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Abstract

We study the perturbation theory for the eigenvalue problem of a formal matrix prod-
uct At --- Ap?, where all Ay, are square and s € {—1,1}. We generalize the classical per-
turbation results for matrices and matrix pencils to perturbation results for generalized
deflating subspaces and eigenvalues of such formal matrix products. As an application we
then extend the structured perturbation theory for the eigenvalue problem of Hamiltonian
matrices to Hamiltonian/skew-Hamiltonian pencils.
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AMS subject classification. 65F15, 93B40, 93B60, 65H17.

1 Introduction

The perturbation theory for eigenvalues, eigenvectors and deflating subspaces of matrices and
matrix pencils is well established, see the monograph [24] for the classical theory and further
references. In this paper we extend some of these results to formal matrix products A7" - - - Af,”
for a given set of p square matrices Ai,..., A4, € C"*" and p parameters s1,...,sp, € {—1,1}.
Here if s; = —1 the inverse of the matrix A; is not required to exist but the inverse is
considered only formally to simplify the notation. Our interest in such matrix products arises
from applications in the computation of deflating subspaces of Hamiltonian/skew-Hamiltonian
pencils, see [2, 3] and from the computation of the periodic Schur decomposition introduced
in [9, 16]. Other applications of such formal products of matrices are monodromy relations
arising for instance in discrete-time periodic (descriptor) systems [1, 8, 19, 25].

For AS'--- AP and sy, ... ,8p € {—1,1} as described, it is known [9, 16] that there exist p
unitary matrices Q)1,...,Qp € C**™ such that for Qp41 := Q1 and

1—Sk
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all the matrices

HA,Q s =1

R.o—OF A ) @ AQk sk 5
k Qk-H]k ka+1 qk { Q]?_FlAk:Qk‘ Sk = -1 ( )
are upper triangular for £ = 1,...,p. Such a form is called periodic Schur form of a formal

product.

The periodic Schur form is the generalization of the usual Schur form for a square matrix
A or the generalized Schur form for a square matrix pencil A — AB, which are the special
cases withp=1,s1 =1,and p=2and s; = 1,50 = —1 or s1 = —1, 89 = 1, respectively.

Numerical methods for computing the periodic Schur decomposition (2) were introduced in
[9, 16]. These methods, the periodic QR algorithm and QZ algorithm are direct generalizations
of the QR and QZ algorithm, e.g., [13, 15, 22, 26].

If all the matrices Ay, corresponding to sy = —1 are nonsingular, then for

Bim A AP, oy By— AP APAN AT, L, By AVAD AV, ()

the periodic Schur form (2) simultaneously gives the Schur forms of By, ..., By. In fact from
(2) we have R;* = Qf A}*Qp1, which leads to

QF BkQi = Bt -+ B R} - Ry, (4)

for £ = 1,...,p. Observe that in this case all matrices By are similar and hence have equal
spectra.

It follows that the periodic Schur form is related to the eigenvalue problem for the matrices
By,...,B,. But the periodic Schur form is more general, since it always exists, regardless of
the singularity of the matrices Ay.

In theory, if all the matrices with negative exponent are nonsingular, then the solution
of the eigenvalue problem for By can be obtained by the QR algorithm [15] applied to the
explicitly formed product Bi. However, it is well-known that by forming the product the
conditioning of the eigenvalue problem may be increased drastically and furthermore rounding
errors, ill-conditioned inverses and subtractive cancellation may lead to a computed product
matrix By which is nowhere close to the exact formal product. Another problem is that if
all Schur forms of Bj, are needed, explicitly updating all B, may be very expensive. For this
reason in [9, 16] the periodic QR algorithm was suggested that allows to compute eigenvalues
and invariant subspaces of By simultaneously without forming the product. Algorithms to
compute the products By without forming inverses were introduced in [1].

In this paper we discuss the perturbation analysis of the eigenvalue problem for the formal
products B based on perturbations in the separate factors. The analysis can be viewed as
generalization of the usual perturbation theory for eigenvalue problems, see e.g., [24].

We consider the formal product as a map acting on matrix tuples A = (A44,...,4,) in the
linear space C"*" x ... x C"*". The signs s; are combined in a sign tuple s := (s1,..., Sp).

~~

P
The connection between the matrix tuples (A1,...,A4p) and (By,...,Bp) in (3) allows to

define the eigenstructure corresponding to A. Let A have a periodic Schur form (2). Let the

diagonal elements of Ry be r11;k,...,7pn, for k=1,...,p.

For an integer j € {1,...,n}, if all rj;; corresponding to s; = —1 are nonzero then
Aj = ;Jl-;l e r;]’f;p is a finite eigenvalue of A associated with the sign tuple s.

If all 7;;.x corresponding to sy = 1 are nonzero and some 7;;.; corresponding to s = —1

is zero then A has an infinite eigenvalue \; := oc.



The spectrum of A, i.e., the set of eigenvalues of By including the infinite eigenvalue is
denoted by A(A). If A has exactly n eigenvalues (including the infinite eigenvalue) then we
call A regular. In this paper we will discuss only regular tuples A.

Let nonzero vectors uy,...,u, and scalars a1, ..., q, satisfy
Akuk-I—l—qk = QUk+gqy, k=1,...,p, (5)
with up41 = ui. Consider unitary matrices Qg, k = 1,...,p, such that Qre; = %uk, where

T = y/utluy and ey is the first unit vector. Then we obtain from (5) that

QA Tk+qy, CLH
Q/?-HJI@A’CQIC-Fl—Qk = Tht1ag ~k , k=1...,p,
0 Ay
with index g as in (1). If for all s with s = —1 we have ay # 0, then

P

A= H(aka+qk s ﬁ

iy Tk+1—qp Tk-|—1

P
k — H alsck

k=1
is a finite eigenvalue of A. Moreover, if for all s; with s = 1 we have a; # 0 and there
exists some k with sy = —1 and o = 0, then 1/A\ = 0 and X is an infinite eigenvalue. In
this sense we call a vector u = (u1,...,up) with u; # 0 for k =1,...,p a right eigenvector of
A corresponding to the eigenvalue A\. As we will see in Section 2 the restriction that ux # 0
identifies the eigenvector. If vectors u;y = 0 are allowed, then some A; with s = —1 is
singular and there exist many vectors u satisfying (5). This is the main difference between
the usual eigenvalue problem and that for formal matrix products.

Example 1 Let p=2, st =s9 =1 and A1 = Ay = [8 (1)} . Then for uy = us = ey,
Arug = 0-u1, Aour = uo,

which implies that (e1,e1) is the eigenvector corresponding to the eigenvalue 0. However, if
zero vectors are allowed then u; = 0, ug = e also satisfy

A2U2 :0-u1, Ag’ul :O'UQ.
In order to define deflating subspaces, let Q; = [U, Vi] be a unitary matrix such that

C, F
Qfy 4 Ak Qrr1—q = [ Ok D’; ] =: Tk, (6)

where Cy, € C™*™ and Uy, € C"*™ for k =1,...,p. Then
AkUk-quk = Uk+quka k=1,...,p,

and we call the space spanned by the columns of U = (Uy, ..., U,) a right generalized deflating
subspace of A associated with the sign tuple s corresponding to the spectrum A(C). Again, if
all products By, k = 1,...,p in (3) are well defined, then from (4) for each &, the columns of

Uy span an orthonormal basis of the invariant subspace of By corresponding to the eigenvalues
of G} --- CprC ---CZ’:I.



In this paper we derive the perturbation analysis for the eigenvalues and deflating sub-
spaces of formal products A. Some of these results extend the classical perturbation theory
for matrices and matrix pencils. We will first study perturbations of the generalized deflating
subspace, followed by perturbation results for the eigenvalues. These results will be con-
tained in Section 2. In Section 3 we then study as an application the perturbation theory for
Hamiltonian/skew-Hamiltonian pencils under structured perturbations.

We use |- | to denote the spectral norm. Throughout this paper we identify k£ and k£ mod p.
The smallest singular value of a matrix A is denoted by omin(A). Finally we denote by
A ® B = [a;; B] the Kronecker product of matrices A and B and for a matrix Z = [21,..., 2]

the operation ‘Vec’ is defined via Vec(Z) = [21,...,zL]".

2 Perturbation Theory for Generalized Deflating Subspaces
and Eigenvalues

In this section we derive the structured perturbation theory for the eigenvalues and generalized
deflating subspaces of formal matrix products. We restrict ourselves to the case that the
matrix tuple A is regular. In the case of a nonregular tuple or a tuple that is close to a
nonregular tuple, the computation of the generalized deflating subspaces may be an ill-posed
problem. Nonregular matrix tuples or tuples close to nonregular tuples already pose a severe
difficulty in the case of matrix pencils, see [10, 11, 12, 24].

For the perturbation analysis we will need the following linear transformation. Let C =

(Ci,...,Cp) be a tuple of m x m matrices with sign tuple s = (s1,...,5p) and let D =
(D1,...,Dp) be another tuple of [ x | matrices with the same sign tuple s. Define a linear
transformation ® on matrix tuples X = (X1,...,X,) € @le X ... X (Clme via

P

O(X) = (D1 X2 ¢y — X144, C1, D2 X3 ¢, — X214,C2, ..., DpXpi1 ¢, — Xp1g,Cp),  (7)

with g as in (1). In the usual notation for linear operators, ® is nonsingular if ®(X) = 0
implies that X =0, i.e.,, X1 =... = X, = 0.

The following result can be viewed as a generalization of the classical existence result
for homogeneous Sylvester equations [14]. It is one of the basic tools for the perturbation
analysis.

Lemma 1 For matriz tuples C and D with the same sign tuple s, let ® be defined as in (7).
Then ® is nonsingular if and only if C and D are regular and A(C) N A(D) = 0.

Proof. Suppose that we have the periodic Schur decompositions

UICI{Fqk‘DkUk—f—l—qk = Dk‘a k= L,...,p,
Vk{IFQkaVk+1*Qk = C k=1,...,p,
where all D, = [d;j;x]) are upper triangular and all Cr = [cij;k] are lower triangular. The

latter form can be easily obtained by simultaneously reordering the rows ‘and columns of a
periodic Schur form, where all factors are in upper triangular form. Set X = U,f XV}, for
k=1,...,p. Then ®(X) =0 if and only if

(jT?(f() = (DlXZ—m - X1+q1 él’ s af)p p+l—qp — Xp+qpép) =0.

4



Let

where for k=1,...,p,

Gk:é]?@Il, Kk:—Im®Dk, if s =1,
Gr=I1,9Dy, K,=-CI'el, if s=-1

and let z = [Vec(X1)T,..., Vec(Xp)T]". Then a simple calculation yields that ®(X) = 0 if
and only if Zz = 0, i.e., ® is nonsingular if and only if Z is nonsingular. Since all matrices
Cg and Dj are upper triangular, using the special block structure of Z, a straightforward

calculation gives
I m P /4
det Z = H H (H ijik — H ﬁz’j;k) .
i=1j=1 \k=1 k=1
where )
Qijik = Cijsks Bk = digge i s =1,
Qijik = dizzk,  Bijik = Cjje i sp = —1.
Hence det Z = 0 if and only if at least one of the terms H£:1 Qijik — Hﬁzl Bij:k is zero. From
the definitions of «;j;;, and ;. it is not difficult to see that this is the case if and only if
either at least one of the two matrices C, D is singular or A(C)NA(D) #0. D
After these general observations we study perturbations of generalized deflating subspaces.

2.1 Generalized deflating subspaces

Consider a regular matrix tuple A = (A,...,A4p) with sign tuple s = (s1,...,sp) and
suppose that there exist unitary matrices Q = [Ug, V] with Uy € C*"*™ that satisfy (6).
The goal of the perturbation analysis is to analyze how much the subspace rangeU :=
(range Uy, . .., range U,) changes if we consider perturbed quantities Ay + AAg, k=1,...,p.
In order to get meaningful results, we consider only the case that the generalized deflat-
ing subspace is uniquely defined. The following lemma gives a sufficient condition for the
uniqueness of the subspace.

Lemma 2 Consider a regular matriz tuple A with sign tuple s having the decomposition (6).
If A(C)NA(D) = 0, then the generalized deflating subspace range U corresponding to A(C)
18 unique.

Proof. Suppose there exists another tuple of unitary matrices Qj = [Uy, V] for which (6)
also holds, i.e., for k = 1,...,p we have

~ ~ C, Fp .
QkH-l-lIkAka'i'l—lIk = [ 0 Dy ] =: Tk, 9)
with A(C) = A(C) and A(D) = A(D). Let W), = QIQ, =: [ Wik Wiz ] for k =
Waore Waa

1,...,p. Then the generalized deflating subspace is unique if and only if the tuple Wy :=



(Wat,1,-- ., Way,) is the zero tuple. By (6) and (9) we have TxWi11_q, = Wi, Tk, which

implies that DxWorki1-q, = Woik+q,Ck for k = 1,...,p. Since A(D) N A(C) = § by

employing Lemma 1 we get Wy; = 0. Hence the generalized deflating subspace is unique. O
Suppose that the matrix tuple A is perturbed by AA := (AA,,...,AA,) and set

A= (A, A) = (AL + AAy,..., A, + AA).
We assume that A is in the form (6), i.e.,

Cr F
Tk} = QkJH+qkAk'QkZ+l—qk = [ Ok DI;; :| ) k= ]., ey Py

where C, € C™*™ for k = 1,...,p. Since the eigenvalues of C will also be perturbed,
we consider an associated perturbed generalized deflating subspace of A corresponding to
eigenvalues near to those of C. This subspace is obtained as follows. Introducing

AC, AF,
AT]C = QI?—FQkAAka‘Fl—qk =: |: Ekk ADI; :| ? (]‘O)
we have
- A Cp+ ACy, Fp + AF C’k Fk
Tk) = QIiI—}-qkAka—l—l—qk = |: Ek: Dk + ADk = Ek: -Dk: - (11)

If V:= (Vi,...,V,) is an orthonormal basis of a generalized deflating subspace of T :=
(Tl,...,rf‘p), then (Q1Vi,...,QpVp) is an orthonormal basis of the associated generalized
deflating subspace of A corresponding to the same eigenvalues. In the following we therefore
consider the perturbation analysis for T and T.

If the perturbations are sufficiently small, then we may simultaneously triangularize the

matrices 11,. .., T}, via unitary matrices of the forms
I xXH H 0
Y= ™ k ] [ 1k ] , 12
¢ [ Xy Dim || 0 Hy (12)

where Hyg = (In + X2 X}) 2 and Hy = (I + XpXH) 2 for k = 1,...,p. Here the
matrix A~2 denotes the Hermitian positive definite square root of an Hermitian positive
definite matrix A~!. To make T block upper triangular the matrix tuple X := (X1,.-.,Xp)
must solve the system of discrete-time periodic Riccati equations

DipXpi1-q, — Xkt Ck — Br + X0 FeXpi1-q, =0, k=1,...,p. (13)
For the analysis of equations of this type see [7, 8]. Let
&’(X) = (le%ql - X1+qléla e "DPXP‘Fl*QP o Xp+qpép) (14)
and introduce the quadratic transformation
U(X) = (X i Xy gy, X2 B Xpi1g,), (15)
as well as the tuple E = (Ey,...,E,). Then (13) can be rewritten as
d(X) —E+ ¥(X) =0. (16)



If a solution X to (16) exists, then a straightforward calculation yields

Y o TeYis1—g, = (17)
Hi oGk = B X)) Hik1-g, ) e
0 Hs gtq, (D + Xﬁ_quk)Hz_,k-H—qk
To evaluate upper bounds of |Xi],...,|Xp|, we introduce a norm on matrix tuples X =
(X1,...,Xp) via
X|l:= max |Xg|-
X0 = pax 1]
For ®(X) as in (14) we set R
4 := min [|&(X 18
in, [BC0] (18)
and similarly for ®(X) as in (7)
0 := min ||®(X)]. 19
win, [200] (19)

The quantities § and § are generalizations of the sep operator for matrices and matrix pencils,
see [15, 24]. Since the quantities C, D and the perturbed quantities C, D are related via (7),
(10), (11), and (14), we have the following inequalities

5 —|AC| - |AD| < § < § + |AC|| + | AD]. (20)
For ¥(X) as in (15), using the tuple F = (F,, ..., F,), we obtain
X)) < IE1Ix)? (21)

and
I (X) — ¥ (V)| < 2| max{|X], [YI}IX - Y]. (22)

We then have the following perturbation result.

Theorem 3 Let T be as in (6),A’i‘ =T+ AT as in (11), AT as in (10), ® as in (7), ® as
in (14), and U be as in (15). If 6 > 0 is as in (18) and if

IEJF] 1
lE| 1 23
= (23)
then there exists a unique solution X = (X1,...,X,) of (16) satisfying
2|E| IE]
IX][l < <281 (24)

§+y/82—aByEy O

Proof. Since the transformation ¥ satisfies (21) and (22), and since § > 0 the result follows
from Theorem V.2.11 in [24, p.242] together with (23), applied to the quadratic equation (16).
0

Using this result we get the following perturbation result for generalized deflating sub-
spaces of A.



Theorem 4 Let A = (Aq,...,Ap) be a regular tuple of the form (6) with sign tuple s =
(81,---,8p). Let Qp = [Uk, Vi, for k = 1,...,p, and let U = (Uy,...,Up) be an or-
thonormal basis of the generalized deflating subspace corresponding to A(C). Let A= (A1 +
AAy,...,Ap+AA,) be the perturbed matriz tuple and let AT = (AT, ..., AT,) with ATy, =
QkH+qkAAka+1—Qk be partitioned as in (10). If § > 0 satisfies (23), then A has a generalized
deflating subspace with orthonormal basis

ﬂwza%rn,@»=<Q1[f;1]thu,Qp[fzp]H@) (25)
corresponding to the eigenvalues of
C=(Hi},0(C = FiXo ¢)Hig g0 Hipro (Cp— FpXpi1 ) Hipi1 g,); (26)
where Hy, = (I, -I—X,ka)_% for k = 1’; ., p
Furthermore, for k = 1,...,p and 0 as in (18), the mazimal principal angle between

range Uy and range Uy, is less than arctan(2@).

Proof. Relations (25) and (26) follow from the relationship between A, T and the per-
turbed quantities A, T, respectively, Theorem 3 and formula (17).
Following ([24, Corollary 1.5.4]) the principal angle between range U}, and range Uy, is given

by
| X |
1

arcsin |V, Uy | = arcsin | X H ;| = arcsin i
+ | X |?

Using the monotonicity of the function arcsin \/1‘1? and the fact that | Xj| < |X]|, the last

statement follows. 0O X
Using (20), the conditions 6 > 0 and (23) in Theorem 3 can be replaced by

p:=6—|AC| - |AD] > 0 (27)
and IEI(IF] + JAF]) 1

+

— 2

p <7 (28)
respectively. In this case we obtain

2B 1=

IX] < 2

p+p* —AIE[(IF] + [AF]) P

Remark 1 By definition, § > 0 is a necessary and sufficient condition for the nonsingularity
of ®. Since § > 0 we obtain that & is nonsingular and A(C) N A(D) = 0. Similarly, using
(20), condition (27) implies that both ® and & are nonsingular, A(C) N A(D) = § and
A(C) NA(D) = 0.

Remark 2 The conditions § > 0 and (23) imply that A(C) N A(D) = 0, where C is in (26)
and

D:= (H271+(I1 (D1 + Xﬁ—(hFl)HQ_,Ql—ql’ T ’HZ,IJ'HIP(D + X;(ﬁ—q F )H2_p+1 qp)



where Hop = (In_p, + XkX,fI)_%, for k=1,...,p. To show this, by Lemma 1 and Remark 1
we only need to show that for the linear transformation ® p corresponding to C and D we
have

min [|[®& =(Z)|| > 0.
in [96,5(2)]

Using inequalities similar to (18), (23) and (24) it is straightforward to show that

: 1 < _ AIEIF]
min x~(Z)> —— [ ——F— | > 0.
i Pen? 1+|||X|||2( 5

Similar bounds are also obtained if the conditions § > 0 and (23) are replaced by p > 0 and
(28), respectively.

Remark 3 The quantity § can be considered as the reciprocal of the condition number for the
generalized deflating subspace. If the norm is the spectral norm, then it is difficult to evaluate
d. However, if we use the Frobenius norm, and the induced norm || X||r = |[X1,...,Xp]|r =

\/ 2h_1 | Xk|%, we can determine

0p := min |[[&(X = Omin(Z),
pim i [0 = onia(2)

where the matrix Z is defined in (8).

The results of this section show that the classical perturbation results for deflating sub-
spaces as in [24] can be extended to generalized deflating subspaces. In the next subsection
we derive perturbation results for simple eigenvalues in a similar way.

2.2 Eigenvalue perturbations

In this subsection we study the first order perturbation analysis of simple eigenvalues and

the associated eigenvectors of formal matrix products for sufficiently small perturbations
AA = (AAy,...,AA).

Theorem 5 Consider a reqular tuple A with sign tuple s and let A be a simple eigenvalue of
A. Let A be transformed via

ap  Fy
Qg Ak Qrt1—q, = [ 0 D ] =: Tk, (29)

for k=1,...,p. Let A = af' ---ap” and let u = (Qlel,;..,Qpel) be the unit norm right
etgenvector associated with A. Consider a perturbed tuple A = A + AA and set

Aqp AF,
H _ k k

If |AA|| is sufficiently small, then there exists a unit norm right eigenvector u of A with

Aplig1—g, = Oxlgiq,, such that for k=1,...,p,
ar —ap = Aag— Froppiog, + O(JAA]?), (30)
N 0
- = Q| | +otaar), @1

9



Here the vectors x1,...,x, solve the equations
Dyzpi1 g, — 0kTpgq, = Bk, k=1,...,n.
Moreover, let § be defined as in (19), then for k=1,...,p
=]

65— oul < 1A+ ) L ogaap), (32
and |AA]
fa—al < 1220 ogaap) (33)

Proof. Since the eigenvector is the simplest case of a generalized deflating subspace,
equations (30) and (31) follow directly from Theorem 4 and (17). Since ||AA| is sufficiently
small, separating the first order perturbations, equation (16) can be written as

®(X) =E = (E1,..., Ep) + O(JAA|?).

Hence
IE] IAA]

IXI < ==+ O(JaA]?) < — t O(laAl?)
and the bounds (32), (33) follow. O
Note that we have given the perturbations in the components oy rather than in X itself.
But since the factors aq,...,q, are uniquely determined up to a unit modular factor in
each ay, (30) immediately gives a first order perturbation bound for the eigenvalue A, too.
However, we will also give a different expression by employing the left eigenvector. For this

we use (29) and obtain a linear system for the vectors z1,..., 2, as
H H
QU Zht1—q, — “htq Pk = Fky k=1,...,p. (34)

If X\ is a simple eigenvalue, then as for Lemma 1 we can show that the linear transforma-
tion corresponding to the left side of (34) is nonsingular. Hence (34) has a unique solution
21y-..,2p. Now set

k —2 ; k "’lI)]c"’ : 1yereyWp).
Then the vectors wi, ..., w, have unit norm and satisfy
" H |@k+1-gs |
Wiy 0 T = BreWiey1— B =ay———1r—, k=1,...,p.
o e [k -q.] v

Hence w can be viewed as a unit norm left eigenvector of T corresponding to A\. Note that
the related unit norm right eigenvector of T now is (e1,...,e;) and we have
" 1
wpep=-——->0, k=1,...,p. (35)
| |

Obviously, (Qiwi, ..., Qpwp) is the unit norm left eigenvector of A. Similar to Lemma 2, for
A simple, we can show that the unit norm left eigenvector v = (v1,...,vp) of A corresponding
to A is unique and satisfies

vl€{+qkAk = /Bkvl?-}—lqua k= 1’ - Dy (36)

10



where A\ = g --- 7. Let u = (uy,. .. ,up) be a corresponding unit norm right eigenvector,
ie.,
S S
Apupii—q, = QpUptq,, k=1,...,p, A=o]"--o’. (37)

Multiplying uj41—g, from the right-hand side of (36) we obtain
ak’uﬁ"‘]kuk'fﬂk = ﬁkvl?—kl—qkuk—i—l—qk- (38)

Due to the uniqueness of the eigenvector, it follows from (35) that

kg = vlup #0, k=1,...,p. (39)
Note that if all the matrices By,...,B, in (3) exist, one can verify that |k1,...,|xk,| are
just the reciprocal condition numbers corresponding to the same eigenvalue X of By,..., B,

respectively, and hence the classical condition number for a simple eigenvalue of one matrix,
see [26], is reproduced.

Using these relations we now derive the first order perturbation theory for the eigenvalues
of a perturbed formal product. For this we need to separate the positive and negative signs
in the sign tuple s = (s1,...,sp) via

L ={klsp =1}, I = {k|sy=—1}.

Theorem 6 Consider a regular tuple A with sign tuple s of the form (29). Let A € A(A) be
a simple eigenvalue and let

u=(uy,...,up), v=(v,...,0)

be the correspondmg unit norm right and left eigenvectors satisfying (36) and (3’7), respec-
tively. Let A = A + AA with |AA| sufficiently small. Then the perturbed tuple A has unit
norm eigenvectors U = (41,...,U,) satisfying

Apitpg1-g, = Gtk (40)
fork=1,...,p, such that with ki, defined in (39) the perturbations satisfy

T 6 T e I v I o = S0 [ TLow | 2222850 oganye).

K
kel  kel- kel-  kely j=1 k#j i+aj

Proof. Expansions (30) and (31) in Theorem 5 imply that

dx = ox+Aax+O(JAAJD), |Aag| = O(|AA]),
ik = u+ Aug+O(JAAJR),  [duk| = O(JAA]),

for k = 1,...,p. Using these expansions in (40) and applying (37), it follows that the first
order terms satisfy

AkA'U'k—H—qk + AAkulH—l—qk = akAu;H_qk + Aakuk+qk.

Multiplying by v,f+qk from the left and using (36) and (39) we then get

1
Aay = K(ﬁkvfﬂ—qkA“kH—qk - akvlf—f-QkAuk‘FQk + "’lﬂqkAAk“kJrl—qk) + O(IAATP).
ak
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Using the relation
Br ay

7
Kk+q,  Fk+1—gp
which is from (38), we have

H H H
. _ Ukt g DA UR+1-g; Vpi1—g, Dlkt1-q,  Vkyq, Ak
G —ag = + oy, —

Kk+qx Kk+1—qgg Kk+qy

> +O(JAA[?), (42)

for k = 1,...,p. Note that gy = 0if sy =1 and ¢ = 1 if s, = —1. Expansion (42) then

implies that

H a = H ag | |1+ Z (kaAukH 'UchAkuk>

kel kel kel Kk+1
H
U'AAjUj+1
XTI e ) TEEYT L ogiaap)
jEI+ \kEL4 k#j J

and similarly

vHAu v VAT
an = o 1+ k k  “k+1 +>
e - (1) (3

kel_ kel_ Rk R+
H
v AAju;
+) I « Jﬂi +O([[AA]?).
jel_ \kel_ k#j J+1

Using the periodicity, i.e., that

H
Upp1AUpr1  vf Ay

- 3

kp+1 k1
the identity
zp: 'Uk A'U/k '()k+1A'l,Lk+1 _0
=1\ Tk Fk+1

implies that

H H
Z vfl Auy, B Vg1 Aupr ) Z V1 Atk _ vy Aug,
Kk Kk

K K
kel k+1 rels k+1

Hence

TT ¢ TT o~ T ¢ T o

kel, kel kel kely
H

= Z Ho‘k %_Z HO‘ ﬁi” O(JAA[?)

JELL \k#j 7 JEI- \k#j i+

P AAiu

JUj+1—g;

= > 0% [ [[ e ~+O(laA]),

j=1 k#£j HJ-HIJ

12



which is (41). O
Expansion (41) gives first order perturbations only for the ay, but the first order pertur-
bations for A are easily derived as a Corollary.

Corollary 7 Consider a regular tuple A with sign tuple s. Let \ be a simple eigenvalue of
the formal product and let a,...,qp associated with X\ satisfy (37). If A = A + AA with
IAA| sufficiently small, then A has an eigenvalue \ that satisfies the following first order
perturbation results.

a) If A is finite and nonzero then

5\ L Uk AAgu Uk+1—q
Z 'HIka L+ O(|aAP). (43)
=1 kFk+qp

b) If A =0 and ko is an index such that sy, =1 and ag, =0, then

H
_ HkEI+,k;£ko U Vg AAggUpgt1 n

A O(lAA]?). (44)
Ileer ok Kko
c) If X =00 and kg is an indez such that sy, = —1 and oy, = 0, then
1 Tker koo @ vE L Adgyug
s=— T — Jotl 0% 1 O(|AAJP). (45)
A [lker, ax Kko+1

Proof. If X is finite and nonzero then all oy are nonzero. If ||AA]|| is sufficiently small,
then from (32) we also have that [],.; d # 0. Multiplying with

1

A (erL ak) (HkEL &k)

on both sides of (41) and using that

[ker, o R
=t IT & = I « +odlaal),

A= H =
kel “k kel kel

we obtain (43).
If A = 0 then, since A is regular, there exists at least one ky € I, such that ay, = 0 and
[Ircr_ ox # 0. Hence the right side of (41) reduces to

AA/c Ukg+1
(IT aw)=——"——+0(2A).
k£ko
Similarly, by multiplying with
1

(HkEI_ ak) (erI_ 6"6)

13



on both sides of (41) we obtain (44).

The expansion (45) in the case A = oo is derived similarly to the case A =0. [

We see that the perturbations for an eigenvalue A and its components «y are of slightly
different nature. For the component oy from (42) the perturbation has two parts. One arises
directly from AAj in the term

H
Yk+gx Adpugy1q

Kk+qp,
The other part arises from the perturbation of the eigenvector in the term

H H
a (Uk+1qkAuk+1—qk _ 'Uk+qkAuk+q1c>

Kk+1—qs Kk+qp,

For the eigenvalue A\, however, only the first term occurs. But, nevertheless, we see from (30)
and (41) that the perturbations in A and «j are of the same order.

Remark 4 Corollary 7 implies that for the eigenvalue 0 with at least two indices ki, ko
such that ag, = ag, = 0 with s, = sg, = 1, the corresponding perturbed eigenvalue is of
second order. The same holds for the eigenvalue infinity if there exists oy, = ax, = 0 with
Sk1 = Sky = —1.

In this subsection we have shown that the classical perturbation results for simple eigen-
values and associated eigenvectors can be directly extended to formal matrix products. The
perturbations for the factors of an eigenvalue are slightly different from those for the complete
factor as was to be expected already from the perturbation theory of matrix pencils, see [24].
The situation changes drastically for the case of multiple eigenvalues that we discuss in the
next subsection.

2.3 Perturbations of multiple eigenvalues

Even for the case of one matrix the perturbation theory for multiple eigenvalues is complicated.
If the matrix is diagonalizable, then the perturbations for the eigenvalue still are similar to
those for simple eigenvalues [26]. However, for the eigenvectors usually there are no similar
results. For completeness we will present the perturbation result for multiple eigenvalues with
a slightly different proof than in [24]. This proof will then also be used for the formal matrix
product case.

Theorem 8 Let A € C"*" be diagonalizable, let A be an eigenvalue of A of algebraic multi-
plicity m and let U, V form orthonormal bases of the corresponding right and left eigenvector
spaces. Consider a perturbation A = A+ AA with |AA| sufficiently small. Then A has m
associated eigenvalues and for each such eigenvalue 5\, there exists a unit norm eigenvector
x € C™. With an arbitrary nonzero vector y € C™ such that y?VAUz # 0 we have
. yHVEAAUZ 9
A== VAL + O(|AA|?). (46)

Moreover,
yIVHIAAU

A=Al = min VAU

Y
|AA]

< =
- [vHU4]

+O(|AAJ?)

|1A4]

AAP) < —
FOIAAP) <

+O(|AA]).

14



Proof. By assumption there exists a unitary matrix @ with Q = [U, ﬁ] such that
_ M, F

Partition
M, + AC F + AF ]

Q"AQ= [ E D+ AD

Since |AA| is sufficiently small, there exists a matrix X solving
(D+AD)X — XM\, + AC) —E+ X(F+AF)X =0,

and X is of order |AA|. Then

AQ [ e ] —Q [ e ] (M + AC — (F + AF)X). (47)

Let AX be an eigenvalue of AC — (F + AF)X with corresponding unit norm eigenvector .
Clearly A\ is of order |AA| and A + A\ is an eigenvalue of A. Pre- and postmultiplying
yHVH  zin (47) and using the formulas for V and Q, if y?VHE Uz # 0, then we get

yAVEAAUz = ANyEVEUz + O(|AA?)

and we obtain (46). Setting y = mVH Uz we have the first upper bound. The second

bound follows from |[VEUz| > owin(VEU). O

As in the classical case of matrices and pencils, the reciprocal of the condition number of
a multiple eigenvalue \ is given by omi,(VIU).

Unlike for the case of simple eigenvalues, the eigenvectors in (46) depend on the pertur-
bations. Neither the eigenvalues nor the eigenvectors are analytic functions in the elements
of AA in the neighborhood of the origin. For example, let A = I, and AA = [:2 :] Then
A has two eigenvalues 1 + ¢ + |e|g It may also happen that the perturbed matrix is not
diagonalizable, as we see from the example A = I and AA = [§ ¢].

For a matrix tuple A with sign tuple s, let A be an eigenvalue of A with algebraic
multiplicity m. If there exists a matrix tuple W = (W,...,W,) with W}, € C"*™ of full

column rank such that
Aka‘-I-l—qk = Wk-l—qkrka Fk = dia‘g(’Ylka s a7mk)7
fork=1,...,pand A = g:l'yf;kk =...= Hﬁ:ﬂf,f;ka ( 221’)’1—;1?6 =...= Hﬁ:f)’;;/? =0
for infinite eigenvalues), then we say that A has a complete set of right eigenvectors.
Let Uy be an orthonormal basis of range Wy, and let Qi = [U, Ug] be unitary. As before
we set

Cr F
Qft 4o Ak Q11 g, =[ o D’; ] (48)

and
ApUk+1-q, = Ukt Chs (49)

with A(C) = {A}. Moreover, if A is finite, then

Cok - OOt - O = M, (50)
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and if A is infinite, then
Ck Sk"'Cp Spcf1 s1___ij’l{—1 :0’ (51)

for all k = 1,...,p. If X is nonzero finite, then all C; are nonsingular and we can verify
that (50) holds for all K = 1,...,p if and only if it holds for one k. Moreover, (50) is also a
sufficient condition for A to have a complete set of eigenvectors associated with an eigenvalue
A. To verify this one can simply take Wy, = Uy and W, = Uy, H?:k C;j fork=2,...,p. If A
is zero or infinite, however, then we do not know of such a simple connection. We conjecture
that if equations (50) or (51) hold for all K =1,...,p then also complete sets of eigenvectors
exist for the eigenvalues zero and infinity.

We will now analyze perturbations in equations (49) and (50), (51). Let V be an or-
thonormal basis of the left eigenvector subspace, i.e.,

Vil Ak = CrVil g, (52)

Then as shown in Subsection 2.1, Hy := V' Uy is nonsingular, and from (52) and (49), we

obtain

Cr = HquCkH,;jlqu, k=1,...,p. (53)
Let A + AA be the perturbed matrix tuple with ||AA| sufficiently small. Then as in Sub-

section 2.1 there exists X with [|X[| = O(|JAA]|) such that for Uy := Qy [J(k] we have

(A, + AAR) Tk i1_g, = Uprg, (Cr + ACY), (54)
where 3
ACy = Ul AA U1 g + (Fi + UE ATk i1 ) Xki1 g

for k=1,...,p. As ||AC| = O(||AA]|) and ||AA] is assumed to be sufficiently small, the
eigenvalues of C+ AC are just the m eigenvalues of A+ AA nearest to \. Let x = (z1,...,%p)
be the unit norm right eigenvector of an eigenvalue of C + AC, i.e.,

(Ck + ACk))Ik-I-l—qk = &k)xk-i-qka k= 1a - Dy (55)
and suppose that the eigenvalue X is finite. Then all Cj corresponding to s = —1 are
nonsingular, and setting

Ly == (C1 + ACY)*t --- (Cp + ACy)*® = AL, + ALy + Iy (56)
with
4 k-1 P
AL =Y (0% | [[¢7 | er®acey™ | T ¢7 |,
k=1 j=1 j=k+1

it follows that |L1| = O(JJAA[?). For A = [[2_, &3*, applying Theorem 8 and using (55) for
a given y; with yfz; # 0 we have
yi' (AL + Ly)ay

A-x = = +O([aA[?)
Y1 1

H

Yy ALl.’El

S +O(lAA]P)
Y1

H P k—1 ~Sj\~—ag —qk (TP S5
Y1 Zk:1(_1)qk(Hj:1 Cj )Ck ACCy (Hj=k+1 Cj )z
- { oo } +O(JAAJP).
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By (54) and (52), we have
Vlg—qkﬁk—mk (Cx + ACy) = é’kafiqu ﬁk-l—l—% + Vk}n{q;cAAkﬁk+1—qk-
Note that Uy = Uy + O(|AA|?). From these relations and (53), if s, = 1 we get
ACy, = H 'V AUyt + CuH L Vi Uy — H ' UG Cr + O(|AA?).
When s = —1, then
—C ACKC ! = G HLVEL (ARG + Ui ) = B 'VETC + O(1AA2).
These two formulas have form

(—1)% Ck—llkACka—qk = (- )ch qkHkiqulg—qkAAkUk+l—quk_%

+CP Hi Vi Uker — H VUGG + O(JAATP).

k—1 D
(—1)% (H C;J') Ck—%ACka—Qk ( H ij)

Jj=1 j=k+1

Hence

k—1 p
o (e romstasnr e (1.

7j=1

(H Cs]) H Vi Uk ( H C;j)
j=k+1
(H CSJ) w ViU (H ) +O(lAAJP).

Since [[7_; Cp* = X, we have

D

P k P k—1 p
H k+1Vk+1Uk+1 H C;j - H C;j ch_l‘/;cHUk H Cas'j

bS]

H CPHT'WVI T - H ' U1HCS] =

and hence

A=A

1 p k—1 ) » |
= —nylyfI {Z(l)qk (H ) C quIH}q Vlfi—qkAAkUk—i—l—quk dk ( H C;]) } -
k=1 .

1 j=1 j=k+1
+O(lAA?)
1 . p kt+qr—1 b4
S S
~ g > (-1 H O | Hily Vita AUk, | IT €7 | b
! k=1 J=k+1—qx
O(lAaA[>). (57)
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If X is infinite then by taking the index as (—si,...,—s;,) and considering i we obtain a
formula similar to (57).
The following theorem gives the perturbation analysis for multiple eigenvalues.

Theorem 9 Let A be a regular matriz tuple with sign tuple s and let A be an eigenvalue of A
with multiplicity m having a complete set of eigenvectors. Let the corresponding orthonormal
bases of the left and right generalized deflating subspaces V and U be chosen to satisfy (52)
and (49) and let Hy = V;FUy. Consider a perturbation A + AA with [|AA| sufficiently
small. Then there are m associated eigenvalues of A + AA, and for each such eigenvalue 5\,
let x = (z1,...,2p) be of unit norm satisfying (55) and let (01,...,Up) satisfy (54). Then
for each 1 € {1,...,p} and for any y; such that yf z, # 0, we have the following.

a) If X is finite, then with Oy := Hk+lq’° Lo

J
. 1 pHi-1 pri1 |
ATA = om u' Z (—1)% 64, k+q Vk+qkAAkUk+1 —k H C;] z
e k=t j=k+1—qs
+O(JAA[?) (58)
1 p+i-1 p+i—1
~S8j —
T H Z (=1)% H a;’ le{{GkaiqukaiQkAAkUk'i‘l—Qk}‘Tk—CIk
T J=k+1—qz
+O(AA]?) (59)

and the following bound holds.

P P

A . a2 |AAg

A=n < 3| IT Wl aitio o] ) IO A g) P 724
=\ Omin\41k+q;

+O(J|AA]?). (60)
b) If A is infinite, then with Qy := H;?iz(fﬁ—l—l Cj_sj
1 1 p+i—1 !
_ s
K - - H yl}I Z (_]‘)qkQka—&quk}—II—qkAAkUk—l—l—qk H C] J x]
e k=l i=k—ax
+O(JAA]?) (61)
1 p+i—1 1
A8,
= - > e I e o { L Vi A1, 71 g,
EE k= =k~
O(lAaA[?) (62)
and
P P s iad,
R Sl 1 L e e
k=1 \j=1,j#k Omin{4k+qy
+O(IAAP). )
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Proof. 1f A is an eigenvalue of C + AC, then using reordering in the periodic Schur form
[9, 16]), regardless whether M is simple or multiple there always exists a unit norm right
eigenvector x. Hence we have (57) if X is finite.

Formula (57) is generated by considering the matrix product L; in (56). Since there exists
a complete set of eigenvectors associated with X, performing the same analysis on

— (Cl + Acl)sl A (Cp—|—l—1 + A0p+l_1)8p+l—1,

for | = 2,...,p we get the analogous formula for A — X. Hence we have (58). By (55) we have

p+i—1 p+i-1
I ¢/ == I & |@—a+2 lal=0(ArA]).
j=k+1—qp J=k+1—qs

which implies (59). Formulae (61) and (62) are derived analogously.
The upper bounds (60) and (63) are derived by setting y; = x; and using the fact that
Cy = Uk+q ApUpt1—q,, which is from (48). Then for A finite, (58) yields

p+Hl—1 p+i—1
A=A < min| Y oo Vi AT, | T o ||+ ouaap)
k=1 j=k+1—gy
pi-1 pH—1
< min 3 feunl, || TI o7| a4+ ousar
J=k+1—qy
P P
4 g2 _ A4
< Y| I |uation-)] ) 0t At -
il Omin(Hk+q;)
k=1 \j=1,j#k Ik
+O(JAA]?).
For infinite A we use ch:Z C, % = Ci_s"---C'- ifi > j and H =T ifi < j. Then
(61) implies that
1 p+i—1 l _
5l < min) > (CO*H Vi AMUkn-o | ][] 077 ||+ OUAAP)
k=1 i=k—a
pHi-1
< min 3 | r,, I1 o iaad +ouaar
J=k—a
= ' J+q J+1-g; ktqp kY kt+1-qk Tmin(Hrtq,)

k=1 \j=1,j#k
O(lAA]?).

This finishes the proof. 0O

The main difference between the perturbation results for simple and multiple eigenvalues
is that instead of the components «y, the matrices Cj are involved. Another difference is that
for A € {0,00} in (44) or (45) only one AAy, affects the eigenvalue, while in (58) or (61) the
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perturbed eigenvalue seems to be influenced by all perturbations. However, by choosing a
proper vector y; in (58) or (61) it is still possible to obtain a similar result as (44) or (45).
Consider for example A = 0 in (58). Then there exists an integer /y such that s;, = 1 and Cj,
is singular. Let y;, be a unit norm vector such that ylf]l Ci, = 0. Note that s;, =1 and g, =0
in this case. If ylf)] zy, # 0 then equations (58) and (59) corresponding to | = [y reduce to

—1y/H p+lo— 1
Vlo AAloUlo-H (H] lo+1 )xlo

= +O(JAA?)
ylo$lo
ptlo-l HHWHAALU
= | II a7 )™ b0t ot L o(JaAR).
j=lo+1 Vi Tlo

We conjecture that we can always choose such a proper g; and similar simplified formulae
hold also for all other eigenvalues.

The first order perturbation bounds for multiple eigenvalues with a complete set of eigen-
vectors depend on the eigenvectors of the perturbed eigenvalues which is not the case for
simple eigenvalues. Since these eigenvectors are determined by the perturbation matrices,
this makes the formulae less useful. However, the bounds of (60) and (63) can be used to
evaluate the perturbation in the eigenvalues.

Note that even if A has a complete set of eigenvectors, in general the matrices Cy in (49)
are not diagonal if U is unitary. For example, if p =3, s = (1,—1,—1) and

a=([o2)fo ][0 3))

then it is easy to verify that there does not exist any triple of unitary matrices (Q1, @2, @3),
such that Q¥ A;Qo, Q?{{AQQQ and Q¥ A3Q;3 are simultaneously diagonal. If p =1 or p = 2,
however, Cj can be chosen to be diagonal.

Lemma 10 Let A be an eigenvalue of A with sign tuple s and suppose there exists a complete
set of eigenvectors. If p =1 or p = 2 then the orthonormal basis U can be chosen such that
the matrices Cy, k =1,...,p are all diagonal.

Proof. For p =1, with C; = AI for s = (1) or Cy = ;I if s = (—1), the result is obvious.

For p = 2 we only consider the case that A is finite. The infinite case is proved analogously.
Consider the case that s = (1,—1), the case s = (—1,1) is analogous. We have to find unitary
matrices @1, Q2 such that Q¥ C1Qs and Q¥ C,Q5 are both diagonal. Since A is finite, Co
must be nonsingular. Let Q{{ C5Q2 = Dy be the singular value decomposition of C5. Since
0102_1 = M, we have QfIClQQ = ADy =: D; and the assertion follows. If s = (1,1) (or
in a similar way if s = (—1,—1)), then we have to find unitary matrices such that Q¥ C1 Q.
and Q¥ C2Q; are both diagonal. If X is nonzero, then let Q¥ C2Q1 = Dy be the singular
value decomposition of Cs. Since then Dy must be nonsingular, using C1Cy = CC1 = AT we
have Q¥ C1Qy = )\DQ_1 = D;. If X is zero, then let ngCQQl = [%2 8] be the singular value
decomposition of Cy with 152 is nonsingular. Using the commutativity, i.e., C1Cy = CoC1 = 0,
it follows that the matrix Q{{ C Q2 has the form [8 & ] Let Wl 01W2 be the singular value

decomposition of C; then for Q = Q1 diag(I, W) and Q = Q, diag(I, Ws), the matrices
QEC1Qy and QI C2Q; are diagonal. [
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Using this lemma we obtain the classical perturbation results for matrix pencils A — AB.
considered as a formal matrix product with p =2, s = (1,—1) and A = (4, B).

Theorem 11 Let \ be an eigenvalue of A — AB of multiplicity m with a complete set of
eigenvectors. Let U = (Uy,Us) be an orthonormal basis of the right generalized deflating

subspace, such that
AU2 = Uch, BU2 = UICBa

with
Ca = diag(a,...,am), Cp=diagBi,...,0m), —L=...=2m _\
/81 IBm

Let V. = (V1,V5) be an orthonormal basis of the left generalized deflating subspace corre-
sponding to A and let ky be an integer such that |Bi,| = min{|SB1|,...,|Bm|} for X finite and
let |y | = min{|ayl,...,|am|} for A = co. If A—AB = (A + AA) — \(B + AB) and
I(AA, AB)|| is sufficiently small, then for each of the m associated eigenvalues A of A — \B
the following inequalities hold.

a) If X is nonzero and finite, then

A=A

1
| < min{|(vV/1U.Cp) " Vi (A4 - AB)Ua,

1
|(ViU) =V (A4 = AB)UCR [} + O(I(AA, AB)[)

1 1 1
< — | —AA- ——AB|+O(](AA,AB)|?).
omin(VlHUl)” - Bl |+ O(i( M)

b) If A =0, then
Al < min{|(V700Cp) VT AAT,|, |(VTTL) VT AATCL |} + O(II(AA, AB)|?)

1
< AA| + O(|(AA, AB)|?).
,Bkoo'min(VlHUl)" |+ O(li( )
c) If A = oo, then
1 . _ _ _
N < min{|(V{"U,Ca) VT ABG:|, |(ViI7Uh) 'V ABUCL [} + O(I(AA, AB)|1?)
1
AB| + O(|(AA,AB)|?).
akooo'min(V1HU1)" |+ O(li( )%

Proof. If X is finite, then using (60) and C4Cz' = C5'C4 = M, we have
A=A < min{|(YTUCp) 'V (AA — AAB)Uy|,
[V U)WV (AA = XAB)UC3 [} + O(I(AA, AB) ). (64)
If X is nonzero, then the first inequality is obvious, and since
A=Al < IG5 V0D THIAA = XAB| + O(Jl(AA, AB)|I?)

1 L (AA=AB)| + O(J(A4, AB)P),

B Umin(VlHUl) ” ﬁko
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the second inequality follows since oy, /Bk, = A.

If A = oo, the assertion follows by applying the first inequality in (63). O

The bounds given here depend on o, (Vi#U;), which is the reciprocal of the condition
number of A related to the formal product AB~!. One may also use the bound given by
omin(VQH Us) related to B~ 1A. This can be derived as follows. Let VlH A=C AVQH , VlH B =
CpVyl. Then CaVH Uy = VHUCy and CpVif Uy = VU Cp. If X is finite and Cp, Cp
are nonsingular, then the alternative bound in terms of omin(Vs? Us) follows from (64). For
A = 0o the construction is similar. This trick can also be applied in the general case p > 2 if
A is simple.

Remark 5 We have already noted that for nonzero finite eigenvalues it is enough if one of the

conditions (50) is satisfied. However, for zero or infinite eigenvalues, the situation is different.
For example, let p =2, s = (1,1) and

(o] el)

&:m@:[ﬂly &:@m:[OO}

Then

00 00

But even though only one of the identities (50) or (51) is satisfied for some [y, following the
analysis, the perturbation results (58), (60) or (61), (63) still hold for this particular /5. This
means that even in this case we still have the first order perturbation results.

In this section we have extended the classical perturbation results for eigenvalues and
eigenvectors of matrices and matrix pencils, as given, e.g., in [24], to formal products of
p matrices. If the formal products consist of structured matrices, then one is interested
also in structured perturbations. Typically the perturbation results change if structured
perturbations are considered. This case will be studied in the next section for the special case
of Hamiltonian/skew-Hamiltonian pencils.

3 Perturbation Theory for Hamiltonian/Skew-Hamiltonian
Matrix Pencils

In the previous sections we have discussed the perturbation theory for formal matrix products
without further assumptions on the factors A;. These results can be used in the perturbation
analysis for the periodic QZ algorithm which is used heavily in the computation of (invariant)
deflating subspaces of Hamiltonian matrices [4, 5, 6] or Hamiltonian/skew-Hamiltonian pencils
(2, 3].

With J = [_(}n 161] we define the following classes of matrices. A matrix H € C?"*?" js

called Hamiltonian if (JH)¥ = JH and analogously, a matrix N' € C?2"*?" is called skew-
Hamiltonian if (JN)? = —JN. A matrix S € C?"*?" is called symplectic if S¥JS = J and
unitary symplectic if it is both unitary and symplectic. A matrix pencil H — AN with H
Hamiltonian and N skew-Hamiltonian is called a Hamiltonian/skew-Hamiltonian pencil.

We see that Hamiltonian and skew-Hamiltonian matrices have a specific symmetry struc-
ture, and thus if we allow only structured perturbations that retain this symmetry structure,
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then we may expect a different perturbation analysis. For Hamiltonian matrices this analysis
has recently been carried out in [17]. Using similar ideas as before for formal products of struc-
tured matrices, we can also derive the perturbation theory for Hamiltonian/skew-Hamiltonian
pencils.

If a Hamiltonian/skew-Hamiltonian pencil is regular and has no purely imaginary or infi-
nite eigenvalues, then it has been shown in [20, 21] that there exists a unitary matrix Q such
that

A H B G
(JQIT)(H = MIN)Q =Ty — ATy = [ 0 _al ] —,\[ o B ] : (65)
where H = HY G = —G*. In many cases [3] the skew-Hamiltonian A is furthermore given

in product form and the pencil is
H—ANJMEJT)M, (66)

with H Hamiltonian. Similarly, if the pencil has no purely imaginary or infinite eigen-
values, then there exists a Hamiltonian Schur form ([23, 18]) for the Hamiltonian matrix
(JMHEJTYIH ML, (M is nonsingular, since there is no infinite eigenvalue). Using (65) we
can determine a unitary matrix @ and a unitary symplectic matrix U such that

A H
0 —Af

Cc F

T IQ" IO = | | m-mt Tu—utme- | D] en

The last identity implies that

H H
(JOHITYIMET YU = JTHIT = [ pe —r ]

0o cCH

Combining this with (67) we get that JQH JT (H — AJMH JT M)Q has the same block trian-
gular form as (65).

In applications from control, see [2, 3], one is particularly interested in the perturbation
theory for the eigenvalues and also the deflating subspaces spanned by the first half columns of
the matrices I and @ if the perturbations are restricted to retain the matrix structure. In the
following two subsections we will discuss this problem for the Hamiltonian/skew-Hamiltonian
pencils and the pencils as in (66) separately.

3.1 Hamiltonian/skew-Hamiltonian pencils

The eigenvalue problem for Hamiltonian/skew-Hamiltonian pencils is a special case of the
eigenvalue problem for formal products of structured matrices, with p = 2, s = (1, —1), where
A1 = H and Ay = N. In the following we derive the structured perturbation theory for this
problem.

Let H—AN = (H4+AH)—AN+AN) be a perturbed pencil with structured perturbations
AH Hamiltonian and AN skew-Hamiltonian. Suppose furthermore that the original pencil
H — DN has the block triangular form (65). Then we set

AA  AH
E; —(AA)H

AB AG
E, (AB)H

En = (JQEIJDANHQ = [ ] , AH=(AH) E =EFf, (68

En (JOTIMANQ =: [ ] , AG=—(AG)", By =—E. (69)
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Using the special transformation as in (68) and (69) the Hamiltonian and skew-Hamiltonian
structures are preserved and £ and £xr can be partitioned with the appropriate block struc-
tures. Partitioning Q = [Q1,Q2] with Q1,Q2 € C**", we then study the perturbations
in range 1, the right deflating subspace corresponding to the eigenvalues of A — AB. By
the definition of deflating subspaces of matrix products, the deflating subspace has the form
(range J7 Q2, range Q1). As we have shown in the previous section, the perturbed unitary ma-
trix will be QY, Y as in (12), and hence both subspaces have the same perturbation behavior.
We have to determine )y and )» as in (12) to simultaneously eliminate the (2,1) blocks of
Ta + Ex and Ty + Enr. To preserve the matrix structures we require that Yy = JYo JT. If we
set
(In + XHX)"2 0
0 (I, + XXH) 3
then the matrix X has to satisfy the quadratic equations
(A+AA)"X + XH(A+AA)+E, - X"(H+AH)X = 0, (70)
(B+AB)X - X" (B+ AB)— E; + X9 (G+ AG)X = 0. (71)

bl

I, XxH"
yQZ[—X I, :|

Thus, the linear transformations @ in (7) and & in (14) are replaced by the linear operators
dyu(X) = (AIX +XHA BHX - XEB),
dy(X) = (A+AAIX +XH(A+AA), (B+AB)HEX - X" (B + AB)),
respectively. We have the following Lemma.
Lemma 12 The following are equivalent.

i) The linear operator ®4 is nonsingular.
ii) The matriz pencils A — AB and A" + AB* have no common eigenvalues.

iii) The spectrum of the pencil A — AB does not contain purely imaginary or infinite eigen-
values, and furthermore if A with Re A # 0 is in the spectrum then —A\ is not.

Proof. To show the equivalence of ii) and iii) observe that if A is an eigenvalue of A — AB,
then —)\ is an eigenvalue of A# + AB# [20]. Hence A — AB and A 4+ AB have no common
eigenvalues if and only if A — AB has no purely imaginary or infinite eigenvalues, and no
eigenvalue pair A, —\ for Re A # 0.

For the equivalence of i) and ii), by Lemma 1 it suffices to prove that &4 (X) is nonsingular
if and only if the linear transformation

®(X,Y)=(A"X+YA, BEX —~YB)

is nonsingular.

If ®3(X) = 0 has a nonzero solution X then ®((X, X*)) = 0. Hence if ® is nonsingular
then @4, is also nonsingular. If there is a nonzero (X,Y’) such that ®((X,Y’)) = 0, then the
symmetry implies that ®((Y#, X)) = 0. Hence, we either have &4 (iX) =0 (if Y = —XH),
or Py (X +YH) = @(X+YH (X +YH)H)) =0 (if Y # —XH). In both cases ®3 is singular.
Hence if &4 is nonsingular, so is ®. [

We can rewrite the system (70), (71) as

Dy(X) + (B, —Ey) + Uy(X) =0, Uy(X)=(—X"TH+AHX, X1 (G +AR)X) (72)

and then similar to Theorem 3 we have the following perturbation theorem.
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Theorem 13 If

37{ ‘= min @7{ >0 73
min [5(X)] (73)
and
B, B (H + AH, G + AG)| _ 1 (74)
82, ST
then (72) has a solution X which satisfies
2||(E1, E Ey L E
"X” < - A |||( 1, 2)"' <2|||( 1Aa 2)|"
b+ /5, — (B, B)II(H + AH,G + AG)| 2
Proof. The proof is analogous to that of Theorem 3. U
Relaxing conditions (73) and (74) slightly, one obtains the following corollary.
Corollary 14 Let
O3 == "m”ln | @2 (X))
If
p = 0y — 2||(AA4, AB)|| > 0, (75)
and
1B B, Ol + [AH, AG)) _ 1 -
2 4’
P
then (72) has a solution X which satisfies
2| (B, E Ey E
||X|| < m( 1, 2)”‘ <2"|( 1, 2)|||
pr+ \/P% — 4|(Ev, E2)I(I(H, Gl + I (AH, AG)]) i

Using these results we obtain the following perturbation bounds for the deflating subspaces.

Theorem 15 Let H — AN be a Hamiltonian/skew-Hamiltonian pencil that has a block upper
triangular form (65). Partition Q@ = [Q1, Qo] with Q1,Qz € C>"*™. Let H—IN be a perturbed
Hamiltonian/skew-Hamiltonian pencil and let the perturbed matrices be partitioned as in (68)
and (69). If conditions (73) and (’74) hold, then H — AN has a deflating subspace range Qy

with Q1 = [_X] (I, + X X)~ 5, where the matriz X solves (72).

The principal angle between range Q1 and range Ql 1s less than arctan(2w).
H
Furthermore, if conditions (73), (74) are replaced by (75) and (76), respectively, then the
upper bound for the principal angle is arctan(2wy

Proof. The proof is analogous to the proof for Theorem 4. O

For the perturbation of the eigenvalues we need fewer assumptions, we only assume that
the pencil H — AN is regular. Let A be an eigenvalue with algebraic multiplicity m and
suppose that there exists a complete set of eigenvectors associated with A. Since p = 2, let
(U1,U3) be a corresponding orthonormal basis of the right deflating subspace with

HUQ = Uqu.L, NU2 = UlcN, (77)

25



where
Cy = diag(aq,...,an), Cn =diag(fi,...,0m)-

Then we have \ = % =...= %_: The symmetry structure implies that
(JU)HH = —cHunH, (JU)IN = CEIU)",

and hence (JUs, JU; ) represents the left eigenspace corresponding to the eigenvalue —\. Thus,
if A is purely imaginary or infinite then (JUsy, JU;) and (Uy,Us) are just orthonormal bases
of the left and right generalized deflating subspaces. If A is finite with Re A # 0, then let
(V1,V2) be an orthonormal basis of the right generalized deflating subspace corresponding to
—\ with

HVo =ViCu, NVo=ViCyn, A(Cx,Cn)={=\}. (78)

Then (JVa, JV7) forms the left generalized deflating subspace corresponding to A. Note that
—) has also multiplicity m and there again exists a complete set of the eigenvectors [21].

Using these properties and applying the results of Section 2.2 we obtain eigenvalue per-
turbation results for both simple and multiple eigenvalues.

Theorem 16 Consider a reqular Hamiltonian/skew-Hamiltonian pencil H — AN, let X be a
simple eigenvalue and let (uq,us) be the unit norm right eigenvector satisfying

aq
’Hqualul, NUQ = U1, A= —.
a2

Consider the perturbed Hamiltonian/skew-Hamiltonian pencil 1 — AN = (H + AH) —
AN + AN) with € := ||(AH, AN)| sufficiently small.

a) If X\ is purely imaginary or infinite then H — AN has unit norm eigenvectors (i, Us)
satisfying Hia = &1ty and Nty = &atiq, such that

ull (o JAH — g JAN Jug
udl Juy

Qa9 — ooy = + 0(62).

b) IfRe X # 0 and (v1,v2) is the unit norm eigenvector corresponding to —X then H— N
has eigenvalues X and —X such that

A=A 1 51
= J(—
A ’U%IJ’UQUQ (a1

1
AH — —AN)ug + O(é?).
a2

Proof. The proof follows directly from Theorem 6, Corollary 7, and from the symmetry
property of the eigenvectors. O

Theorem 17 Consider a regular Hamiltonian/skew-Hamiltonian pencil H — AN, let \ be an
eigenvalue of algebraic multiplicity m associated with a complete set of eigenvectors and let
(U1,Us) be unitary matrices satisfying (77).

Consider the perturbed Hamiltonian/skew-Hamiltonian pencil H — M = (H + AN) —
AN + AN) and assume that € := ||[(AH, AN)|| is sufficiently small.

If X is purely imaginary or infinite, then for the associated eigenvalues A of?:[ — M the
following bounds hold.
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a) If A is finite, then

A=A < min{|[(UFJULCN) UF J(AH — AMAN) Uz,
(U TUL)TTUS T (AH — MAN)UC |} + O(€%).

b) If A = oo then

—_

3 < min{||(UF JUCx) U TANUs|, |(Us' JUL) U JANULC |} + O(€2).

_ IfReX # 0 and (V1, V) is unitary satisfying (78), then the associated eigenvalues X of
H — M satisfy

A=A
by

AN

1
min{||(V2HJUlCN)_1V2HJ(XAH — AN)Uy|,

1
[(V5"TU0) VR T (S AH = ANYUCR} + O()

1 1 1
< — | —AH — —AN| + O(é?),

where the integer ky is chosen such that |Br,| = min{|G|, K =1,...,p}.

Proof. The assertions follow from Theorem 11 and the symmetry properties of the left
and right eigenvectors. [

It should be noted that if A is purely imaginary or infinite, then the smallest singular
value of the matrices UQH JTU; or UE JTU, represents the reciprocal of the condition number
of the eigenvalue. Moreover, U JU;Cy is Hermitian and UH JU,Cy, is skew-Hermitian.

3.2 The matrix pencils in (66)

We now study the matrix pencil (66) which we may consider as a formal matrix product with
p=35=(—1,1,—1) and A = (JMHJT H, M). Suppose that the pencil has the form
(67) and partition U = [U1,Us] and Q = [Q1,Q2] such that Uy, Qr € C2"*™ for k = 1,2.
We will analyze the perturbations in range Uy, range (01, the generalized deflating subspace
corresponding to the eigenvalues of A — AD#C. Let H, M be perturbed to H = H + AH
and M = M + AM, where AH is Hamiltonian. Set

H +T | AA AH
(JQfJ )AHQ—[ B, —(AA)Y (79)
and
AC AF
UEAMQ = [ By AD ] : (80)
We determine a unitary symplectic matrix
I, X\ || (T,+x2)2 0 "
= . X =x1,
. [—Xl I ] 0 (I, + X2)"2 P
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and a unitary matrix

(I, + XHX,)2 0

yF[ I, X{f] .
0 (I, + Xo X3) 2

-X, I,

to eliminate the (2,1) block of #, M and JMHJT simultaneously. For this purpose the
matrices X1, X9 must satisfy the quadratic equations

(A+AAEX) + XE(A+ AA)+ B, — XE(H+AH)X, = 0, (81)
(D+ AD)X; — X1(C+ AC) — Ey + X1 (F + AF)Xy = 0. (82)

Defining the linear operators

Du((X1,X0)) = (A"Xo+XJ A DX, — X,0),
dp((X1,X0)) = (A+AA)IX, + XH(A+ AA), (D+ AD)X, — X1(C + AQC)),
Um((X1,Xz)) = (=X3'(H+AH)Xz, X1(F + AF)Xy),

we can rewrite the system (81), (82) as

~

D a((X1,X2)) + (B, —E2) + U ((X1,X2)) =0. (83)
We have the following lemma.
Lemma 18 The following are equivalent.
a) The linear operator ® 4 is nonsingular.
b) The pencils A — ADHC and A" + A\C” D have no common eigenvalue.

c) The spectrum of the pencil A — ADHC does not contain purely imaginary and infinite
eigenvalues, and furthermore, if A with Re X # 0 is contained in the spectrum, then —\
18 not.

Proof. By Lemma, 12 it suffices to show that ®, is nonsingular if and only if
Oy (X)=(AEX + XA CcHDX — XHDH ()

is nonsingular. If ®4 is nonsingular, then the matrices C' and D must be nonsingular, since
otherwise A — ADH C has an infinite eigenvalue.
If ® 4 is singular, then there exist X;(= X{?) and X, which are not both zero, such that

AlXy, + XHBAa=0 (84)
and
DX, — X,C = 0. (85)

Since X; = X{!, (85) implies that C* X; = XM DH. Multiplying C¥ from left to (85) we
then have C DX, — XX DHC = 0. Combining this with (84) we get ®3(X2) = 0. But since
X1 = DX,C 1, it follows that X5 # 0 and hence ®y is singular, which is a contradiction.
Therefore if ®4 is nonsingular then @4 is nonsingular.
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Now suppose that there exists X # 0 such that ®4(X) = 0. If C is nonsingular, then
setting X1 = DXC~! and X2 = X, we have X; = X{ and ®((X1,X2)) = 0. If C is

singular, thenlet C = U [F 0] VH  with U,V unitary, and T’ nonsingular be the singular value

decomposition of C. Then with X; =U [8 MU and X, = 0, we have ®(((X1,X2)) = 0.
Hence, if ®4 is singular then @, is singular. 0O
We obtain the following perturbation bounds.

Theorem 19 If

o = b (X1, X)) >0 86
N LIV (E S ) (56)
and
Iy, BN + AH, F + AF)|| 1 (87)
52 ST
then (83) has a solution (X1, X2) which satisfies
2||(En, Eo Ey, By
(X1, Xa)|| < - i It )l <2|||( . )|||_
5M+\/5/2\4—4|||(E1,E2)||||||(H+AH,FJrAF)III M
Proof. The proof is analogous to the proof of Theorem 3. [
Under slightly stronger assumptions we have the following corollary.
Corollary 20 Let
O = min DA (X1, X2))-
T [ @pe (X1, X2))]
If
pm = op — max{2|AA], |(AC, AD)|} > 0, (88)
and
I (&1, E2) (I (H, F)III + (AR, AF)]) _ 1 (89)
PM 4’
then (83) has a solution (X1, X2) which satisfies
2| (&1, Bp) (E1, Eo)
106, X)) < 2 |1, 7)] <olELB
pm+ \/PM — 4[(Ey, E2)||(II(H, F)|| + [[(AH, AF)]) M

We then finally have the perturbation result for the generalized deflating subspace.

Theorem 21 Let H—A\(JMHJT)M be a Hamiltonian/skew-Hamiltonian pencil in the block
upper triangular form (67) and let Q = [Q1,Q2], U = [U1,Us] with Q1,Qa, Uy, Uy € C2X7,

Let the perturbed matrices H, M be partitioned as in (79) and (80). If conditions (86)
and (8’7) hold, then H — )\(JMHJT)M has a generalized deflating subspace given by range Uy,
range Q1 with

. L A I
Oo=u| ™ |+Xx2)72, O1=0Q| ™ |.+XEXy) 2,
—X1 _X2

where the matriz pair (X1, X2) solves (83).
An upper bound for the largest principal angle between range U; and range Uy or between

range Q1 and range Q1, respectively, is given by arctan(2w)

If conditions (86) and (87) are replaced by (88) and (89), then the upper bound for the

largest principal angle is arctan(2wy
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Proof. The proof is analogous to the proof for Theorem 4. O
For the perturbations in the eigenvalues there are still further special properties that follow
from the matrix structures. Let H — A(JMZJT)M be regular and let A be an eigenvalue
with multiplicity m having a complete set of eigenvectors. Let U = (Uy,Us,Us) be unitary
such that
JMEJTU, = UsCy, HU3 = UyCy, MUy = U, Cs, (90)

and
CrlCy Ot = Cr05'CT = O 100 = M.

Then using the matrix structure, if A is purely imaginary or infinite then (JU;, JUs, JU2) is
an orthonormal basis of the left generalized deflating subspace corresponding to A. Moreover,
from (90) we have

cEwljus) = (UHJIU)Cs,
cf(uflguy) = (U JUR)Cn, (91)
Cy' (Us'JUs) = —(U3' JUs)Co.

If ReX # 0 and (V1, V3, V3) represents an orthonormal basis of the right generalized
deflating subspace corresponding to —A, i.e.,

IMITTVE =Gy, HVs =VaCh, MV3 = ViCs, (92)
and o o o B
CilCCy = CrCy 10 = O 100y = =My,

then (JVq, JV3, JV3) represents an orthonormal basis of the left generalized deflating subspace
corresponding to A. Similarly

CH(V1JUs) = (V'JUh)Cs,

GIvian) = (V1I2)Cy, (93)

Cal(ViTIU3) = — (V37 JU5)Co.

Using these properties we have the following perturbation results for simple and multiple
eigenvalues.

Theorem 22 Let H— A(JMHYJT)M be a regular Hamiltonian/skew-Hamiltonian pencil and
let X be a simple eigenvalue. Let (u1,u9,us) be the unit norm right eigenvector satisfying

a9

(JMHJT)’U,l = X1U2, HU3 = X2U2, M’u,g = (3ui, = )\,

a10a3

and let H = H+AH, M = M + A/\/! with AAH Hamz'ltonian. Furthermore, let € :=
I(AH, AM)|| be sufficiently small. Then H — AN(JMHTJTYM has the unit norm eigenvectors
U1, U, Uz satisfying

IMEJ 4 = dntiy, Hig = dotia, Miz = d3lly, =

A A

a103
a) If X is purely imaginary, then

H H H H
5o U JAHus N (u3 (AM)* Jur g JAMU3> +0(E).

alaguéunQ aluglJuz agu{{Jul
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b) If A = oo, then

c) If ReX # 0 and (vi,ve,v3) is a unit norm left eigenvector corresponding to —\, then
H— )\(JMHJT)M has eigenvalues X and —\, such that
A=\ ol JAHug o (AM)TJuy o TAMug +0(&).

A 02U§{Ju2 alv?fl Jug agvfl Juq

Proof. Consider the formal product with p = 3, s1 = s3 = —1, s = 1, and factors 4; =
JMHEJT Ay = H and A3 = M. Consider perturbations AA; = JAMEJT AAy = AH and
AA3z = AM. If A is finite, then the results follows from Corollary 7.

If A = oo, then by (91) we have @jul Juz = azufl Ju;. Since ajaz = 0, ull Juz # 0 and
ull Ju; # 0 we have oy = a3 = 0. Hence from Corollary 7 we get 1/A = O(e?). [

For multiple eigenvalues the result is as follows.

Theorem 23 Let H— A(JMHJT)M be a regular Hamiltonian /skew- Hamiltonian pencil and
let X be an eigenvalue of algebraic multiplicity m with a complete set of eigenvectors. Let
(U1,Ua,Us) be unitary satisfying (90) and consider perturbed matrices H = H + AH with
M = M + AM with AH Hamiltonian and e := ||(AH, AM)| sufficiently small. Then for
the associated eigenvalues A of the perturbed problem we obtain the following bounds.

a) If ) is purely imaginary then

A=A < min{|(UfT00)'C T ECTY,
(U TU) P E,C5 Y|, |(UF JUs) O ECT B, |} + O(€2),

where E, = N(UH(AM) JU,C3 + CHUE JAMU3) — UH JAHUS.
b) If A = oo, then

[a——y

< min{| (U1 JUW) ™ Eco|, | (U5 TU2) " By Cy |, O3 (UST TUa) T By} + O(€?),

>

where
Ey = CHC;HUF AMY JU, — U TAMUC, 1Oy — CECy BUS JAHUSC, Oy
and Ey = U (AM)E JUC3 + CHUE JAMUES.

c) If Re X # 0 and (V1,V5,V3) represents an orthonormal basis of the right generalized de-

flating subspace corresponding to —\ satisfying (92), then there are m eigenvalues A of
H — ANJMHEJTYM that satisfy

~

A=A

| < min{|(I0) G EC,

[(V5" TU2) B O, (VR TUs) T CT Oy M B} + O(€%),

where E, = VA (AM)E JU,C5 + CHUH JAMU; — 1V JAHU;.
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Proof. If X is purely imaginary the result follows from (58) of Theorem 9 and the properties
of (91) and (90). If A = oo then the bound follows from (61), (91) and the fact that C;C; 'C3 =
Cy'C5C, = C3C1C5 ! = 0. If Re A # 0 the bound again follows from (58), (93) and (92). O

Note that in Theorem 23 the matrix E, has skew-Hermitian and Hermitian parts which
are composed by AM and AH, respectively. Furthermore E., is Hermitian and FEj is skew-
Hermitian.

4 Conclusion

We have analyzed the perturbation theory for generalized deflating subspaces and eigenval-
ues of a formal matrix product. The perturbation bounds can be used to estimate the errors
of the generalized deflating subspaces and eigenvalues when they are computed by the pe-
riodic QR or QZ algorithm. As an application we have studied the perturbation theory for
Hamiltonian/skew-Hamiltonian pencils. The symmetry structure of the matrices then leads
to a symmetry structure in the perturbation results and hence sharper perturbation bounds.
Although we have presented all results for complex matrices, it should be noted that similar
results hold for real pencils.
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