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SYMPLECTIC BALANCING OF HAMILTONIAN MATRICES

PETER BENNER*

Abstract. We discuss the balancing of Hamiltonian matrices by structure preserving similarity
transformations. The method is closely related to balancing non-symmetric matrices for eigenvalue
computations as proposed by Osborne [23] and Parlett/Reinsch [25] and implemented in most linear
algebra software packages. It is shown that isolated eigenvalues can be deflated using similarity
transformations with symplectic permutation matrices. Balancing is then based on equilibrating row
and column norms of the Hamiltonian matrix using symplectic scaling matrices. Due to the given
structure, it is sufficient to deal with the leading half rows and columns of the matrix. Numerical
examples show that the method improves eigenvalue calculations of Hamiltonian matrices as well as
numerical methods for solving continuous-time algebraic Riccati equations.
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1. Introduction. The eigenvalue problem for Hamiltonian matrices

(11) H = [3 _iT],

where A,G,Q € R™™ and G, @ are symmetric, plays a fundamental role in many
algorithms of control theory and other areas of applied mathematics as well as compu-
tational physics and chemistry. Computing the eigenvalues of Hamiltonian matrices is
required, e.g., when computing the H.,—norm of transfer matrices (see, e.g., [9, 10]),
calculating the stability radius of a matrix ([13, 29]), computing response functions
[22], and many more. Hamiltonian matrices are also closely related to continuous-time
algebraic Riccati equations (CARE) of the form

(1.2) 0=Q+A"X + XA - XGX

with A,G,Q as in (1.1) and X € R"*™ is a symmetric solution matrix. Many nu-
merical methods for solving (1.2) are based on computing certain invariant subspaces
of the related Hamiltonian matrices; see, e.g., [19, 21, 26, 28]. For a detailed discus-
sion of the relations of Hamiltonian matrices and continuous-time algebraic Riccati
equations (1.2) we refer to [18].

In eigenvalue computations, matrices and matrix pencils are often preprocessed
using a balancing procedure as described in [23, 25] for a general matrix A € R"*™.
First, A is permuted via similarity transformations in order to isolate eigenvalues, i.e.,
a permutation matrix P € R"*™ is computed such that

T, X Y
(1.3) PTAP = 0 z W |,
0 0 T

where T} € RP*P and T> € R?7%? are upper triangular matrices. Then, a diagonal
matrix

I, 0 0
D := 0 Dz O 5 Dy = diag(dp+1,...,dn,q),
0 0 I,
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is computed such that rows and columns of D' ZD are as close in norm as possible.
That is, balancing consists of a permutation step and a scaling step. In the scaling
step, the rows and columns of a matrix are scaled, which usually leads to a decrease
of the matrix norm. This preprocessing step often improves the accuracy of computed
eigenvalues significantly; isolated eigenvalues (i.e., those contained in T} and T3) are
even computed without roundoff error.

Unfortunately, applying this balancing strategy to a Hamiltonian matrix H as
given in (1.1) will in general destroy the Hamiltonian structure. This is no problem if
the subsequent eigenvalue algorithm does not preserve or use the Hamiltonian struc-
ture. But during the past fifteen years, several structure preserving methods for the
Hamiltonian eigenproblem have been suggested. In particular, the square-reduced
method [31], the Hamiltonian QR algorithm (if in (1.1), rank G = 1 or rank Q = 1)
[12], the recently proposed algorithm based on a symplectic URV-like decomposition
[7], or the implicitly restarted symplectic Lanczos method of [5] for large sparse Hamil-
tonian eigenproblems are appropriate choices for developing subroutines for library
usage and raise the need for a symplectic balancing routine. Similarity transforma-
tions by symplectic matrices preserve the Hamiltonian structure. Thus, in order to
balance a Hamiltonian matrix and to preserve its structure, the required permutation
matrix and the diagonal scaling matrix should be symplectic.

In Section 2 we will give some necessary background. Isolating eigenvalues of
Hamiltonian matrices without destroying the structure can be achieved using sym-
plectic permutation matrices. This will be the topic of Section 3. How to equilibrate
rows and norms of Hamiltonian matrices in a similar way as proposed in [25] using
symplectic diagonal scaling matrices will be presented in Section 4. When invariant
subspaces, eigenvectors, or solutions of algebraic Riccati equations are the target of
the computations, some post-processing steps are required. These and some other
applications of the proposed symplectic balancing method are discussed in Section 5.
Some numerical examples on the use of the proposed balancing strategy for eigen-
value computation and numerical solution of algebraic Riccati equations are given in
Section 6.

2. Preliminaries. The following classes of matrices will be employed in the
sequel.
DEFINITION 2.1. Let

2.1) = [ _OIn fn ] ,

where I, is the n X n identity matriz.

a) A matriz H € R*™*?" js Hamiltonian if (HJ)T = HJ. The Lie Algebra of
Hamiltonian matrices in R2"*2" is denoted by Hap, .

b) A matriz H € R2"*2" s skew-Hamiltonian if (HJ)T = —HJ. The Jordan
algebra of skew-Hamiltonian matrices in R2"*?" 4s denoted by SHap.

¢) A matriz S € R?"*2" s symplectic if SJST = J or, equivalently, STJS = J.
The Lie group of symplectic matrices in R2"*2" s denoted by Soy,.

d) A matriz U € R*"*?" s unitary symplectic if U € Sa,, and UUT = L,,. The
compact Lie group of unitary symplectic matrices in R2"*2" s denoted by USs,,.

Observe that every H € Ha, must have the block representation given in (1.1).

In [11], an important relation between symplectic and Hamiltonian matrices is
proved.



PROPOSITION 2.2. Let S € R2"*2" be nonsingular. Then S™1HS is Hamiltonian
for all H € Ha,, if and only if STJS = aJ for some a € R\ {0}.

This result shows that in general, similarity transformations that preserve the
Hamiltonian structure have to be symplectic up to scaling with a real scalar.

The following proposition shows that the structure of 2n x 2n orthogonal sym-
plectic matrices permits them to be represented as a pair of n X n matrices. Hence,
the arithmetic cost and storage for accumulating orthogonal symplectic matrices can
be halved.

PROPOSITION 2.3. [24] An orthogonal matriz U € R2"*?" s symplectic if and

only if it takes the form U = [_U[}Q gf] where U; € R**™ 4 =1,2.

We have the following well-known property of the spectra of Hamiltonian matrices
(see, e.g., [18, 21], and the references given therein).

PROPOSITION 2.4. The spectrum of a real Hamiltonian matriz, denoted by o (H)
is symmetric with respect to the imaginary axis, i.e., if A\ € o (H), then —\ € o (H).
The spectrum of Hamiltonian matrices can therefore be partitioned as

o (H) =, A U{=AL, o0, —An) = AU (=A),

where Re(A\;) >0, j=1,...,n.

When solving Hamiltonian eigenproblems one would like to compute a Schur
form for Hamiltonian matrices analogous to the real Schur form for non-symmetric
matrices. This should be done in a structure-preserving way.

DEFINITION 2.5. a) Let H € Hopn. If H has the form

: A G
2 p= 4 %),

where A € RV*™ s in real Schur form (quasi-upper triangular) and G= GT, then H
is real Hamiltonian quasi-triangular.

b) If H € Hay, and thereA exists U € US>, such that H = UTHU is real Hamilto-
nian quasi-triangular, then H is in real Hamiltonian Schur form and UTHU is called
a Hamiltonian Schur decomposition.

If a Hamiltonian Schur decomposition exists such that H is as is (2.2), then U
can be chosen such that o (4) = —A = —A [12].

Most of the structure-preserving methods for the Hamiltonian eigenproblem, i.e.,
those using symplectic (similarity) transformations, rely on the following result. For
Hamiltonian matrices with no purely imaginary eigenvalues this result was first stated
in [24] while in its full generality as given below it has been proved in [20].

THEOREM 2.6. Let H € Hayp, and let iaq, - . . ,iay be its pairwise distinct nonzero
purely imaginary eigenvalues. Furthermore, let the associated H -invariant subspaces
be spanned by the columns of Uy, k = 1,...,0. Then the following are equivalent.

i) There exists S € Say, such that ST*HS is real Hamiltonian quasi-triangular.

ii) There exists U € USs, such that UTHU is in real Hamiltonian Schur form.

i) U,fJUk is congruent to J for all k = 1,...,¢, where J is always of the

appropriate dimension.

Note that from Theorem 2.6 it follows that purely imaginary eigenvalues of H €
Hay, (if any) must have even algebraic multiplicity in order for the Hamiltonian Schur
form of H to exist.



3. Isolating Eigenvalues by Symplectic Permutations. Let P denote any
n X n permutation matrix. It is easy to see that symplectic permutation matrices

have the form

p
In—p—q=r
}a
p
In—p—q=r

tq

P 0
- ey
With matrices of type (3.1) it is possible to transform a Hamiltonian matrix to the
form
All A12 AIS Gll G12 G13
Ass Aoz | GT, G22 0
0 0 Az | GT, 0 0
3.2) H=P,HP, =
(3:2) 0 0 Qu|-AL 0 0
0 Q2 Qx|-AL -AJ 0
Q: Q% Qss | —Aly —A5; —A%

[ N I N I S
p

T q p T

q

where A;1, A3 are upper triangular and either Q13 = 0 or G13 = 0. The existence of
such a P, will be proved in a constructive way later by Algorithm 3.4 which transforms
a Hamiltonian matrix to the form given in (3.2). From a Hamiltonian matrix having
the form (3.2) a total of 2(p + ¢) eigenvalues of H can be read off directly as seen by

the following result.

LEMMA 3.1. Let H € Ha,, and p,q,r € Ny with r =n — p — q, where H is of the
form (8.2) and either G13 = 0 or Q13 = 0. Then there exists a permutation matriz

P € R2"*2" gych that

m 'Y Z
(3.3) T = PTHP = 0 Hypy W
0 0 T
where Ty, Ty € ROTOX@+D) gre ypper triangular with
(3.4) o (Th) = o (-T»)
and
Ay G
3.5 Hy =
( ) > [ Q22 _Ag; ]
is a 2r X 2r Hamiltonian submatriz of H.
Proof. Let H be as in (3.2) and
0 I, 0,0 0 O
0 0 I.|O0O 0 O
_ 0 0 0|0 0 I
(36) A=\ 070 I, 0
0 0 0. 0 O
I, 0 00 O O

)



Then

—A3; Qf; | Q3; —Af; | —Al; Qss
G’{3 All A12 G12 Gll A13
A T 4
(3.7) PTHP, = 0 0 | Az GZ; G12T 23
0 0 | Q2 —Ayp | —A Qo
0 0] 0 0 | -AT, Qs
| 0 0 0 0 Gz  Ass
Define
1
(3.8) 0, = / € R,

If G13 = 0 then set P, :=diag (Il,, I, I, I, II,, I,). Otherwise (Q13 = 0), set

0 I,
I, 0
_ I, 0
Py = 0 I
0 I,
I, 0
Thus, T := PY P HP, P, has the desired form. The eigenvalue relation (3.4) follows
from
_ T
0 I, [-A% Qu 0 L ]__[-4% @Qf
-1, 0 Giz  Ass -1, 0 GT, Aun | ~ O

Lemma 3.1 is merely of theoretical interest and demonstrates that in order to solve the
Hamiltonian eigenvalue problem, we can proceed by working only with Has. But the
transformations we have used in the proof are in general non-symplectic. If we want to
compute invariant subspaces, eigenvectors, and/or the Hamiltonian Schur form given
in Theorem 2.6, we can transform the Hamiltonian matrix in (3.2) such that it has
Hamiltonian Schur form in rows and columns 1,...,p+¢gand n+1,...,n+ p+q.
But this can not be accomplished using only symplectic permutation matrices of the
form (3.1). Therefore we need another class of transformation matrices.

DEFINITION 3.2. A matriz Py € R2™*2" s called a J-permutation matrix if

a) it is symplectic, i.e., PYJP; = J,
b) (PJ)ch S {—1, 0, l}fOTj,kZ 1,...,2n,
¢) each row and column have exactly one nonzero entry.

As Py € US5,, it is clear that a similarity transformation by a J—permutation
matrix preserves the Hamiltonian structure. In analogy to standard permutations,
similarity transformations with P; can be performed without floating point opera-
tions. Moreover, they can be represented by a signed integer vector IP of length n,
where IP(k) = +j, k = 1,...,n, j = 1,...,2n, if rows and columns k,j are to be
interchanged while the sign indicates if the corresponding entry in Py is +1 or —1.
The entries of Py in rows n + 1 to 2n can be deduced from IP and Proposition 2.3.
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Furthermore, symplectic permutation matrices as given in (3.1) are J—permutation
matrices.

LEMMA 3.3. For any H € Ha,, having the form (3.2), there exists a J—permutation
matrix Py such that

Ay A | Gu Gha Ip+q
" 0 Ay | GL G n—-p—q=r
(39) H = PIHP; = = 2 | In-p—g
0 0 | —Af 0 Ip+q
0 Q| —-Af, -—-AlL In—p—q=r

where A1; is upper triangular and with the notation in (3.2),

A22 = A22> C/\;22 = G22; Q22 = Q22-

Proof. Let a Hamiltonian matrix H be given as in (3.2). We need a J-permutation
matrix only in the first step. Let

I, 0 0|0 0 0
0 I, 0 0 0 O
po_ |0 0 00 0 g
Y00 0 [, 0 0
0 O 0 0 I, O
0 0 -I,|0 0 0
Obviously, P; is a J-permutation matrix and
[ A A -Gz | G Gz Az |
0 A22 0 GTZ G22 A23
Hl = ]_THP1 — _Q,{:i _Q%; _Ag?} A{; Ag&} _Q33
0 0 0 —A% 0 Q13
0 Q22 0 —Af, —AL, Qs
.0 0 0 | GE 0 Ag |
Now assume G135 = 0. Set P; := diag(P», P») where
] 0 I, 0]
P2 = 0 0 IT
I, 0 0
Then,
—AL Qs —Q% | —Qs A, A
0 A Ao Az GlTl G2
_ pT 0 0 Az Az Gy Gao
Hy = B P 0 0 0 Ass 0 0
0 0 0 Qi3 —AL 0
0 0 Q22 Q23 —Afz _A2T2

We thus obtain the form (3.9) by another similarity transformation with

6
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where II, is defined in (3.8). For the other case, i.e., Q13 = 0, set

i I, 0 0
B=10 0 L |,
0 I, 0

q
and P, := diag(P», P2), P := diag(lp, Iy, I, I, I1,, I,.).

In both cases, P := PP,P; is a J-permutation matrix and H := PTHP is a
Hamiltonian matrix having the desired form (3.9). O

In order to isolate eigenvalues, it is sufficient to restrict ourselves to symplectic
permutations. But having computed the form (3.2), it is possible that there are still
isolated eigenvalues in Hyy. Applying the same procedure used to isolate eigenvalues
in H to Hjs, we can transform Hyy to the form (3.2). This process can then be
repeated until no more isolated eigenvalues are found. Accumulating all permutations
in a symplectic permutation matrix P; of the form (3.1), this results in a similarity
transformation

(310) H=PTHP, =

F A . Ay . A | Gu . G .. Gue T
0o . : : 0 et
S Ay . A | GT, . G 0 Lo e
: EEE T I L dpe R
1.0 0 A| Gi, 0 0 }ps
- 0 .. 0 Q.| -AL o0 0 1o
2 N S
: 0 Qiv .-~ Qus|—AL, ... —AT, . : o
0 / : : : : _ 0 Yper 4 oo F D51
LQT, ... QFf ... Qss|-Af, ... AL, ... —AT, |}ps

Here, A;; € RPi*Pi  j =1,... s, j #t, are upper triangular and for j =1,...,¢ -1,
either Qjs—j+1 = 0 or G s—j+1 = 0 and the Hamiltonian submatrix

At t Gt t :|
3.11 H;; = ’ ’
(3.11) £t [ Que —AT,

has no isolated eigenvalues. If we now define p := Ei;i Dj, 4 = Z‘;:t 41 Pj, then we

can partition H in (3.10) as in (3.2). Then the first step in the proof of Lemma 3.1
can be performed to obtain the form (3.7). Just the block-structure of the upper left
and lower right diagonal blocks in (3.7) are more complicated. But it is still possible
to bring them to upper triangular form using repeatedly the same sequence of permu-
tations used in the proof of Lemma 3.1. This shows that 2(p + ¢) eigenvalues of the

Hamiltonian matrix can be read off directly from (3.10) and that H is permutationally

similar to
N O O

n Y Z
o me w|=| OO
0 0 T

N



Further, we have H;; € R*"*?" where now, r := p; =n — p — g, and

S

(3.12) o(H) =0 (Hy) U U o(4;,;) U U o(—A7;)-

=1 j=1
j#t it

e

If only eigenvalues are required, we can continue working only with Hy ;. If also eigen-
vectors and/or invariant subspaces are required, the similarity transformations used
to solve the reduced-order eigenproblem for H; have to be applied to the whole ma-
trix H. In that case, H should be transformed to the form given in (3.9). Partitioning
H from (3.10) as in (3.2), we can perform the first step of the proof of Lemma 3.3
with the J-permutation matrix P;. The subsequent steps to achieve upper triangular
form in the first p + ¢ rows and columns have then to be performed for each of the
first ¢ — 1 block columns, distinguishing the cases @ s—j+1 = 0 or G s_j41 = 0 for
j=1,...,t—1.

A procedure to transform a Hamiltonian matrix H to the form in (3.10) is given in
the following algorithm. Note that in the given algorithm, p; = 1forall j =1,...,s,
J#

ALGORITHM 3.4.

Input: Matrices A,G,Q € R**", where Q = QT, G = GT, defining a Hamilto-
nian matriz H € R2nx2n,

Output: A symplectic permutation matriz P;; matrices A,G,Q with G = G7,
Q = QT defining a Hamiltonian matriz H = PIHP, having the form
(8.10); integers iy =p1+...+pi_1+1l=p+1landip=i1+p: =n—gq.

Ps = I2n
il = 1, ih = n
’il = 0, ih = n
WHILE (i; # 4;) AND (i, # ip)
i = 1, th =1tp
1 =1p
WHILE (i > i) AND (ip = i5)
ip = tp
in in
r=""layl+ Y lgisl
i=i j=ir

IF(ri=0)THEN

P=1I,+ eiel +egel —eel —ej el
A=PTAP, G=PTGP, Q=PTQP
P = P - diag(P, P)

in=1ip—1
END IF
i=i—1
END WHILE
i =i
WHILE (i < iz) AND (i; = ;)
i=14
in in
c= Z |aji| + Z |qjil
g =



_ T T _ T, T
=1I,+ ee;, +e,e; —eie; —e;€;

P
A=PTAP, G=PTGP, Q=PTQP
P=P

= P - diag(P, P)
=1 +1
END IF
1=1+1
END WHILE
END WHILE

END

In each execution of the outer WHILE-loop, we first search a row isolating an
eigenvalue. If such a row is found, we look for a column isolating an eigenvalue. In
this fashion it can be guaranteed that at the end, there are no more isolated eigenvalues
although we always only touch the first n rows and columns of the Hamiltonian matrix.

In an actual implementation one would of course never form the permutation
matrices explicitly but store the relevant information in an integer vector. Multipli-
cations by permutation matrices are realized by swapping the data contained in the
rows or columns to be permuted; for details, see, e.g., [3].

It is rather difficult to give a complete account of the cost of Algorithm 3.4. If
there are no isolated eigenvalues, the algorithm requires 4n? — 2n floating point addi-
tions and 2n comparisons as opposed to 8n? —4n additions and 4n comparisons for the
unstructured permutation procedure from [25] as implemented in the LAPACK sub-
routine xGEBAL [3] when applied to H € R?"*?". The worst case for Algorithm 3.4
would be that in each execution of the outer WHILE-loop, an isolated eigenvalue is
found in the last execution of the second inner WHILE-loop. In that case, the cost con-
sists of 4n®/3 4+ n? + O(n) floating point additions, n? + n comparisons, and moving
2n? 4 2n floating point numbers. But in this worst-case analysis, all eigenvalues are
isolated such that after permuting, there is nothing left to do, and the Hamiltonian
matrix is in Hamiltonian Schur form. A worst-case study for xGEBAL shows that
the permutation part requires 8n/3 — 2n? + O(n) additions, 2n? + n comparisons,
and moving 4n? + 2n floating point numbers. We can therefore conclude that Algo-
rithm 3.4 is about half as expensive as the procedure proposed in [25] applied to a
Hamiltonian matrix.

4. Symplectic Scaling. Suppose now that we have transformed the Hamilto-
nian matrix to the form (3.10). Since all subsequent transformations are determined
from Hy;, the scaling parameters to balance H;; have now to be chosen such that

the rows and columns of H;; (instead of H ) are as close in norm as possible.

In order to simplify notation we will in the sequel call the Hamiltonian matrix
again H. Let Hyg be the off-diagonal part of H, i.e.,

H,s = H — diag(H).

We may without loss of generality assume that none of the rows and columns of Hg
vanishes identically. Otherwise, we could isolate another pair of eigenvalues.

Now we want to scale H such that the norms of its rows and columns are close
in norm. As noted before, employing the technique of Parlett and Reinsch [25] de-
stroys the Hamiltonian structure. Diagonal scaling has thus to be performed using a
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symplectic diagonal matrix D,. Such a matrix must have the form,

D 0
(41) .= 5 o
where D € R**" is a nonsingular diagonal matrix.
Let us at first note an obvious result for Hamiltonian matrices. Here and in the
sequel we will use the colon notation (see, e.g., [15]) H(:, k), H(j,:) to indicate the
kth column and jth row, respectively, of a matrix H.

LEMMA 4.1. Let H € R*"*2" be a Hamiltonian matriz. Then for all p > 1 and
foralli=1,...,n,

(4.2) IH G, )llp = H(n + 1,57,
(4.3) 1H 6, ) llp = 1H G+ ) I,

i.e., the p-norms of the ith column equals the norm of the (n +i)th row and the norm

of the ith row equals the norm of the (n + i)th column.

Proof. The result is obvious by noting ||z, = (Zizl |xk|”) * for z € R?" and
observing that from the structure of Hamiltonian matrices, we have

H(ai) = [al,ia A2.4y-++50n,i,91,i,92,45 - - - ;qn,i]T

H(n+14,:) = [gi1,¢i,2)- - - > Qiyns =105 —2,5 - - -, —Cn, il

?

and furthermore, ¢;; = g;; for all 1 <4, j < n. Equation (4.3) follows analogously by
noting g;; = g;; for all 1 <4,j <n. O

We can now conclude that it is sufficient to equilibrate the norms of the first
n rows and columns of a 2n x 2n Hamiltonian matrix by using a consequence of
Lemma 4.1.

COROLLARY 4.2. Let H € R?*"*2" be a Hamiltonian matriz. Then for all p > 1
and for alli=1,...,n,

NHCG )l = 1HE ), <= 1HGn+ )l = [1H(n+d,:)|lp-

Since a similarity transformation with any diagonal matrix does not affect the
diagonal elements of the transformed matrix, it is in the following sufficient to consider
H,g. We will employ the notation

h; := Hog(:,4) = ith column of Hog,

B o= oft (4, :)T = transpose of the ith row of Hyg.

In the sequel, we will for convenience use p = 1. The results also hold for any
other p-norm. From a computational point of view it is also reasonable to use the
1-norm, since its computation does not involve any floating point multiplications and
furthermore, reducing the norm of H in one norm usually implies also a reduction in
the other norms.

Equilibrating ||h;||: and ||h?||1 can now be achieved in a similar way as in the
Parlett/Reinsch method. If 3 denotes the base of the floating point arithmetic and
o; is any signed integer, then they compute 3¢ closest to the real scalar

6 = VIIRl2/l1ills.
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Thus, with D@ = L, + (6 — 1)e;el and H = (D@)~'HD® it follows that ||hi||; =
[|Ai]]1- But if §; # 1, H is in general no longer Hamiltonian. Unfortunately, using the
symplectic diagonal matrix

[ D, 0
() — i
‘Ds - |: 0 D~_1 :| )

k3

where D; = I, + (0; — 1)e;el and computing

(4.4) H=DO""*HDY
we obtain

7 7 2 7 7 1 1
(4.5) Nlhille = Rl — bilqis| + 67 gl Rl = [[A*]lx - g|gii| + 5_2|gii|

and thus in general, ||hi||y # ||A|1- .
_ Nevertheless, equilibrating the 1-norms of h; and h* can be achieved by requiring
[|ill1 = ||h?||1 and solving the resulting quartic equation

1 . 1
(4.6) Si(llhilly — lasil) + 67 ais| = g(”h’”l = |giil) + 6—;|9u'|-

It remains to show that equation (4.6) has a positive solution.

THEOREM 4.3. Let H € R?™*2" be o Hamiltonian matriz and denote its off-
diagonal part by Hog. Assume that none of the rows and columns of Hyg vanishes
identically. Then there exists a unique real number &; > 0 such that for H as in (4.4)
we have

hilly = 17l = [hnalls = 171

Proof. Solutions of Equation (4.6) are non-zero solutions of
(4.7) 0 =|qiild; + (lhilly = laii); + (1gii = 1B°111)0: = |giil =2 p(3),

where p(t) = Ei:o ait®. Recalling that gi; = (h')n1s, ¢ii = (hi)nts, the coefficients
of the polynomial p satisfy

ao=—lgul <0, a1 = [gu|—[IR'[x <0, a2 =0,

az = [|hills — lgis] > 0, a1 = |gi| > 0.
Since there is at most one change of sign in the coefficients of the polynomial p,
Descartes’ rule of signs shows that there is at most one positive zero of p. So if
there exists a positive solution of (4.6), it is unique. By assumption, ||h;||; # 0 and
|h¥|]1 # 0. Therefore, either ag < 0 or a; < 0 (as gy is part of h?) and either a3 > 0
or ag > 0 (as ¢ is part of h;). Thus, we know that p is a polynomial of degree at
least 3 with positive leading coefficient and hence, lim;—, o, p(t) = +00.

On the other hand, if g;; # 0, then p(0) < 0 and using the mean value theorem it
follows that there exists a positive zero of p. If g;; = 0, then ¢ = 0 is a zero of p and
a1 < 0. The third order polynomial ¢(t) = a4t + ast? +a; has a positive zero because
of the mean value theorem and ¢(0) = a; < 0 as well as lim;_,, ¢(t) = +o00. Thus,
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by p(t) = tq(t), p has again at least one positive zero and hence equation (4.6) has
at least one positive real solution regardless of the value of g;;. On the other hand,
it was already observed that there is at most one such solution and we can conclude
that there exists a unique d; > 0 solving equation (4.6) whence ||h;||y = [|¥]|1.

The other equalities follow immediately from Corollary 4.2. O

Computing the exact value d; equilibrating the ith and (n+4)th rows and columns
would require the solution of the fourth-order equation (4.6). Since the diagonal
similarity transformations are to be chosen from the set of machine numbers, it is
sufficient to find the machine number % closest to d;. This can be done similarly
to the computation in the general case as proposed in [25] and implemented in the
Fortran 77 subroutines BALANC from EISPACK [14] or its successor xGEBAL from
LAPACK [3]. That is, starting with §; = 1, the quantities in (4.5) are evaluated and
compared. If ||A;|ly < ||A?||1, then this is repeated for §; = B*, k = 1,2,... until
l7lly > [|A¥]|1. Otherwise, if ||h|y > ||A%||1, then we use 6; = 8~F, k =1,2,... until
|Pills < [|A?]]:. This is achieved by the following algorithm.

ALGORITHM 4.4.
Input: Hamiltonian matric H € Ha,, having no isolated eigenvalues, B = base

of floating point arithmetic.

Output: Diagonal matriz Dy € S, H is overwritten by D;'HD, € Ha, with
row and column norms equilibrated as far as possible.

D, = I,
FOR k =1,2,... until convergence,
FORi=1,...,n,

6 = 1
c = |hilli, @ = l|hptigls @ = c—da,
r = ||hz||1’ ga = |h‘i,n+’i|a Ta = T —Ga,
WHILEc < r
ca = Pca, Ga = (4o, ¢ = Co+t o
e = To/By 9o = a/B* T = Tatge
5 = B,
END WHILE
IF § = 1 THEN
WHILE r < ¢
Cq = Ca/ﬂ; o = qa//ﬁza ¢ = Cq+ 4o,
Ta = ﬂ(ra_ga)a Ga = /6290.7 r = T¢+9Ga,
& = 6/B,
END WHILE
END IF

i i
H = diag (D; %, D;) - H - diag (D;, D;%),
END FOR i
END FOR k

D; =T+ (6 —1)esel D, = D,diag (D;, D; "),

END

One execution of the outer FOR-loop of Algorithm 4.4 can be considered as a
sweep. The algorithm is terminated if for a whole sweep, all D; = I,,. Usually, the
row and column norms are approximately equal after very few sweeps. Afterwards, the
iteration makes only very limited progress. Therefore, Parlett and Reinsch propose
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in [25] a modification, which, translated to our problem, becomes:

Let 6; be determined by the two inner WHILE-loops of Algorithm 4.4 and
compute

| =

(4.8) ¢ = Gilllhilly — lgail) + 6Flgssl i =

(=%}

: 1
-(I1A* 11 — [gail) + 5_2|giz'|-
i i
If (c; + i) < y([|hilly + [|REl1), (where v is a given positive constant),
then compute D; as in Algorithm 4.4. Otherwise, set D; = I,,.

For v = 1, the behavior is essentially the same as for Algorithm 4.4 (in a few
cases, Algorithm 4.4 increases ||h;||1 + ||h?||; which can not happen if v = 1). For
v slightly smaller than one, a step is skipped if it would produce an insubstantial
reduction of |||y + ||h?]]1-

In an actual computation, the similarity transformations with the D;’s can be
applied directly to the blocks A, G, and @ of the Hamiltonian matrix without forming
the Hamiltonian matrix itself. Thus, each similarity transformation can be performed
using only 4n — 4 multiplications. When the standard (not structure preserving)
scaling procedure from [25] is applied to H, each similarity transformation requires
4n — 2 multiplications. (Recall that in Algorithm 4.4, two rows and columns are
equilibrated at a time while only one row and column is treated in each step of the
inner FOR-loop of the standard procedure.)

The number of sweeps required to converge is similar to those for the general case
since the theory derived in [25] only requires the assumption of similarity transfor-
mations with diagonal matrices and that in step ¢ of each sweep, the ith rows and
columns are equilibrated as far as possible with §; = 3%. But this is accomplished by
Algorithm 4.4. Moreover, if §; is taken as the exact solution of (4.6), the convergence
of the sequence of similarity transformations to a stationary point can be proved as
in [23, 16]. That is, if (51@) is the solution of (4.6) in sweep k, then limg_, Jgk) =1
for all i = 1,...,n and hence in the limit, H is a balanced Hamiltonian matrix.

Note that here, each sweep has length n while in the standard balancing algorithm,
one has to go through each row/column pair of the matrix and thus, each sweep has
length 2n. Thus, the computational cost for scaling a 2n x 2n Hamiltonian matrix
by Algorithm 4.4, assuming k; sweeps are required, is 4n%k; + O(kin) as opposed
to 8n%ks + O(kon) for the standard scaling procedure as given in [25] with assumed
ko sweeps required for convergence. In general, k; =~ ks such that the structure-
preserving scaling strategy is about half as expensive as the standard procedure.
These flop counts are based on the assumption that the cost for determining the §;
can be considered as small (O(1)) compared to the similarity transformations.

REMARK 4.5. In [17] it is proposed to solve the matrix balancing problem using
a convex programming approach. To compare the complexity of this approach to
that of Algorithm 4.4, suppose that Algorithm 4.4 terminates after k; sweeps with
| 1]l — [1RE|2 | < p;. For the matrix H to be balanced, let

£:={(i,5) € {1,...,n} x {1,...,n} | i # j, hi #0},

T = Yjee hijl, and hmin = min{|hi;|[(i,5) € €}. Assume that 35i, uf =: p?
and p < er. (Here, e = exp(1l).) Then Theorem 5 in [17] states that the complex-
ity of computing a diagonal matrix Y with positive diagonal entries such that the
rows and columns of Y ' HY are balanced with the same accuracy as achieved by
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Algorithm 4.4 is O (nln (2FInzZ-
sumed that k; = O(1) with respect to n. Hence, Algorithm 4.4 can be considered
to be of complexity O(n?). This complexity is clearly superior to that of the convex
programming approach which is still the case if k&1 = O(n).

Algorithm 4.4 requires a careful implementation to guard against over— and un-
derflow due to a very large/small §;. Here, we can use the bounds discussed in [25] and
implemented in LAPACK subroutine xGEBAL [3]; we just have to take into account
that in each step we scale by %2 rather than § as in xGEBAL.

)) From numerical experience, it can be as-

5. Backtransformation, Ordering of Eigenvalues, and Applications. So
far we have only considered the problem of computing the eigenvalues of a Hamiltonian
matrix. In order to compute eigenvectors, invariant subspaces, and the solutions of
algebraic Riccati equations, we have to transform the Hamiltonian matrix to real Schur
form. As we are considering structure-preserving methods, the goal is to transform
the Hamiltonian matrix to real Hamiltonian Schur form as given in Theorem 2.6 a)
— if it exists.

Assume that we have applied Algorithm 3.4 to the Hamiltonian matrix and ob-
tained a symplectic permutation matrix P; such that PTH P, has the form given in
(3.10). Then, we have applied a J-permutation P; to the permuted Hamiltonian
matrix such that its rows and columns numbered 1,...,p+¢, n+1,....n+p+gq
are in Hamiltonian Schur form, i.e., P7 PT H P, Py has the form given in (3.9). (From
Lemma 3.3 we know that such a P; exists.) Next, we have applied Algorithm 4.4 to
the Hamiltonian submatrix H;; € Ha, from (3.11) and obtained a diagonal matrix
D = diag (D¢, D; ") € Sy Let

Ijbg 0 0 0
D, = 8 Dor I,,(l,, 8
0 0 0 Dt
Then
All 412 C?ll 6?12
H := D;'PTPTHP,P;D; = 8 52 _GE% GSQ ,
0

T AT
Q22 —A, —Aj

where A;; € RP+a)x(p+a) g upper triangular and the Hamiltonian submatrix Hyy :=

[gzz _Gj% ] has no isolated eigenvalues and its rows and columns are equilibrated by
22
Algorithm 4.4. Now assume the Hamiltonian Schur form of Hss exists and we have

(i]2 2 _AVQ 2

computed Uss = [VM Tne

] € US>, that transforms Hys into real Hamiltonian Schur
form. Set

Ij;q 0 0 0

o 0 Too 0 —Vay
Us=1 0 0 L, o0
0 Vag 0 U2

and S := P,P;D,U. Then H; := S~1HS is real Hamiltonian quasi-triangular and
S € Sy, The first n columns of S span a Lagrangian H-invariant subspace. In most
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applications, the c-stable H-invariant subspace is desired. Let us assume the method
used to transform Hy, to Hamiltonian Schur form chooses Uss such that the first r

columns of Uss, i.e., the columns of [[‘J/Z] , span the Hys—invariant subspace of choice.

But there is no guarantee that the isolated eigenvalues in fln are the desired ones.
In that case, we have to reorder the Hamiltonian Schur form in order to move the
undesired eigenvalues to the lower right block of H and the desired ones to the upper
left block. Assume that we want to compute the Lagrangian H-invariant subspace
corresponding to a set A = {A;...,\,} C o (H) which is closed under complex
conjugation. (Note that this is a necessary condition in order to obtain a Lagrangian
invariant subspace [2]). Using the standard reordering algorithm for the real Schur
form of an n x n unsymmetric matrix as given in [15, 30], we can find an orthogonal

matrix Up such that with the orthogonal symplectic matrix U = diag ((7 U A), we
have that

A1y z‘:112 C:;n @12 In—k
0 Asy Gg; Goa }k
0 0 -4 0 n—k
0 o -AL —AL | }k

(5.1) Hy = U{HUy =

where Aj1, A2s are quasi-upper triangular, and
(52) A =0 (1411) Uo (—A%;), —A =0 (Azz) Uo (_A’{l)

Therefore, we have to swap the eigenvalues in Ass and —flg;. Note that the eigenvalues
to be re-ordered are among the isolated eigenvalues and hence are real. This implies
that A,y is upper triangular. The re-ordering can be achieved analogously to the
re-ordering of eigenvalues in the real Schur form as given in [15, 30]. The following
procedure uses this standard re-ordering in order to swap eigenvalues within Ao
(and —AZL) and requires rotations working exclusively in rows and columns n and

2n in order to exchange eigenvalues from Ay, with eigenvalues from —AZ,. Assume
(H2)n,n = (1422)kk = _An- Then (H2)2n,2n = (_A%;)kk = An Let I:gi" _CSA"] be a

An
2 x 2 Givens rotation matrix that annihilates the second component of [ _“7;/{‘"] where
Inn = (H2)n,2n = (é22)kk- Define

Uxr, = Iop+(c— 1)(€n€£ + eZnegn) + 3(e2neg - enegn)-

n

Then U, is a symplectic Givens rotation matrix acting in planes n and 2n and

[ Ay A ain G Gio Jin | In—k
0 Ap | GL Gw {’f -1
U;{'n H2UA,, = 0 0 An 9in .- 9Inn A
0 0 o0 [-A, 0 o0 | jn—k
0o o0 o0 |-AL, —AT, o -1
L0 0 0 |-@, ... A ] H

Here, the bar indicates elements changed by the similarity transformation.
The next step is now to move A, up in the upper diagonal block using again the
standard ordering subroutine such that we obtain again the form given in (5.1), just
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Ayp € Rn=k+1)x(n=k+1) an( again, the relations (5.2) hold. This procedure has now
to be repeated until k =0 and A = o (A11).

REMARK 5.1. If the Hamiltonian matrix has the form H = [ CéC ?ﬁ;] which
corresponds to a linear system & = Az + Bu, y = Cz, with (A4, B) stabilizable
and (C, A) detectable, then each isolated eigenvalue in (5.1) given by the diagonal
elements of A;; has negative real part. Otherwise, these eigenvalues are unstable or
undetectable and can not be stabilized/detected. Therefore, if we have not mixed
up blocks by the J-permutation matrix P; (i.e., in Algorithm 3.4, i, = n) and the
c-stable H-invariant subspace is required, no re-ordering is necessary.

REMARK 5.2. When solving algebraic Riccati equations using any approach based
on the Hamiltonian eigenproblem, the symplectic balancing strategy proposed here is
often not enough to minimize errors caused by ill-scaling. This is due to the effect that

for a balanced Hamiltonian matrix H = [S _iT] we still may have ||Q|| > ||G|| which
may cause large errors when computing invariant subspaces [27]. Therefore, another
symplectic scaling using a similarity transformation with diag (\/ﬁfn, \/iﬁln) € Sop,

p € R, should be applied to H in order to achieve | A|| ~ ||G|| = ||Q]| as far as possible;
see [4] for details and a discussion of several heuristic strategies to achieve this.

REMARK 5.3. Everything derived so far for Hamiltonian matrices can be applied
in the same way to skew-Hamiltonian matrices. If N € SHs,, then N = [g AGT]
with G = —G7, Q@ = —QT. The skew-Hamiltonian structure is again preserved
under symplectic similarity transformations. Hence, isolating eigenvalues, re-ordering,
etc., can be achieved in the same way as for Hamiltonian matrices as all considered
transformations do not depend on the signs in the matrix blocks 4, G, @, but only on
the distinction zero/non-zero when isolating eigenvalues and on the absolute values
of the entries when equilibrating rows and norms. Note that Algorithm 4.4 even
simplifies quite a lot for real skew-Hamiltonian matrices. As ¢; = g;; = for all i =
1,...,n, the scaling factor d; can be computed as in the general balancing algorithm
for non-symmetric matrices because in (4.5) we obtain [|h;||, = ||h?]]1.

Eigenvalues of skew-Hamiltonian matrices as well as a skew-Hamiltonian Schur
form can be computed in a numerically strong backward stable way by Van Loan’s
method [31]. Tt is advisable to balance skew-Hamiltonian matrices using the proposed
strategies prior to applying this algorithm.

REMARK 5.4. We have considered so far only real Hamiltonian and skew-
Hamiltonian matrices. Isolating eigenvalues and equilibrating rows and columns
for complex (skew-)Hamiltonian matrices can be achieved in exactly the same way.
A structure-preserving, numerically backward stable (and hence numerically strong
backward stable) method for solving the complex (skew-)Hamiltonian eigenproblem
has recently been proposed [8]. The proposed symplectic balancing method can (and
should) also be used prior to applying this algorithm.

6. Numerical Examples. We have tested the symplectic balancing strategy
for eigenvalue computations. The computations were done in MATLAB! Version 5.2
with machine precision & ~ 2.2204 x 10716, Algorithms 3.4 and 4.4 were implemented
as MATLAB functions. We used the modified algorithm as suggested by (4.8) where
we set v = 0.95 as suggested in [25] and implemented in the LAPACK subroutine
xGEBAL [3]. The eigenvalues of the balanced and the unbalanced Hamiltonian matrix

IMATLAB is a trademark of The MathWorks, Inc.
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were computed by the square-reduced method using a MATLAB function sqred which
implements the explicit version of the square-reduced method (see [31]).

We also tested the effects of symplectic balancing for the numerically backward
stable, structure-preserving method for the Hamiltonian eigenvalue problem presented
in [7]. Like the square-reduced method, this algorithm uses the square of the Hamilto-
nian matrix. But it avoids forming the square explicitly using a symplectic URV-type
decomposition of the Hamiltonian matrix.

As reference values we used the eigenvalues computed by the unsymmetric QR
algorithm with Parlett/Reinsch balancing as implemented in the LAPACK expert
driver routine DGEEVX [3], applied to the Hamiltonian matrix and using quadruple
precision.

Moreover, we tested the effects of balancing when solving algebraic Riccati equa-
tions with the structure-preserving multishift method presented in [1] for the examples
from the benchmark collection [6]. We only present some of the most intriguing re-
sults.

EXAMPLE 6.1. [6, Example 6] The system data come from an optimal control
problem for a J-100 jet engine as a special case of a multivariable servomechanism
problem. The resulting Hamiltonian matrix H € R%9*60 has 8 isolated eigenvalues:
triple eigenvalues at £20.0 and simple eigenvalues at £33.3.

Algorithm 3.4 returns 4; = 5 and 4, = 30 and for the permuted Hamiltonian
matrix we have

Hln'lfl,l:z'lfl = d1ag( —33.3, —20.0, —20.0, —200)
Hpptmti—1mt1msi—1 = diag(33.3, 20.0, 20.0, 20.0).

Next, the Hamiltonian submatrix

oo = Hy.305:30  Hs:30,35:60
2= | H HT
35:60,5:30 —£15:30,5:30

is scaled using Algorithm 4.4. After six sweeps, we obtain the balanced Hamiltonian
matrix Hy. We have ||H||s = 1.44 x 10® and ||Hp||2 = 6.54 x 10%, that is, we have
decreased the 2-norm of the matrix used in the subsequent eigenvalue computation by
more than five orders of magnitude. If the eigenvalues are computed by the square-
reduced method applied to the unbalanced Hamiltonian matrix, the triplet of isolated
eigenvalues is returned as a pair of conjugate complex eigenvalues with relative errors
~ 4.06 x 107! and a simple eigenvalue with relative error ~ 3.96 x 10~!l. For
the simple eigenvalue at 33.3, the relative error is ~ 7.7 x 10715, For the balanced
version, these eigenvalues are returned with full accuracy since they are not affected
by roundoff errors. The relative errors for the other (not isolated) eigenvalues are
given in Figure 6.1 where we use the relative distance of the computed eigenvalues to
those computed by DGEEVX as an estimate of the real relative error.

Figure 6.1 only contains the relative errors for the eigenvalues with positive real
parts as sqred returns the eigenvalues as exact plus-minus pairs. The ’+’ for the 26th
eigenvalue is missing as the computed relative error for the balanced version is zero
with respect to machine precision. The eigenvalues are ordered by increasing absolute
values. From Figure 6.1, the increasing accuracy for decreasing ratio ||H||2/|\| is
obvious — with or without balancing. All computed eigenvalues of the balanced
matrix are more accurate than for the unbalanced one. The increase in accuracy is
more significant for the eigenvalues of smaller magnitude. This reflects the decrease
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of the ratios ||H||2/|A| which more or less determines the accuracy of the computed
eigenvalues; see [31]. The decrease factor for ||H]||, is about 5 x 107%. The accuracy
for the eigenvalues of smaller magnitude increases by almost the same factor.

From Figure 6.2 we see that symplectic balancing also improves the eigenvalues
computed by the method proposed in [7]. As the method does not suffer from the
||H||2/|A| perturbation, the accuracy for all computed eigenvalues is similar. Also note
that in the unbalanced version, the isolated eigenvalues are computed with a relative
accuracy ranging from 7.0 x 10714 to 1.2 x 10715,

~ '+ - with symplectic balancing, ‘o’ - without balancing . "+ - with symplectic balancing, '0’ - without balancing
10 T T T T T 10 T T T T T

R 10° ¢
-8 00O
10 w0l
o 00 o o
[e}ye]
10 0t . o o oo
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0 o
0 0 o 0107 ° o0 oo °
g o oo © e o
010 + 0o o ° % ° o107 0 o+ oo °
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Fic. 6.1. square-reduced method. F1G. 6.2. symplectic URV + periodic QR.

Using the balanced matrix in order to solve algebraic Riccati equations by the
multishift method as described in [1], we obtain the following results: if the multishift
method is applied to the unbalanced data, the computed solution yields a residual

(6.1) = ||Q+ATX + XA - XGX||p

of size 1.5 x 10~% while using the balanced Hamiltonian matrix we get rr = 8.1 x
10719, This shows that numerical methods for solving algebraic Riccati equations can
substantially be improved employing balancing.

ExAMPLE 6.2. [6, Example 13] The Hamiltonian matrix is defined as in (1.1)
with

0 04 0 0 e
4|0 0 0.345 0 G = e,
T |0 —0524-7 —0465-7 0.262-7 |’ .
0 0 0 —T Q - dla’g (17 07 17 0)7

where 7 = 10% and e4 denotes the fourth unit vector. After four sweeps of Algo-
rithm 4.4, ||H||» is reduced from 10'? to 1.5 x 10%. The accuracy of the computed
eigenvalues did not improve significantly, but for the stabilizing solution of the alge-
braic Riccati equation, the Frobenius norm of the residual as defined in (6.1) dropped
from rp = 5.4 x 107! to rp = 1.8 x 10713,

7. Concluding Remarks. We have seen that isolated eigenvalues of a real
Hamiltonian matrix can be deflated using similarity transformations with symplectic
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permutation matrices, the deflated problem can be scaled in order to reduce the norm
of the deflated Hamiltonian matrix and to equilibrate its row and column norms, and
the remaining (not isolated) eigenvalues can then be determined by computing the
eigenvalues of the deflated, balanced Hamiltonian submatrix. If invariant subspaces
are required, then we can use J-permutation matrices and a symplectic re-ordering
strategy in order to obtain the desired invariant subspaces. The same method can
be applied in order to balance skew-Hamiltonian and complex (skew-)Hamiltonian
matrices.

Numerical examples demonstrate that symplectic balancing can significantly im-
prove the accuracy of eigenvalues of Hamiltonian matrices as well as the accuracy of so-
lutions of the associated algebraic Riccati equations computed by structure-preserving
methods.

Final Remark and Acknowledgments. The work presented in this article
continues preliminary results derived in [4]. The author would like to thank Ralph
Byers, Heike Fafibender, and Volker Mehrmann for helpful suggestions.
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