uaversitir - Zentrum fur Technomathematik
BREMEN Fachbereich 3 — Mathematik und Informatik

Recursive mesh refinement in 3D

Gianfrancesco Martinico

Report 00-03

Berichte aus der Technomathematik

Report 00-03 Februar 2000



Recursive mesh refinement in 3D

Gianfrancesco Martinico

Abstract
In this paper a three-dimensional mesh generator is introduced. The mesh generator takes the
works of Bansch and Kossaczky [4, 8] as starting point. The developed method shows how to divide a
regular domain into non degenerative tetrahedra, using a recursive approach. It is possible to invert
the process and to restore previously refined tetrahedra. We will also show how the used data
structure allows for the studying of irregular domains.

Keywords

Finite Element Method, domain discretization, adaptivity, conformity, mesh refinement , mesh
coarsen.

1.Introduction

Many physical problems in a wide range of science are modeled using partial differential equations
(PDEs). For example, it's possible to determine the electro-magnetic field of optical structure, as used
in telecommunication, solving the Maxwell equations (2nd order PDEs) under suitable conditions (see
e.g. [10]). Another application concerns image processing in problems like image smoothing,
restoration, segmentation, edge detection and shape analysis. In particular it has been shown how this
method can be applied to image multi-scale analysis (see e.g. [5, 2]).

The enhancement of computers performance in these last few years, in terms of calculation speed
and available memory, has made it possible to improve the complexity of numerical algorithms for
problems requiring huge computational resources. This includes algorithm used to solve PDEs. A
numerical program that solves the equation and determines the solution consists generally of the
following three parts: a pre-processor, which is the subject of this article, that provides the data
structure for the description of the domain; a solver that uses these structures to determine the linear
problem that follows from the discretization of the domain; a post-processor that uses the output of the
solver for graphical representation.

In Section 2 below, we will show how to divide a three-dimensional domain into tetrahedra. We will
show also the algorithm that refines and coarses the grid.

In Section 3 some example of division of the domain will be shown.



2.Discretization of the domain

One important aspect when solving PDEs is the subdivision of the computational domain which is
required to obtain an approximate solution that is acceptably close to the exact solution of the

differential equation under study. A particularly well known kind of subdivision is the friangulation.

A triangulation Tis a set of non-degenerate elements with vertices in ®", N = 2, 3. The elements of 7
are called non-degenerate if the angles of the elements of the triangulation are lower and upper bounded for al t
€ 7. Inathree-dimensional domain solid angles will be considered.

T is caled conforming if the interSection of any two non digjoint non-identical elements consists either of a
common vertex or a common edge or a common face. An element T €7 is said to have a non-conforming node,
if there isanode P of the triangulation which is not avertex of T but P e 7.

Let's introduce the relation 7; < %, if 7, isobtained by refinement of 7;. We call a sequence 7, T, T ...

stableif all the elements t €U, T, are non- degenerate.

Fig. 1 - Example of a conforming triangulation in %7

The main difficulties to overcome are related to the stability and conformity of the grid. Another
important aspect is the adaptivity of the triangulation that means that the mesh is refined in regions
where high accuracy of the solution is required. The speed of the solver is inversely proportional to the
number of elements of the grid, because the number of unknowns increases with the increasing
number of elements of the triangulation; therefore, the distribution of elements within the domain is an
important aspect.

An element of the domain can be divided using different methods; in this paper the biSection
method is used. If we consider, for example, a bidimensional domain, than every element of the grid
is a triangle. Each triangle has an edge called refinement edge and the subdivision of the triangle will
be obtained simply by joining the middle point of the chosen edge with the opposite vertex. It's
possible to prove that this method produces a conforming grid in a finite number of division steps. A

good choice for the refinement edge would be the longest edge of each triangle, see [3].



Fig.2 - BiSection of one element in R°

The domain can be divided using two approaches.

The first is a non recursive approach; here, at every step of the refinement algorithm, only one
element at a time is divided. This means that after the execution of the refinement algorithm some non
conforming points are introduced and that conformity is broken. It is thus necessary to check the grid
to find out and bisect all the non conforming elements. The refinement algorithm is the repeated for all
the non-conforming elements of the grid until a conforming grid is obtained. Furthermore, this
algorithm processes only one element at a time.

The second is a recursive approach; in this case we want to apply the refinement algorithm at most
once to an element because we don’t want to introduce any non-conforming point after the division
process. This is possible if we divide a whole set of elements that share the same refinement edge. It's
so clear that in this case, at the end of the refinement algorithm, the conformity of the grid is

maintained. This guarantees that the conformity is not lost.

2.1 Three-dimensional case

The starting (macro) grid is one of the fundamental problems to face when working with three-
dimensional domains, because the stability of the triangulation depends on it.

Let's consider a cube denoted by M. The starting grid consists of six congruent tetrahedra (see
Fig. 3). Three edges of each tetrahedron correspond to edges of M, two are diagonal faces of M and
one is the diagonal of M.

This initial embedding was introduced by Béansch [4] for a hon-recursive domain discretization and
is excellent for the generation of stable triangulation. Kossaczky [8] has also applied this starting grid

and provided a recursive domain discretization algorithm.



Fig. 3

Let us consider now one of the tetrahedra and divide it by using the biSection method in three
successive stages, as shown in Fig. 4. The tetrahedron is divided by cutting the two faces that share
the refinement edge. We will consider the longest edge as refinement edge. At every stage of the
biSection, two congruent tetrahedra are obtained; in Fig. 4 only one of the two elements that are
obtained at each stage is shown. Note that at the end of the three stages, the resulting tetrahedron is
congruent to the initial tetrahedron considered before applying the biSection method. This turns out to
be very important because we can find out that only three classes of similarity are allowed and hence
the (solid) angles of the tetrahedra in the grid are fixed a priori. The three classes of similarity are

called type one, type two and type three respectively.




Result after stage one of biSection

Type 2

Result after stage two of biSection

Type 3

Result after stage three of biSection

Type 1

Fig. 4

Let us now consider how to store the data of each tetrahedron. The pre-processor has to create
and describe the triangulation with data structures that are the input for the solver. First of all, it is
necessary to trace the vertices that forms the tetrahedra, for example V4, Vo, V3 and V4. The best
choice for simplifying the biSection algorithm is to store the four vertices related to each tetrahedra in
a way that the vertices related to the longest edge are stored in the first two positions. When splitting
this tetrahedron, two similar tetrahedra are obtained and it is possible to store the vertices of the two
resulting tetrahedra in the same way. This algorithm can easily be implemented as shown in Fig.3,
where it is possible to see how to obtain the vertices of two children starting from the father. The only
exception is when the division of a type one tetrahedron is considered; in this case a permutation of

the elements in the second and third position of the right child's vertices is needed.



V1V, V3V,

¥ \a

V1 V3V, Vs V; V3V, Vs

Vo V4V3 V5 *

* Permutation (when dividing a type 1 tetrahedron)

Fig. 5

Another important aspect regards the memory storage for the neighbors. That is, for each
tetrahedron we have to determine which are the adjacent tetrahedra. Usually, with the expression
neighbors we are describing those tetrahedra that share a face with the tetrahedron under
consideration. In this work we will use a different approach and consider as neighbors all the elements
that share a common edge. On the one hand this choice increases the size of the data structure,
because every tetrahedron has four faces and six edges, but on the other hand it's simpler to find the
tetrahedra that share the same refinement edge. It's also possible to easily delete some of the
tetrahedra of the grid, for example when studying irregular domains. This aspect will be developed
later in the examples Section.

In Fig. 6 the data structure of the tetrahedra and the corresponding neighbors are shown. Every
tetrahedron of the grid is numbered, so we can refer to the data of tetrahedron number ‘' simply
checking the column ‘' of the related structure. In each column of the first matrix the four vertices of
each tetrahedron are stored, and in the second matrix the neighbors of the six edges of each element
are stored. Let's now consider two vertices of one of any tetrahedra; by observing the neighbors matrix
it is possible to establish which tetrahedron shares the same edge (two vertices) with the first
considered element. In fact, it suffices to observe the number of this tetrahedron from the adjacent
matrix, in the position corresponding to the pair of vertices chosen. It's possible to repeat the same
procedure for the found tetrahedra, thus finding new elements that share this edge. That leads to the
concept of chain. Note that the order of the tetrahedra inside the chain is not important so it is
sufficient for all the elements with two common vertices to be stored in a random order. Of course, the
chain has to be closed that means that must be possible to go trough the chain and come back to the

element we started.



Matrix of tetrahedra

(referred to fig. 3)

o 1 1 1 1 1 1
B 7 7 7 7 7 7
Y 8 6 6 3 3 8
d 5 5 2 2 4 4
Matrix of adjacent
(referred to fig. 3)
o— 2 3 4 5 6 1
o-y 6 3 2 5 4 1
o8 2 1 4 3 6 5
B—y 6 3 2 5 4 1
-3 2 1 4 3 6 5
y—8 1 2 3 4 5 6
Fig. 6

For Example, if the vertices considered are 1 and 7, and we start from tetrahedron 1, the chain will
be:

7 ~.
SN e o

Fig. 7 - Example of chain with vertices 1 and 7.



2.2. Refinement algorithm

This algorithm works for every element of the domain and the refinement edge can also belong to
the boundary of the domain.

The refinement algorithm can be implemented as shown below.

Recursive Procedure Refine(t)

Let e be the refinement edge of tetrahedron ¢t
Let d be the tetrahedron that shares the edge e with the tetrahedron
t (dis find out from the adjacent matrix)
while [d # f] {
while [e is not the refinement edge of d] {
Refine(d)

d = tetrahedron that shares the edge e with the tetrahedron d'

(dis find out from the adjacent matrix)

}

Refinement of all tetrahedra that share the refinement edge e

2.3. Coarsen algorithm

This algorithm reverses the refinement process. In this case the coarse edge is introduced, which
consists of the vertices in position one and four in the “matrix of nodes”. Here, we have to find all the
elements that share the same coarse edge and then join every element with the respective son. Note
that after the execution of this algorithm, the node in the fourth position of the matrix of nodes does not

exist anymore. Thus, this node is removed so the original edge is restored.



The coarsen algorithm can be implemented as shown below.

Recursive Procedure Coarse(t)

Let e be the coarse edge of tetrahedron t
Let d be the tetrahedron that shares the edge e with the
tetrahedron ¢ (dis find out from the adjacent matrix)
while [d = {] {
while [e is not the coarse edge of d] {
Coarse(d)

d = tetrahedron that shares the edge e with the tetrahedron

d' (dis find out from the adjacent matrix)

}

Fusion of all tetrahedra that share the refinement edge e with

their sons

3. Examples

In this Section some examples of adaptive refinement of a domain will be shown.
In Fig. 8 the meaning of adaptivity is explained. Let’'s suppose that it is important to refine the grid
around a certain point called ‘A’. It is possible to observe that the size of the tetrahedra around this

point are smaller than the ones of the tetrahedra far away from the point considered.



Fig. 8

It is possible to analyze also irregular domains. In this case, as mentioned in Section 2, it is
possible to erase some of the tetrahedra of the grid according to an input function. All the tetrahedra
that do not match this function are deleted from the matrix of tetrahedra. Of course it is important to
update not only the matrix of tetrahedra but also the matrix of adjacents. This is provided by
shortening the ‘chains’ of the neighbors that contain the deleted elements. In Fig. 9 the following

domain is considered:

IA
N
IA
W | W
—

Q={(xy,z)|0=sx=

o
=

W | W
A
<
A
—_—



It is now possible to study in detail this domain in a well determined zone; we want, for example, to

focus the attention inside our domain at the intersection with a sphere.

The result is shown in the picture below.

Fig. 9 —-Normal view and top view.

References

[1] T. J. Baker, Developments and trends in three-dimensional mesh generation, Appl.
Numer. Math., 5 (1989), pp.275-307

[2] E.Bansch, An adaptive finite-element strategy for the three-dimensional time-dependent
Navier-Stokes equations, J. Comput. Appl. Math. 36 (1991) 3-28

[3] E.Bansch, Local mesh refinement in 2 and 3 dimensions, IMPACT of computing in
science and engineering, 3, 181-191 (1991)

[4] E. Bénsch, Mesh refinement in two and three dimensions, INRIA (9/95) pp. 307-331,
course “Calcul d’erreur a posteriori et adaption de maillage”, Rocquencourt 9/1995

[5] E. Bédnsch, K. Mikula, A coarsening element strategy in image selective smoothing,
computing and visualization science, 53-61 (1997)

[6] D. J. Hebert, Symbolic local refinement of tetrahedral grids, Technical Report ICMA-93-
181, University of Pittsburgh, J. Symbolic Comput., 17 (1994), pp. 269-288

[7] D. Hempel, Local mesh adaptation in two space dimensions, IMPACT of Computing
science end Engineering, 5, no. 4, 309-317 (1993)

[8] I. Kossaczky, A recursive approach to local mesh refinement in two and three

dimensions, Journal of computational and applied mathematics 55 (1994) 275-288



[9] J. M. Maubach, Local bisection refinement for n-simplicial grids generated by reflection,
SIAM J. Sci. Comput., 210-227 (1995)

[10] A. Petrini, Studio di guide ottiche con il metodo degli elementi finiti , Tesi di laurea,
University of Bologna (1996)

[11] M.-C. Rivara, Selective refinement/derefinement algorithms for sequences of nested

triangulation, International J. Numer. Methods Engrg. 28 (1989) 2889 - 2906



Berichte aus der Technomathematik ISSN 1435-7968

http://ww. mat h. uni - brenen. de/ zet em beri chte. ht m
- Vertrieb durch den Autor —

Reports Stand: 23. Februar 2000

98-01. Peter Benner, Heike FalRbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic
Eigenvalue Problem, Juli 1998.
98-02. Heike FalRbender:
Sliding Window Schemes for Discrete Least-Squares Approximation by
Trigonometric Polynomials, Juli 1998.
98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli
1998.
98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.
98-05. Peter Benner, Ralph Byers, Enrique S. Quintana Orti, Gregorio Quintana
Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s
Method with Exact Line Search, August 1998.
98-06. Lars Grine, Fabian Wirth:
On the rate of convergence of infinite horizon discounted optimal value
functions, November 1998.
98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complex Hamiltonian and Skew-
Hamiltonian Eigenvalue Problems, November 1998.
98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface,
Dezember 1998.
99-01. Heike FalRbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar
1999.
99-02. Heike FalRbender:
Error Analysis of the symplectic Lanczos Method for the symplectic Eigenvalue
Problem, Marz 1999.
99-03. Eberhard Bansch, Alfred Schmidt:
Simulation of dendritic crystal growth with thermal convection, Marz 1999.
99-04. Eberhard Bansch:
Finite element discretization of the Navier-Stokes equations with a free
capillary surface, Marz 1999.
99-05. Peter Benner:
Mathematik in der Berufspraxis, Juli 1999.
99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August
1999.



99-07. Peter Benner, Enrique S. Quintana Orti, Gregorio Quintana Orti:
Balanced Truncation Model Reduction of Large-Scale Dense Systems on
Parallel Computers, September 1999.

99-08. Ronald Stover:
Collocation methods for solving linear differential-algebraic boundary value
problems, September 1999.

99-09. Huseyin Akcay:
Modelling with Orthonormal Basis Functions, September 1999.

99-10. Heike FalRbender, D. Steven Mackey, Niloufer Mackey:

Hamilton and Jacobi come full circle: Jacobi algorithms for structured
Hamiltonian eigenproblems, Oktober 1999.

99-11. Peter Benner, Vincente Hernandez, Antonio Pastor:

On the Kleinman lIteration for Nonstabilizable System, Oktober 1999.

99-12. Peter Benner, Heike FalRbender:

A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati
Equations, November 1999.

99-13. Peter Benner, Enrique S. Quintana Orti, Gregorio Quintana Orti:
Numerical Solution of Schur Stable Linear Matrix Equations on
Multicomputers, November 1999.

99-14. Eberhard Bansch, Karol Mikula:

Adaptivity in 3D Image Processing, Dezember 1999.

00-01. Peter Benner, Volker Mehrmann, Hongguo Xu:

Perturbation Analysis for the Eigenvalue Problem of a Formal Product of
Matrices, Januar 2000.

00-02. Ziping Huang:

Finite Element Method for Mixed Problems with Penalty, Januar 2000.

00-03. Gianfrancesco Martinico:

Recursive mesh refinement in 3D, Februar 2000.



