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A LEVEL SET TOOLBOX INCLUDING REINITIALIZATION

AND MASS CORRECTION ALGORITHMS FOR FENICS

M. JAHN AND T. KLOCK

Abstract. In this article, an overview of the level set method is given and a
toolbox for the numerical solution of level set problems is presented. Mainly

based on the work of [8], we mention various aspects of the level set method

including discretization and stabilization aspects, as well as the reinitializa-
tion of the level set function. Additionally, global and local mass resp. volume

correction approaches adapted from [8] respectively [16] are presented for main-

taining the level set function during its evolution in time. All described models
and methods are implemented into a toolbox for the FEniCS framework [14].

1. Introduction

Many engineering processes include time dependent movements of discontinu-
ities, e.g. a solid-liquid interface in melting and solidification processes or a surface
within a two-phase flow. For the modeling and simulation of such a process, a
representation of the discontinuity is needed.

There are many approaches available to characterize discontinuities mathemat-
ically, however, a very popular choice is the level set method introduced by Osher
and Sethian [19]. The basic idea of the level set method is to represent a time de-
pendent discontinuity implicitly by the zero level set of a continuous scalar function
whose evolution in time is described by a transport equation.

Unfortunately, solving the level set equation numerically using standard finite
elements may cause degeneration of the function’s gradient and lack of mass resp.
volume conservation. Therefore, a need for methods preserving these properties
arises, i.e. the level set function has to be reinitialized and the mass resp. volume
enclosed by a level set has to be corrected. In connection with maintaining the
function, the construction of a discrete representation of the discontinuity has to
be considered.

In this article, a level set toolbox including reinitialization and mass conserving
methods for the finite element framework FEniCS [14] is presented. Started in
2003, the idea of the FEniCS Project is to automate the solution of mathematical
models based on PDEs. By using different software libraries that are integrated
into one package, the user can specify a PDE-based problem in weak form and
FEniCS generates the code automatically. Using this automated code generation
approach, the numerical simulation of different physical processes and engineering
applications can be easily implemented.

This article is organized as the following: In Section 2, a short introduction to
the level set method including comments on the derivation of the weak formulation
of the level set problem is given. Section 3 deals with the discretization and sta-
bilization of the level set equation. Following [8], a discrete representation of the
discontinuity is derived and a reinitialization technique is presented. To conserve
mass during the evolution of the level set function, the approaches of global [8] and
local [16] mass resp. volume correction are presented. Aspects of the implementa-
tion of the level set toolbox in FEniCS are given in detail in Section 4 and numerical
results are shown in Section 5.
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a) b)

Figure 2.1. Visualization of the idea of the level sets method us-
ing a scalar function ϕ: a) Domains Ω+(t) and Ω−(t) are separated
by the zero level set Γ(t) of ϕ. b) Visualization of some level sets
of ϕ.

2. The level set method: Review

2.1. Background. The basic idea of the level set method is to define a continuous
scalar function ϕ : Ω × [t0, tf ] → R on a given domain Ω ⊂ Rd, d = 2, 3, whereas
the zero level set of ϕ

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0}, t ∈ [t0, tf ],

represents a time dependent discontinuity, for example an interface, in an implicit
way. By using the sign of ϕ = ϕ(·, t), the hold-all domain Ω can be divided into
the subdomains

Ω(t) = Ω+(t) ∪ Ω−(t) ∪ Γ(t),

with x ∈ Ω+(t) ⇔ ϕ(x, t) > 0 and x ∈ Ω−(t) ⇔ ϕ(x, t) < 0. An exemplary sketch
of a 2D situation where a hold-all domain Ω is divided by the sign of the function
ϕ into subdomains Ω+(t) resp. Ω−(t) is given in Fig. 2.1a and some level sets of ϕ
are indicated in Fig. 2.1b.

In regards to geometrical properties, the level set method allows for an easy
computation of the normal ~n to Γ

~n =
∇ϕ
||∇ϕ||

,

and the curvature of Γ reads as

κ = −div~n = −div
∇ϕ
||∇ϕ||

.

These properties are useful in many applications, e.g. if considering two-phase flow
including surface tension on the interface or the two-phase Stefan problem.

There are various functions ϕ which can be defined and used within the level set
method, however, from a numerical point of view it is important, e.g. for a stable
computation of ~n and κ, that the gradient ||∇ϕ|| does neither vanish nor become
too big. Due to this, literature suggest to use a so called signed distance function,
i.e.

ϕ(x, t) =


− min
y∈Γ(t)

||x− y||2, if x ∈ Ω−(t)

min
y∈Γ(t)

||x− y||2, if x ∈ Ω+(t)
,

which satisfies ||∇ϕ|| = 1. This condition is important from a numerical point of
view, as it guarantees a stable computation of ~n and κ.
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Following [8], a transport equation for the function ϕ can be derived, if we
consider the movement of a particle X(t) in a sufficiently smooth and divergence
free velocity field ~u = ~u(x, t) that is given by

d

dt
X(t) = ~u(x, t), t ∈ [t0, tf ].(2.1)

We want the values of the level set function ϕ(x, t) to be constant for the particle
X(t), t ∈ [t0, tf ] and therefore define

ϕ(X(t), t) = ϕ(X(t0), t0) = const(2.2)

Total differentiation leads to the transport equation

ϕt + ~u · ∇ϕ = 0,(2.3)

which describes the evolution respectively the motion of the discontinuity Γ in time.
To get a proper problem formulation of the level set problem, initial and bound-

ary conditions have to be defined. For t0 let ϕ0(x) = ϕ(x, t0) be a sufficiently
smooth function, e.g. a signed distance function, with the zero level set Γ(t0).
Additionally, we define an inflow boundary

∂Ωin(t) = {x ∈ ∂Ω : ~u(x, t) · ~n(x) < 0}(2.4)

and a continuous function ϕD : ∂Ω × [t0, tf ] → R. The level set problem in strong
formulation is then given by:
Find ϕ(x, t) ∈ C1(Ω× [t0, tf ]) ∩ C0(Ω̄× [t0, tf ]), s.t.

(2.5)

ϕt + ~u · ∇ϕ = 0 in Ω× [t0, tf ],

ϕ(x, t0) = ϕ0(x) in Ω,

ϕ(x, t) = ϕD(x, t) on ∂Ωin(t)× [t0, tf ].

2.2. Weak formulation. To get a weak formulation of the level set problem (2.5),
we define the time dependent function space

Vu,D = {v ∈ L2(Ω) : u · ∇v ∈ L2(Ω) ∧ v|∂Ωin
= ϕD}.(2.6)

By multiplying (2.3) with an arbitrary test function v ∈ L2(Ω) and integrating
over Ω, we get the weak formulation of the level set problem (2.5):
For t ∈ [t0, tf ] find ϕ(·, t) ∈ Vu,D with ϕt ∈ L2(Ω) s.t. ϕ(·, t0) = ϕ0 and

(ϕt, v)L2 + (~u · ∇ϕ, v)L2 = 0, ∀v ∈ L2(Ω).(2.7)

3. Numerical method

3.1. Discretization.

3.1.1. Discretization in space. Let {Sh}h>0 be a family of shape regular triangu-
lations consisting of d-simplices with d denoting the dimension and h is the max-
imum diameter h = maxS∈Sh diam(S). For simplicity, we restrict ourselves to
quasi-uniform triangulations Sh. For each triangulation we define the standard
Lagrangian finite element space

V kh = {vh ∈ C(Ω) : vh|S ∈ Pk, ∀S ∈ Sh},(3.1)

and for functions with Dirichlet boundary conditions we introduce

V kh,D = {vh ∈ C(Ω) : vh|S ∈ Pk, ∀S ∈ Sh, v(x) = ϕD(x), ∀x ∈ ∂Ωin,h},(3.2)
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with k ≥ 1 and ∂Ωin,h being the discrete influx boundary. Using this function
spaces, (2.7) discretized in space reads: For t ∈ [t0, tf ] find ϕ(·, t) ∈ V kh,D with

~u · ∇ϕh ∈ L2(Ω) such that∑
S∈Sh

(
∂ϕh
∂t

+ ~u · ∇ϕh, vh
)
L2(S)

= 0, ∀vh ∈ Vh.(3.3)

In many applications, e.g. multi-phase flow, the polynomial degree k = 2 is cho-
sen for the finite-dimensional function space (3.2). This is due to different reasons,
for example the quality of the curvature approximation of the level set function
containing second derivatives, as pointed out in [8]. Moreover, using quadratic ba-
sis functions has the additional advantage that the degrees of freedom coincide the
the degrees of freedom of linear basis functions on a regularly refined mesh. This
will be extensively exploited for characterizing the interface Γ discretely and by the
reinitialization technique.

3.1.2. Discretization in time. For time discretization, a θ−scheme is used here. We
discretize the interval [t0, tf ] by N + 1 time steps tn = t0 +n∆t, n = 0, . . . , N with
∆t denoting the time step. Let θ ∈ [0, 1] be a parameter and ϕnh(·) ≈ ϕ(·, tn) be an
approximation of the level set function ϕ at time tn. The completely discretized
level set problem reads∑

S∈Sh

(
ϕn+1
h − ϕnh

∆t
+ θ~un+1∇ϕn+1

h + (1− θ)~un∇ϕnh, vh
)
L2(S)

= 0,(3.4)

for all vh ∈ Vh. Note that θ = 0 leads to the explicit Euler-scheme while θ = 1
results in the implicit Euler-scheme.

3.2. Stabilization. It is well known, that solving hyperbolic PDEs with standard
finite element methods can be instable, especially for high velocities ~u. An approach
to overcome this issue is using a stabilization method [21] to slightly reformulate
the discretized problem to enforce stability. A method well known in literature is
the Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization [5].

As proposed in [8], special test functions ṽh ∈ L2(Ω) of the form

ṽh|S := vh + δS~u · ∇vh, S ∈ Sh, vh ∈ Vh

are used in eq. (3.3) for stabilization, where δS ∈ [0, 1] is a parameter. Then, the
fully discretized and stabilized weak formulation of (2.3) is given by

∑
S∈Sh

(
ϕn+1
h − ϕnh

∆t
+ θ~un+1∇ϕn+1

h + (1− θ)~un∇ϕnh, vh + δS~u · ∇vh
)
L2(S)

= 0,

(3.5)

for all test functions vh ∈ Vh.
In literature, it is suggested to use a δS that depends on the velocity ~u and the

diameter of the simplex hS = diam(S), for S ∈ Sh,

δS = c
hS

max{δ0, ||u||∞,S}
,(3.6)

with 0 < δ0 � 1 and c ∈ [0, 1]. Note, if we choose c = 0, then no stabilization is
applied and we get eq. (3.3) resp. eq. (3.4).
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Figure 3.1. Construction of the discrete representation Γh of a
interface Γ

3.3. Representation of Γh. For the computation, a discrete representation of Γ is
needed. In this paper, we follow the approach of [8] and approximate the interface
linearly on a refined triangulation.

For tn = t0 +n∆t, n = 0, . . . , N , let ϕh(·, tn) ∈ V 2
h be the finite element approx-

imation of the level set function ϕ, Γ̃h its zero level, and

SΓ
h :=

{
S ∈ Sh : measd−1(S ∩ Γ̃h) > 0

}
(3.7)

the set of d-simplices containing Γ̃h. We drop the time tn as an argument in this
paragraph in our notation for simplicity and define SΓ

h/2 as the set consisting of all

d-simplices that are obtained, if the elements in SΓ
h are regularly refined.

The finite element approximation ϕh of ϕ is then linearly interpolated by Iϕh
on the patch of refined elements S ∈ SΓ

h/2 and the discrete approximation of Γ is

given by

Γh := {x ∈ Ω : Iϕh(x) = 0} ,(3.8)

as shown in Fig. 3.1. A detailed investigation about the approximation quality and
the discretization error of this discrete interface representation is given in [8].

While a high order approximation of the interface Γ is possible, cf. [6], using
the presented approach to get a discrete representation Γh has several advantages.
First of all, the degrees of freedom (DOFs) of ϕh and Iϕh coincide due to the
choice of ϕh ∈ V 2

h , allowing for a fast interpolation. More important, the segments
of S ∩ Γh, S ∈ Sh/2 are straight resp. planar which makes the computation of
intersection points very easy. This fact is heavily utilized during the computation
of the distances in the reinitialization method presented in the following section.
Another advantage of this approach is that the discrete counterparts

Ω−h := Ω−h (ϕh) = {x ∈ Ω : Iϕh(x, tn) < 0}(3.9)

resp.

Ω+
h := Ω+

h (ϕh) = {x ∈ Ω : Iϕh(x, tn) > 0}(3.10)

at time tn = t0 + n∆t, n = 0, . . . , N , can be easily (re-) constructed.

3.4. Reinitialization. We assume that our level set function ϕ is a signed distance
function whose finite element approximation is given by ϕh ∈ V 2

h . During the
evolution of the level set function ϕ and its discrete counterpart ϕh in time, the
signed distance property may be lost due to variations of ~u, discretization errors,
insufficient approximation of the curvature and topological changes [23]. In order
to regain the signed distance property, a so called reinitialization ϕ̃h of the level
function ϕh is required whose zero level is (approximately) the same as the zero
level of ϕh and which satisfies the condition ||∇ϕ̃h|| ≈ 1.
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There are many reinitialization methods known in literature [10], however, in
this article, we cite the variant of [8] of the Fast Marching Method [22], which is
only applicable to linear functions.

3.4.1. Fast Marching Method. Given a triangulation Sh and a level set function
ϕh ∈ V 2

h , we compute the linear interpolation Iϕh of ϕh on the regularly refined
triangulation Sh/2, cf. Section 3.3. Let D(S) denote the set of degrees of freedom
(DOFs) that are given on a simplex S ∈ Sh/2 and D := D(Sh/2) is the (discrete)
set of all DOFs on the discretized domain.

The patch of elements related to a DOF v ∈ D(S), S ∈ Sh/2 is given by

P(v) := {S ∈ Sh/2 : v ∈ D(S)}(3.11)

and the set of (direct) neighbors to v ∈ D(S), i.e. all w ∈ D that are connected to
v via an edge of a d-simplex, is defined by

DP(v) =

 ⋃
S∈P(v)

D(S)

 \ {v}.(3.12)

Please note that since we have linear basis functions, the degrees of freedom
within an element S ∈ Sh/2 can be identified with its vertices. Therefore, we
simplify the notation and use both meanings synonymously.

Initialization phase: Firstly, all degrees of freedom resp. vertices of intersected
elements are considered, i.e. v ∈ DΓ := {v ∈ D(S) : S ∈ SΓ

h/2}, where SΓ
h/2

denotes the d-simplices containing the interface Γh, cf. equation (3.7). A geo-
metrical approach and standard linear algebra are used to compute the distance
between v ∈ D(S) ⊂ DΓ and the straight (2D) resp. planar (3D) interface segments
Γh,S = S ∩ Γh. The computed distances are then used to set the values of a
distance function d : DΓ → R. This function d is now extended to the remaining
DOFs resp. vertices v ∈ D \ DΓ in an iteration phase.

Iteration phase: We denote the set of finished DOFs resp. vertices, i.e. v ∈ D for
which the function d has already be defined, by DF. Obviously, DF = DΓ after the
initialization phase is completed. The corresponding patch is shown in Fig. 3.2.
Now, the set of active DOFs resp. vertices is defined by

A := {v ∈ D \ DF : DP(v) ∩ DF 6= ∅}.(3.13)

Using this set, the iteration phase is as follows: For each v ∈ A, a temporary
approximated distance function d̃(v) is computed by

(3.14) d̃(v) = min{d̃S(v) : S ∈ P(v) with D(S) ∩ DF 6= ∅},

Figure 3.2. Sketch of all v ∈ DΓ and their neighbors w ∈ DP(v)
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where the value d̃S(v) is calculated by

(3.15) d̃S(v) =

{
d(w) + ‖v − w‖, for D(S) ∩ DF = {w},
d(PW (v)) + ‖v − PW v‖, for D(S) ∩ DF = {wi, i = 2 or 3}

with PW as the orthogonal projection of v on the line W := conv(w1, w2) resp. on
the triangle W := conv(w1, w2, w3) for D(S)∩DF = {w1, w2} resp. D(S)∩DF =
{w1, w2, w3}. The value d(PW (v)) is therefore interpolated from the already
calculated values d(wi) by using the barycentric coordinates of PW (v) on the line
and triangle, respectively.

Afterwards, the DOF resp. vertex v0 ∈ A with

d̃(v0) = min
v∈A

d̃(v)(3.16)

is added to the finalized set DF and the active set A, the patches P(v), v ∈ D as
well as the set of direct neighbors DP(v) are updated accordingly. Furthermore,

the temporary function d̃(v) has to be re-computed for the new setting. This loop
is performed until A = ∅.

After completing the iteration phase, the (linear) distance function d(v) ≈ |Iϕh|
is defined for all v ∈ D and a reinitialized linear level set function, approximating a
signed distance function on Sh/2 , is given by Iϕ̃h := d · sign(Iϕh). Using the values
of the function, a piecewise quadratic function ϕ̃h is then defined on Sh, which is
our new reinitialized level set function.

In practice, it turns out that this variant of the Fast Marching Method is more
stable and leads to better results, if we do not use the patch P(v) but the extended
patch Pext(v) considering also all second neighbor cells S of v in eq. (3.14) and eq.
(3.15).

3.5. Mass conservation. For a divergence-free velocity field ~u(x, t), the mass in
each subdomain Ω+(t) and Ω−(t) is conserved for all t ∈ [t0, tf ] from an analytical
point of view. However, this is not necessarily true for the discretized subdomains
Ω−h (tn) resp. Ω+

h (tn), tn = t0 +n∆t, n = 0, . . . , N , that are obtained by solving the
discretized level set problem in stabilized form using the discrete representation of
Γh, cf. Section 3.3.

As analyzed in [20], the loss of mass will decrease only with decreasing mesh
size h and for smaller time steps ∆t since ϕh and resp. Iϕh converges to ϕ. Since
reinitialization methods as the one presented 3.4 are also not mass conserving, an
approach to enforce this property is advisable. For simplicity, we here assume
that no phase transitions occur and that the subdomains separated by the level set
function do not mix. Thus, the mass of each phase should be constant. Moreover, by
using the notation old resp. new, we indicate that Iϕold

h and Iϕnew
h can be the level

set function at different time steps or the functions before and after reinitialization.
Due to this, the time as argument is dropped as in the sections before.

We adapt two mass conserving strategies, which are based on a global and a
local consideration of elements. Both mass correction methods take advantage of
the signed distance property of the level set function by shifting the zero level set
using a function ψh(·, t) ∈ V 1

h/2 such that1

∆V −h = V −h (Iϕold
h )− V −h (Iϕh) = 0(3.17)

holds, with

Iϕh := Iϕnew
h + ψh(3.18)

1Instead of V −
h (Iϕold

h ) we could also write V −
h (Iϕ(·, t0) due to our simplifying assumptions

that no phase transitions occurs and the subdomains do not mix.
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and V −h (φ) is defined for a φh ∈ V kh/2 by

V −h (φh) := V −h (φh(·, t)) =

∫
{x∈Ω:φh(x,t)<0}

1dV, t ∈ [t0, tf ].(3.19)

Please note that if (3.17) is true, the same applies to ∆V +
h since we have

V +
h (Iϕh) = Vh − V −h (Iϕh).(3.20)

Equation (3.17) describes a non-linear problem which has to be solved by an
iterative approach. From a numerical point of view, it is important to compute
the solution using as few iteration steps and function evaluations as possible. In
this paper, we use the Anderson/Björck variant [3] of the regula falsi method, see
Section 4.3.3 for details.

In the following paragraphs, we describe the mass correction methods for the
reinitialization step. Therefore, we can omit the time variable. Please note that
correcting the mass defect resulting from time evolution (and without reinitializa-
tion) can easily be adapted.

3.5.1. Global approach for mass conservation. A simple approach for correcting the
mass defect is based on using a globally constant function ψh := ψconst

h ∈ P0(Ωh),
ψconst
h (x) = ε, ∀x ∈ Ωh in (3.17). Thereby, the value ε can be obtained by finding

the root of the non-linear equation

Z(ε) := V −h (Iϕold
h (·))− V −h (Iϕnew

h (·) + ε) = 0(3.21)

by using the previously mentioned regula falsi method.
Due to the fact that the level set function is shifted globally by ε, the corre-

sponding function ψconst
h can be added to Iϕnew. Furthermore, this method is

independent from a reinitialization process and does not alter the gradient. There-
fore, if using a reinitialization technique, the mass correction can be computed after
the level set function is reinitialized.

3.5.2. Local approach for mass conservation. A more complex method to conserve
mass in the level set method, also utilizing the signed distance property, is adapted
from [16]. In contrast to the global method, this approach is based on considering
the mass defects on all elements S ∈ SΓ

h/2, i.e. all elements intersected by Γh,

individually. For these elements, the non-linear equation

ZS(εS) : = V −h,S(Iϕold
h (·))− V −h,S(Iϕnew

h (·) + εS) = 0,(3.22)

with

V −h,S(Iϕh) =

∫
Ω−

h ∩S
1dV,(3.23)

is solved using the same Anderson/Björck variant of the regula falsi method as
in the global mass conservation approach. Using the values εS ∈ R, a piecewise
constant function ψ̃h ∈ P0(S), S ∈ SΓ

h/2, that is discontinuous across element

boundaries is defined by ψ̃h(S) = εS .

Since ψ̃h(S) is a discontinuous function, we cannot add ψ̃h to the level set func-

tion Iϕnew
h . Instead, we first define a function

˜̃
ψh ∈ V 1

h/2, cf. (3.2), that is piecewise

linear on S ∈ SΓ
h/2 and continuous on Ωh. For this purpose, we compute the average

µ of the correction value εS of each DOF v ∈ DΓ by

µ(v) =
1

|S ∈ PΓ(v)|
∑

S∈PΓ(v)

εS ,(3.24)
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where |S ∈ PΓ(v)| is the number of elements of the patch

PΓ(v) := {S ∈ SΓ
h/2 : v ∈ DΓ(S)},

and define

˜̃
ψh(v) =

{
µ(v), for v ∈ DΓ

0, for v /∈ DΓ
.(3.25)

Now, we solve the non-linear problem for a constant C ∈ R such that

Z(C) : = V −h (Iϕold
h (·))− V −h (Iϕnew

h (·) + C · ˜̃
ψh) = 0,(3.26)

by using the regula falsi method again and, finally, define the correction function

ψh = C · ˜̃
ψh,(3.27)

so that Iϕh = Iϕnew
h + ψh is the new, mass conserving, level set function.

Similar to our observations in regards to the reinitialization method, the local
mass correction approach is more stable, if the average µ(v) is computed considering
more elements. Therefore, we use the extended patch PΓ

ext(v) instead of PΓ(v) in
eq. (3.24).

Note, that (3.24) alters the gradient of ϕh and we may have ||∇ϕh|| 6≈ 1.
Consequently, this mass conservation method should be integrated into the reini-
tialization, more precisely, between initialization and iteration phase so that instead

of d̂ we use d̂ε in the iteration phase.

4. Implementation

The previously discussed methods for solving level set problems with or with-
out using the streamline diffusion stabilization technique numerically have been
implemented as a toolbox into the FEniCS framework [14].

4.1. FEniCS. The FEniCS-Project is a collaborative project of researchers who
develop tools for automated scientific computing, especially in the field of finite
element methods for the solution of partial differential equations [14]. It consists
of a collection of core components such as

(1) the Unified Form Language UFL [2], which is a domain-specific language to
specify finite element discretizations of differential equations using varia-
tional formulations.

(2) the FEniCS Form Compiler FFC [12, 18], which analyzes given UFL code
and, in combination with Instant and FIAT [11], generates UFC [1] code
for arbitrary finite elements on simplices based on the variational forms
specified in the UFL file

(3) DOLFIN [15], the main problem solving environment and user interface
whose functionality integrates the other FEniCS components and handles
communication with external libraries.

There are various articles describing the different modules and extensions of FEniCS,
e.g. Unicorn [9], a massively parallel adaptive finite element solver for problems in
the field of fluid and structure mechanics, or dolfin-adjoint [7], that facilitate the
automated development of reliable adjoint models which can be used in optimization
methods for problems with PDE constraints.

4.2. Design principles. The level set toolbox consists of different form files and
classes that are implemented into the FEniCS framework. Basically the implemen-
tation can be divided into three parts, cf. Fig. 4.1.
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Figure 4.1. Implementation structure: Form (header) files, ob-
ject classes and utility functions

Form files. Using the UFL syntax, the stabilized level set problem2, cf. eq. (3.5),
is formulated in the files LevelSetEquation2D.ufl and LevelSetEquation3D.ufl

for two resp. three dimensions. After running the FFC compiler on these files, the
corresponding C++ header files are automatically generated, containing most of
the problem specific data and therefore being the basis to solving the transport
equation.

Object class. The classes LevelSetCalculator2D and LevelSetCalculator3D con-
tain dimension depending constructors that create the object and routines for solv-
ing the transport equation named updateLevelSetFunction. Therefore, the previ-
ously mentioned Form files are included providing the level set specific background,
e.g. the bilinear form a and the linear form L. Furthermore, the basics of the
re-distancing method are implemented here, which rely mostly on dimension in-
dependent algorithms that are specified in the LevelSetCalculatorUtils. Due
to their dimension dependence, the reinitialization and mass conservation are in-
tegrated in the update-routine. Parameters like the frequency of reinitializing the
level set function are passed to the methods using a list. The default variant is
to perform a reinitialization step and the local mass conservation procedure after
every time step.

Utility class. Aside from the automatically generated problem header files, most
implementation aspects are covered in the utility class LevelSetCalculatorUtils
which consists of various static methods, i.e. methods that do not belonging to any
object. In detail, this class contains a routine implementing the iteration phase of
the reinitialization approach, mass conservation methods and some helper functions.
In this paragraph, we want to present the helper methods briefly:

hasSignSwitchOnCell: A method to check whether the zero level set Γh
intersects the cell. It can be easily done by checking for sign switches of
the level set DOFs corresponding to the cell.
build IntersectedNeighborPatch: A method to build the patch consist-
ing of the first and second neighbors of any cell (input parameter), which
are intersected by Γh.
find PlanarLevelsetSegment: This method is used to calculate the in-
tersection points given by the zero level set Γh and the edges of any given
cell (input data).
determine NodeToLineDistance: This is used to calculate distances be-
tween a given point and a finite line, which is given by the endpoints of the
line. Additionally it stores the barycentric coordinates to the orthogonal
projection of the vertex on the line.
determine NodeToTriangleDistance: Same as above, only with a trian-
gle given by three corner points instead of the finite line.

4.3. Level set toolbox. For using the level set toolbox, the user has to create
an object of the type LevelSetCalculator2D or LevelSetCalculator3D in his

2Note that by setting δ = 0, the unstabilized problem can be reconstructed.
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Algorithm 1 Using the Levelset Toolbox

[...] // Initialization etc.
// Creating and extending the parameters structure: Since all methods are
// hidden within the object class, the reinitialization frequency, the volume
// correction method etc. are added and defined within the parameters structure.
dolfin::Parameters parameters; parameters.add("foo", foo);

// Creating an object of type LevelSetCalculatorXD

LevelSetCalculatorXD lc(mesh, ~u(x, t), ϕh(t0), parameters);

// Update LevelSetCalculatorXD lc object based on the specified parameters.
lc.updateLevelSetFunction();
[...]

code, depending on the geometrical dimension. This is done by calling the class
constructor with the input data

(1) a triangulation Sh,
(2) the (initial) velocity field ~u(x, t),
(3) an initial function ϕh ∈ V 2

h ,
(4) a parameter list including e.g.. the time stepping scheme, the stabilization

parameter, and the reinitialization method as well as its frequency
(5) optional: an influx boundary ∂Ωin(t) and its boundary condition,

as shown in Algorithm 1.

4.3.1. Solving the level set equation. After creating the object, the next evolution
step of the level set function resp. the surface can be computed by calling the
updateLevelSetFunction member function without any input. The routine uses
the data provided by the object and solves the level set problem with DOLFIN-
methods. Due to the fact that the level set function is given by a reference to
the calculator object, the user automatically gets access to the updated level set
function.

4.3.2. Reinitialization of the level set function. When creating an object of the
type LevelSetCalculator2D resp. LevelSetCalculator3D, the triangulation Sh
is regularly refined and the piecewise quadratic level set function ϕh is linearly
interpolated by Iϕh on the generated triangulation Sh/2. Note that the degrees

of freedom of the linear approximation Iϕh coincide with the DOFs of ϕh on SΓ
h

which allows for a fast and efficient interpolation.
For Iϕh, the reinitialization method described in Section 3.4 is separated into an

initialization phase and an iteration phase3. Basically, the implementation of the
reinitialization method uses three containers:

(1) DΓ, the set of DOFs belonging to elements S ∈ Sh/2 intersected by the
interface Γh. In the code DΓ is realized as a vector of booleans.

(2) DF , the set of DOFs whose distance to Γh have already been computed.
Like DΓ it is realized as a vector of booleans.

(3) A, a set of active DOFs for which a temporary distance d̃ is computed.

For a practical point of view, one has to consider that the initialization phase
depends heavily on the geometrical dimension and, consequently, is implemented
as a private function within in the object class. The principal algorithm for the
3D situation is shown in Algorithm 2. In contrast to the initialization phase, the
iteration phase can be implemented almost independently from the dimension in
the utility class.

3If a local mass conservation algorithm shall be applied, this would be called after the initial-
ization phase with the d(v)-values as an input, c.f. 4.3.3.
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Algorithm 2 Fast marching method: initialization phase (3D)

Require: Refined mesh Sh/2, linear level set function Iϕh.

Set up containers DF = DΓ (false as default) and d (−1 as default) for the finished
DOFs and the d-values.

Initialize the set DF of finished DOFs:
for S ∈ Sh/2 do

if hasSignSwitchOnCell(S) == true then
for v ∈ D(S) do

Mark DOF v as true in DF .

Calculate the distance to the (linear) zero level set Γh for every v ∈ DF :
for v ∈ D do

if DF (v) == true then
Build the intersected neighbor patch and store the cells in N (by using
build IntersectedNeighborPatch).
while N 6= do

Take the first cell from N and store it to S. Calculate the intersected zero
level set Γh(S) and store it into a vector of points called V.
if |V| == 2 then

Use determine NodeToLineDistance to calculate the distance of v to
the line given by the two nodes and store it in dtemp.

if |V| == 3 then
Use determine NodeToTriangleDistance to calculate the distance of v
to the line given by the two nodes and store it in dtemp.

if |V| == 4 then
Separate the quadrilateral into two triangles and calculate the distance
to both. Set the smaller one as dtemp.

if d(v) = −1 (default value) or dtemp < d(v) then
d(v) = dtemp.

Erase S from the patch N .

return d(v) for every v ∈ DΓ(S), S ∈ SΓ
h/2.

For the computation of the temporary values d̃(v), the method called calculate-

DistanceMethod is implemented as shown in Algorithm 3. However, to account for
the permanently changing values d̃ in an efficient way, we save the DOFs, which
are neighbors of the current processed DOF v and only recalculate the d̃-value for
this DOFs. Every other d̃-value cannot be influenced by adding v to the finished
set. The re-computation of the whole active set increases the calculation time a lot.
Additionally, we want to point out, that a c++ multimap with a double as the key
and a unsigned int as the value is a good way to implement an ordered active set
A because the DOF with minimal d̃-value is always at position 0. The complete
iteration phase is presented as pseudo code in Algorithm 4.

4.3.3. Volume/mass conservation. The mass correction methods presented in this
paper take advantage of the signed distance property and are based on the com-
putation of the volume of patches of elements. As mentioned in Section 3.5, it
is important to use an efficient method to compute the quantities ε in eq. (3.21)
resp. εS in (3.22). For both methods this is done by using an advanced regula falsi
algorithm that is presented in [3]. The idea of the method is given in Algorithm 5.

Except for this method, the most important routines used in the implemen-
tation of the mass correction methods are calculateLevelSetDifference and



A LEVEL SET TOOLBOX FOR FENICS 13

Algorithm 3 Fast marching method: Algorithm to calculate d̃(v)

Require: A DOF v, the finished set DF and d(v) for v ∈ DF .
Create a container for the return value r = −1.

for S ∈ Pext(v) do

Initialize a temporary container W representing D(S) ∩ DF .
for ṽ in D(S) do

if DF (ṽ) == true then
Save the DOF to W.

if W = {w1} (contains one DOF) then
Save a temporary value dtemp = d(w1) + ‖v − w1‖.

if W = {w1, w2} (contains two DOFs) then
Calculate the distance dist(v,W) of v to the line given by w1

and w2 and the barycentric coordinates of the projection by using
determine NodeToLineDistance. Save a temporary value
dtemp = d(PW (v)) + dist(v,W).

if W = {w1, w2, w3} (contains three DOFs) then
Calculate the distance dist(v,W) of v to the triangle given by w1, w2

and w2 and the barycentric coordinates of the projection by using
determine NodeToTriangleDistance. Save a temporary value dtemp =
d(PW (v)) + dist(v,W).

if dtemp < r or r = −1 (default value) then
Set r = dtemp.

return The d̃(v) value given by the return value r.

calculatePatchVolume. The routine calculateLevelSetDifference is used to
compute the value of the objective functional Z resp. ZS . It relies heavily on the
method calculatePatchVolume that computes the volume V −h ∩ P of a patch of
elements. This patch can be an arbitrary collection of simplices so that the method
can be used for both mass conserving methods. Both routines are implemented in
the utility class LevelSetCalculatorUtils.

Within the local mass correction approach, computing the correction value εS on
a simplex using the presented regula falsi method may result in numerical issues, if
the zero level set is very close to a DOF. Hence, we ignore the adjustment and set εS
to zero in these cases. Please note that different approaches, e.g. transforming the
search for εS into an optimization problem and using a very robust optimizer like
the Nelder-Mead algorithm [17], could solve this problem making the algorithm
much more stable. However, these approaches are much more expensive from a
numerical point of view.

5. Results

The level set toolbox is tested by computing the numerical solutions for different
examples in both, two and three dimensions. For analyzing the quality of the
solutions, the following errors are defined:

(1) The standard L2-error between two functions

(5.1) eL2(f, g) = ‖f − g‖L2(Ω) =

√∫
Ω

|f − g|2 dx,
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Algorithm 4 Fast marching method: iteration phase

Require: The finished set Df after the initialization phase and the corresponding d-
values.

Initialize the active set A:
for every DOF v of the mesh do

if DF (v) is true then
for every DOF n directly connected to v do

Calculate d̃(n) by calling calculateDistanceFunction and save it ordered
to the active set.

while A is not empty do
Store the first DOF of A in v and erase it from A.
Set DF (v) to true and d(v) to d̃(v).
Create a boolean container N with false as default to save direct neighbors of v.

for every direct neighbor n of v do
if n is not in A nor in DF then

Save n to A and with respect to the correct order by calling
calculateDistanceFunction.

else if n is not in DF then
Mark n by adding it to N for the calculation of a possibly new d̃-value.

for every DOF n of the mesh do
if n ∈ N then

Recalculate d̃(n) by calling calculateDistanceFunction.

if d̃(n) has changed then
Erase n from A and reinsert it to restore the right order.

for every DOF v of the mesh do
Set the linearized level set DOF according to Iϕh(v) = sign(ϕh(v))d(v).

Interpolate the linearized level set function Iϕh by the quadratic level set function
ϕh by using the one-to-one DOF relation.

return A reinitialized level set function ϕh

Algorithm 5 Regula falsi method in the Anderson/Björck variant

Require: The objective function f , left and right initial values z1 and z2.
repeat

Calculate fi = f(zi), i ∈ {1, 2}.
Calculate z = z1 − f1 · (f2 − f1)/(z2 − z1) and fz = f(z).
if fz · f2 < 0 then

Set z1 = z2, f1 = f2, z2 = z and f2 = fz.
else

Calculate m according to

m =

{
1− fz/f2 if 1− fz/f2 ≥ 0,

1/2 else.

Set f1 = mf1, z2 = z, f2 = fz and z1 = z1.

until |z1 − z2| < Tolz and |fz| < Tolfz .
return An approximation z to the root of f .

(2) the relative volume error between two functions

(5.2) eVol(f, g) =
|V −(f)− V −(g)|

V −(f)
,
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with

V −(f) =

∫
{x∈Ω:f(x,tn)<0}

1dx.

(3) the maximum euclidean distance error between the zero level set Γg of a
function g to the nearest point of the zero level set Γf of a function f

(5.3) e∞(f, g) = max
x2∈Γg

min
x1∈Γf

‖x1 − x2‖2.

In the following, the function f will always represent the initial signed distance
function to a certain shape Ω(0) or a reference solution, respectively, while g will
always be our numerical computed solution ϕh at t = tf . Thereby, it will be
mentioned, if reinitialization and mass conservation methods are used within the
computation. Please note that all examples are chosen so that ϕh(·, tf ) should
coincide with the original zero level set at t = t0.

5.1. 2D-Example: Deformation flow. On Ω = [0, 1]2 consider a circle centered
at (0.5, 0.75) with a radius of 0.15. The initial level set Γ at t = 0 is given by the
signed distance function ϕ0 to the circle

(5.4) d(x, y) =
√

(x− 0.5)2 + (y − 0.75)2 − 0.15

and a time dependent velocity field u(t, x, y) is given by

(5.5) u(t, x, y) =

(
− sin2(πx) sin(2πy) cos(πt/tf )

sin(2πx) sin2(πy) cos(πt/tf )

)
,

with t ∈ [0, 2]. The characteristic of this example, which has been published by [13]
and is also considered as a benchmark example in [4], is that during the period
0 < t < 1, the circle is deformed and stretched while for 1 < t < 2 a reversal phase
takes place so that at t = 2, the initial shape of a circle is recovered, see Fig. 5.1

Time stepping. Our first test addresses the error introduced by the time discretiza-
tion. Here, we consider the implicit Euler scheme, which means θ = 1 in eq. (3.4),
and the Crank-Nicolson scheme corresponding to θ = 0.5.

Since we are only interested in errors resulting from time discretization, a coarse
uniform mesh with 2 × (10 × 10) elements is chosen. The stabilization parameter
δT is time dependent and computed with (3.6) and c = 0.1. Apart from that, no
other method, e.g. reinitialization or mass conservation methods are used during
this test.

Please note that if no stability, reinitialization and mass conservation methods
are used, the numerical solution computed using the Crank-Nicolson time discretiza-
tion scheme will be the interpolation of d onto the space V 2

h for t = 2 due to the
symmetry of the example. cf. [8]. This analytical result is reproduced if solving

Figure 5.1. 2D Example deformation flow: Reference solution
ϕh(x, t) with ϕh(x, 0) = ϕh(x, 2) at t = 0, t = 0.5, t = 1, t = 1.5
and t = 2.
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∆t Implicit Euler (θ = 1) Crank-Nicolson (θ = 0.5)
20/10 3.25e− 2 6.10e− 3

2−1/10 1.86e− 2 1.54e− 3
2−2/10 1.01e− 2 3.87e− 4
2−3/10 5.36e− 3 9.68e− 5
2−4/10 2.71e− 3 2.42e− 5
2−5/10 1.32e− 3 5.99e− 6
2−6/10 5.92e− 4 1.45e− 6

Table 1. L2-errors ‖dref ( 1
2 tf )−ϕie

h ( 1
2 tf )‖L2(Ωh) and ‖dref ( 1

2 tf )−
ϕcn
h ( 1

2 tf )‖L2(Ωh) for different time step sizes on a mesh consisting
of 2× 10× 10 = 200 elements.

the example with our level set toolbox 4. Therefore, we use the Crank-Nicolson
time discretization scheme without stabilization, reinitialization or mass conserva-
tion methods to compute the reference solution using a very small time step size of
∆t = 2−5/100. This reference solution dref (x, t) is then used for the computation
of the L2-errors and the analysis of the convergence behavior.

The results in Table 1 show that the solution computed with the toolbox con-
verges as one would expect, i.e. it converges linearly, if the implicit Euler scheme
is used, and quadratically, if applying the Crank-Nicolson scheme to the problem.
Additionally, it can be noted that for a fixed time step size, the overall error when
using the Crank-Nicolson scheme is smaller compared to the implicit Euler dis-
cretization.

Stabilization. As mentioned in Section 3.2, the level set problem often has to be
stabilized. On two uniformly constructed meshes with 2 × 40 × 40 = 3200 and
2× 80× 80 = 12800 elements consider problem (3.5) with θ = 1, i.e. implicit Euler
time discretization5. Now, we compare the differences in the L2 norm at t = tf
between our initial signed distance function ϕh(0) = d and the numerical solutions
without applying stabilization ϕ0

h(tf ) and with factor c = 0.5, i.e. ϕ0.5
h (tf ).

As for the constant δ0 of (3.6), we choose δ0 = hS , which is globally constant

given by
√

2/40 resp.
√

2/80 for the used meshes. Aside from this, no additional
algorithms like reinitialization or mass conservation are applied for this scenario.

Examining the results which are given in Table 2, one can see that the influence
of an applied stabilization parameter is very small in this scenario6. Therefore, we
do not use this technique for the other examples. However, please note that the
influence of the stabilization parameter depends highly on the velocity field and the
example.

Reinitialization and mass conservation. The most important aspects of the level
set toolbox are reinitialization and mass conservation. As previously described, the
numerical solution of the level set problem does not preserve the signed distance
property and, moreover, lack mass conservation, especially if reinitialization tech-
niques are used. Additionally it has to be noted that the L2-error of a reinitialized
level set function does not converge to zero for finer meshes. This is due to the

4The L2-error between the interpolation of d onto V 2
h and the calculated ϕh(t = 2) using the

the Crank-Nicolson scheme is within the range of computational accuracy, i.e. smaller than 10−15.
5As mentioned, using the Crank-Nicolson time discretization scheme would only be reasonable

in this scenario for t ∈ [t0,
tf
2

].
6We tested varying the constant c ∈ [0, 2] on several mesh sizes and time step sizes with similar

results
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∆t No stability (c = 0) With stability (c = 0.5)
2× 40× 40 2× 80× 80 2× 40× 40 2× 80× 80

0.1 5.02e− 2 4.13e− 2 5.02e− 2 5.02e− 2
0.05 3.21e− 2 3.21e− 2 3.21e− 2 3.21e− 2

0.025 1.91e− 2 1.91e− 2 1.91e− 2 1.91e− 2
0.01 9.09e− 3 9.09e− 3 9.11e− 3 9.09e− 3

0.005 5.05e− 3 5.05e− 3 5.10e− 3 5.05e− 3
0.0025 2.76e− 3 2.76e− 3 2.87e− 3 2.77e− 3

Table 2. Errors ‖ϕh(0) − ϕ0
h(tf )‖L2 (without stabilization) and

‖ϕh(0) − ϕ0.5
h (tf )‖L2

(with stabilization) with respect to different
time step and mesh sizes.

fact that the fast marching method only guarantees the property ‖∇ϕh‖ ≈ 1 in a
close range to the zero level set while the reinitialized function differs from the real
signed distance function d in the far field. Therefore, we compare the evol and e∞
errors in this section instead of the difference in the L2 norm.

On different meshes with diam h =
√

2/32, . . . ,
√

2/512, we use the Crank-
Nicolson scheme without stabilization, i.e. means θ = 0.5 and δS = 0. The time
step size is ∆t = 0.01 and we will compare the situations where

(1) only reinitialization ( “R“),
(2) reinitialization with global mass conservation (called ”RGM“), and
(3) reinitialization with local mass conservation (called ”RLM“)

methods are used after every time step, which means that the respective method
is used in every single computation step. All results are presented in Table 3
and visualized in Figure 5.2. Exemplary results of all methods on meshes with
2× 32× 32 = 2048 and 2× 64× 64 = 8192 elements are given in Figure 5.3.

According to this test scenario, only using a reinitialization technique without
correcting the mass defect gives the worst results, the case where reinitialization
and local mass conservation methods are used gives in contrast the smallest errors.
If instead of local mass conservation we employ the global strategy, the volume
errors are still very small. However, the drawback of this rather simple approach is
that the shape of the zero level set Γh is also conserved, i.e. the zero level set does
not change its shape as it should do according to the velocity field. This leads to a
higher e∞ error.

In brief, our main conclusions regarding reinitialization and mass correction are:
Firstly with applied reinitialization, mass conservation should be used as well be-
cause the reinitialization has a negative effect on the zero level set reconstruction.

√
2/h R RGM RLM

evol[%] e∞ evol[%] e∞ evol[%] e∞
32 19.14 3.60e− 2 1.77 2.59e− 2 2.28 7.22e− 3
64 4.85 1.05e− 2 0.68 8.02e− 3 0.68 2.21e− 3

128 1.32 3.28e− 3 0.26 2.91e− 3 0.255 1.42e− 3
256 0.39 1.36e− 3 0.12 1.22e− 3 0.12 9.2e− 4
512 0.13 6.55e− 4 6.89e− 2 6.41e− 4 7.26e− 4 5.60e− 4

Table 3. Errors evol(d, ϕh(tf )) and e∞(d, ϕh(tf )) of the reinitial-
ization and mass conservation algorithms with respect to h.
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a) b)

Figure 5.2. Errors evol(d, ϕh(tf )) (a) and e∞(d, ϕh(tf )) (b) of
the reinitialization and mass conservation algorithms with respect
to the number of elements N .

a)

b)

Figure 5.3. Method comparison for meshes with size a)
√

2/32

and b)
√

2/64 for methods ”only reinitialization(R)“, ”reinit. and
global mass correction (RGM)“ and ”reinit and local mass correc-
tion (RLM)“ from left to right.

Secondly it points out the main problem of the global mass conservation, i.e. the
distortion of the zero level. With applied local mass conservation, this effect can
be reduced, especially if a coarse mesh is used.

5.2. 2D-Example: Deforming droplet. The second example considered as a
test scenario describes the movement and deformation of a circle and is adapted
from [8]. For t ∈ [0, 20] let Ω = [0, 1]2 be our domain and ϕ0 be the zero level set
of a circle with midpoint (0.5, 0.25) and radius 0.15. A velocity field is given by

u(t, x, y) =

{
c(x, y) · (ỹ,−x̃), for t ≤ 1

2 tf ,

−c(x, y) · (ỹ,−x̃), for t > 1
2 tf ,

(5.6)

with

c(x, y) =

{
4||(x̃, ỹ)|| (0.5− ||(x̃, ỹ)||), for ||(x̃, ỹ)|| ≤ 0.5,

0, otherwise,

and (x̃, ỹ) = (x− 0.5, y − 0.5). Figure 5.4 shows sketches the process.
In contrast to the extensive study of the previous example, we only analyze the

convergence behavior of the global and the local mass corrections method for N
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Figure 5.4. 2D Example rising deforming droplet: Reference so-
lution ϕh(x, t) with ϕh(x, 0) = ϕh(x, 20) at t = 0, t = 5, t = 10,
t = 15 and t = 20.
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Figure 5.5. Errors evol(d, ϕh(tf )) the global (left) and local
(right) mass conservation algorithms.

varied between 2×24×24 and 2×27×27 and ∆t = 20, 2−1, ..., 2−5. The convergence
behavior of the L2-errors are visualized is Figure 5.5.

As one can see, the error depends mainly on the spatial discretization. This is
to be expected since reinitialization and mass correction is applied after every time
step. Furthermore it can be observed that the error if using the local mass correction
scheme is much smaller compared to the global mass conservation method.

5.3. 3D-Example: Deformation flow. Now, we enhance the example 5.1 and
choose a domain Ω = [0, 1]3 containing a sphere centered at (0.35, 0.35, 0.35) with
a radius of 0.15. The initial condition ϕ0 is given by

(5.7) d(x, y, z) =
√

(x− 0.35)2 + (y − 0.35)2 + (z − 0.35)2 − 0.15.

and the prescribed velocity field is given by

(5.8) u(t, x, y, z) =

2 sin2(πx) sin(2πy) sin(2πz) cos(πt/tf )
− sin(2πx) sin2(πy) sin(2πz) cos(πt/tf )
− sin(2πx) sin(2πy) sin2(πz) cos(πt/tf )


where the time span is again given by [t0, tf ] = [0, 2] with a stretching phase until
t = 1 and a reversal phase from 1 to 2. As before, this example, visualized in Figure
5.6 has been first published in [13] and used as a benchmark scenario in [4].

Just as in the 2D case, the difference between both mass conservation methods
in the relative error evol is rather small. In fact, for higher mesh resolutions, the
error of the global approach seems to be smaller than for the local conservation
scheme. As for the e∞ error, the local mass defect correction approach allows for
a much better approximation of the shape. Exemplary results for t = 2 = tf are
shown in Figure 5.8.

5.4. 3D-Example: Deforming droplet. The last scenario considered in this
paper extends example 5.2 to three dimensions [8]. Let Ω = [0, 1]3, t ∈ [0, 20] and ϕ0
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Figure 5.6. 3D Example deformation flow: Reference solution
ϕh(x, t) with ϕh(x, 0) = ϕh(x, 2) at t = 0, t = 0.25, t = 0.5,
t = 1.0, t = 1.5 and t = 2.0.
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Figure 5.7. Errors evol(d, ϕh(tf )) (a) and e∞(d, ϕh(tf )) (b) of
the reinitialization and mass conservation algorithms with respect
to the number of elements N .

Figure 5.8. 3D Example deformation flow: Reference solution
and numerical solution for mesh sizes 6 × 24 × 24, 6 × 44 × 44
and 6 × 64 × 64 at (t = 2)using reinitialization and local volume
correction.

be the zero level set of a sphere with radius 0.2 which is centered at (0.5, 0.25, 0.5).
The velocity field u(t, x, y, z) is given by

u(t, x, y, z) =

{
c(x, y, z) · (ỹ,−x̃, 0), for t ≤ 1

2 tf ,

−c(x, y, z) · (ỹ,−x̃, 0), for t > 1
2 tf ,

(5.9)

with

c(x, y, z) =

{
4||(x̃, ỹ, z̃)|| (0.5− ||(x̃, ỹ, z̃)||), for ||(x̃, ỹ, z̃)|| ≤ 0.5,

0, otherwise,

and (x̃, ỹ, z̃) = (x − 0.5, y − 0.5, z − 0.5). The movement and deformation of the
droplet in this example is shown for different times in Figure 5.9.
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Figure 5.9. 3D Example rising deforming droplet: Reference so-
lution ϕh(x, t) with ϕh(x, 0) = ϕh(x, 20) at t = 0, t = 5, t = 10,
t = 15 and t = 20.
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Figure 5.10. Errors evol(d, ϕh(tf )) (a) and e∞(d, ϕh(tf )) (b) of
the global mass conservation algorithm with respect to different
time step sizes and the number of elements N .
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Figure 5.11. Errors evol(d, ϕh(tf )) (a) and e∞(d, ϕh(tf )) (b) of
the local mass conservation algorithm with respect to different time
step sizes and the number of elements N .

As one can see in the error plots Figure 5.10 and Figure 5.11, the local mass
conservation approach performs best in both errors. Additionally, it can be observed
that applying reinitialization and mass correction methods in every step may not
be advisable. Instead, a criterion based on the quality of ∇ϕh should be used to
decide whether we should reinitialize our level set function ϕh or continue with the
current one.

6. Conclusions

We have given a brief overview of the level set method and presented approaches
for reinitializing the level set function and correcting the mass defect. Therefore,
we adapted known methods and implemented them into a toolbox for the FEniCS

environment. The toolbox was tested using different scenarios in both, 2D and 3D.
By using this toolbox, a user can easily implement more complicated problems that
base on a level set formulation. In future, this toolbox will be used as foundation
of an XFEM toolbox within the FEniCS framework.
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