Peter Benner, Heike Fafibender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:

On the rate of convergence of infinite horizon discounted optimal value functions, November
1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complex Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Falbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Faflbender:
Error Analysis of the symplectic Lanczos Method for the symplectic Figenvalue Problem,
Marz 1999.

99-03. Eberhard Béansch, Alfred Schmidt:

Simulation of dendritic crystal growth with thermal convection, Mérz 1999.
99-04. Eberhard Bansch:

Finite element discretization of the Navier-Stokes equations with a free capillary surface,

Marz 1999.

99-05. Peter Benner:
Mathematik in der Berufsprazis, Juli 1999.

99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August 1999.



99-07. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Comput-
ers, September 1999.

99-08. Ronald Stover:
Collocation methods for solving linear differential-algebraic boundary value problems, Septem-
ber 1999.

99-09. Huseyin Akcay:
Modelling with Orthonormal Basis Functions, September 1999.

99-10. Heike Faflbender, D. Steven Mackey, Niloufer Mackey:
Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigen-
problems, Oktober 1999.

99-11. Peter Benner, Vincente Hernidndez, Antonio Pastor:
On the Kleinman Iteration for Nonstabilizable System, Oktober 1999.

99-12. Peter Benner, Heike Faflbender:
A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati Equations,
November 1999.

99-13. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Numerical Solution of Schur Stable Linear Matriz Equations on Multicomputers, November
1999.

99-14. Eberhard Bansch, Karol Mikula:
Adaptivity in 8D Image Processing, Dezember 1999.

00-01. Peter Benner, Volker Mehrmann, Hongguo Xu:
Perturbation Analysis for the Figenvalue Problem of a Formal Product of Matrices, Januar
2000.

00-02. Ziping Huang:
Finite Element Method for Mized Problems with Penalty, Januar 2000.

00-03. Gianfrancesco Martinico:
Recursive mesh refinement in 3D, Februar 2000.

00-04. Eberhard Bansch, Christoph Egbers, Oliver Meincke, Nicoleta Scurtu:
Taylor-Couette System with Asymmetric Boundary Conditions, Februar 2000.

00-05. Peter Benner:
Symplectic Balancing of Hamiltonian Mairices, Februar 2000.

00-06. Fabio Camilli, Lars Griine, Fabian Wirth:
A regularization of Zubov’s equation for robust domains of attraction, Marz 2000.



