

Fakultät Informatik Institut für Angewandte Informatik

Improved Simple Simulation Models for Semiconductor Wafer Factories

Oliver Rose

Research overview

Measurement & Analysis

High-level Production Control Dispatching Simulationbased **Scheduling Simulation** Model **Complex Production System**

Slide 2

Automation of Data Transfer

Semiconductor manufacturing

Test

Back End

Assembly

Flow of material

Fotos: Fullman-Kinetics, Varian, Sematech International

There are still humans involved!

Foto: Sematech International

How do the tools usually look like?

Fotos: Firma Varian

Characteristics of wafer fabs

- Large number of processing steps, typically several hundreds
- Large number of tools of different types: photo equipment, ovens, etching equipment, ion implanters, ...
- Wafer are build up in layers: reentrant flow of material, jobshop-like way of production
- Frequent machine breakdowns (typical availability: 70-90%)
- Auxiliary resources, e.g., reticles (photo masks)
- Batch tools with complex batching criteria
- Sequence dependent setups
- High level of automation
- Operators with different types of skills

Control factors

- Factory load
- Product mix
- Number of machines and operators
- Preventive maintenance policies
- Production planning & control policies:
 - scheduling vs. dispatching,
 - lot release vs. shop-floor control,
 - ...

Operational modeling

- Model components
 - Tool set: type of tool, setups, breakdowns, ...
 - Secondary resources: worker, photo masks, ...
 - Products: lot sizes, arrival patterns, ...
 - Product recipes: lists of operations
 - Material flow control: lot release rules, dispatching rules
- Most tools seen as blackbox
 - Internal behavior of tool not modeled
 - Exception: cluster tools

Important operational questions

Slide 10

- Most appropriate dispatching rule
- Most appropriate lot release rule
- Output prediction
- Cycle time prediction
- Lateness prediction
- Forecast of short-term material flow problems
- Workarounds after random events (breakdown, operator unavailability, ...)
- Effect of product mix changes (surge analysis)
- Practical relevance of schedules (robustness, stability)

No alternative to simulation as a decision support tool!

Motivation for simple models

- Traditionally, only full detail models used for operational planning and control of semiconductor fabs
- Consequences:
 - Long run times of simulation experiments
 - Long run times of scheduling algorithms
 - Too complex to be included in enterprise models for SCM (Supply Chain Management)
- Need for simple fab models

Simple modeling approaches

- Requirements
 - Correct representation of characteristic curve (cycletime-over-utiliziation curve), i.e., typically
 1/(1-utilization) shape
 - Same cycle time distributions as for real fab
 - Mimic typical behavior of fab over time

- Very simple model: cycle time distribution
 - Does not depend on utilization
 - Has infinite capacity

Simple modeling approaches

- Simple queuing system
 - Behavior over time not appropriate
 - In general, shape of characteristic curve problematic

Simple modeling approaches

 Simple queuing system with loop (re-entrant flow of material)

Characteristic curve

Model improvement approach

Make delays load dependent! But how to measure load?

Load measurement

Simply count lots in bottleneck loop!

Load-dependent "loop" delays

Improvement of the char. curve

Cycle time distributions

New approach

- Replace delay component by a single server component with load dependant service times
- Consequence: no more lot passing (overtaking)

Cycle time distributions

Simple model deviations from full one

Conclusions for simple model study

- Seems possible to have it all: mimic fab behavior + characteristic curve + cycle time distribution
- Simple models useful for analyzing and understanding complex production systems
- Not a tool for beginners
- Not appropriate for all problems
- Pitfall of oversimplification
- Simplification must not be the goal but only the method to reach the goal
- Keep the model as simple as possible but not simpler!

Outlook

- Models for real fabs too large and too complex:
 You don't see the forest for the trees!
- Difficulties to formulate all material flow constraints of real systems, but:
 Is it really necessary to consider all details?
- Evolution in semiconductor manufacturing towards "lights out" fab
 - no operators but fully automated
 - even more decisions to be made by production control
- Still a lot of work to do to find
 - Better (useful!!!) models
 - Faster planning procedures

Questions?

