Effects of modelling order policies in production networks by potential functions

Jan Topi Tervo

Bremen Institute of Industrial Technology and Applied Work Science (BIBA) at the University of Bremen Prof. Dr.-Ing. Bernd Scholz-Reiter

January 12th, 2006

Outline

- Introduction
- Modelling
- Introduction of potential function
- Analysis of single node
- Analysis of supply chain
- Summary and outlook

Introduction

- Regarding discontinuities in the processes and generally a non-synchronous flow of material and information in logistic networks, these systems are highly nonlinear
- Several studies found oscillatory and even chaotic behaviour in different models and case studies.
- Most results for supply networks were obtained on linearised dynamic equations
- Focus on the effects of nonlinearities in supply chains
- These nonlinearities give rise to a rich variety of bifurcations

Introduction of potential function

Analysis of single node

Flow oriented model Modelling order policy

Scenario

- Supply chain of k nodes
- Represents storage for one product, with stock size N_i
- No production, only delivery, ordering and stock keeping
- Flow oriented model with inflow and outflow

$$\dot{N}_i = Q_i^{in} - Q_i^{out}$$

Flow oriented model Modelling order policy

Flow oriented model

• The order rate is usually given by an ordering or stock keeping policy with smooth adaptation:

$$\dot{Q}_i^{in} = \frac{1}{\tau_i} \left(\sigma_i F_i(N_i) - Q_i^{in} \right).$$

Both equations form the well known ODE:

$$\ddot{N}_i + rac{1}{ au_i}\dot{N}_i + rac{\sigma_i}{ au_i}F_i(N_i) = -rac{1}{ au_i}Q_i^{out} - \dot{Q}_i^{out}$$

- Function $F_i(N_i)$ represents the stock keeping policy
- Many different functions possible, e.g. forecasting methods

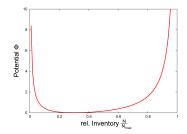
Flow oriented model Modelling order policy

Introduction of Potential function

• In general such a policy can be formulated in terms of a potential function $F = -\frac{d\Phi_i}{dN_i}$

$$\Phi_i(N_i) = \frac{(N_i - N_i^{opt})^2}{(N_i - N_i^{min})(N_i^{max} - N_i)}$$

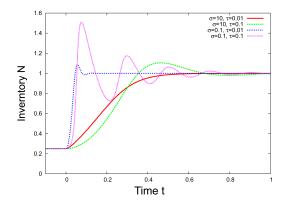
- Corridor policy which tries to hold the stock on a desired level N_i^{opt}
- Prevents the inventory from falling below a minimal level N_i^{min} and exceeding the storage capacity N_i^{max}



Introduction of potential function

Flow oriented model Modelling order policy

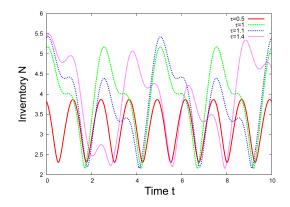
Step function



• Parameters τ and σ can be interpreted as values for stability and flexibility

Period doubling Bifurcation diagrams Arnolds tongue

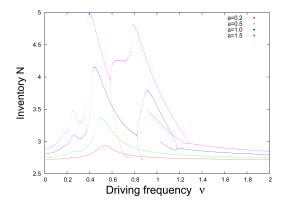
Period doubling



- Simulation of one node with sinusoidal demand and unlimited resources.
- All parameters were kept constant. Only time-constant τ was varied.
 BIBA IPS ÜUniversität Bremen

Period doubling Bifurcation diagrams Arnolds tongue

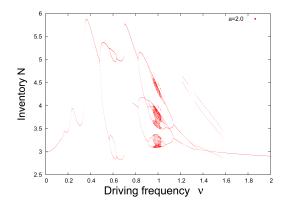
Bifurcation diagram



- All parameters were kept constant. Only driving frquency ν was varied for four different values of amplitude a.
- Typical non-linear behaviour with multiple resonances and period doublings.
 BIBA IPS W Universität Bremen

Period doubling Bifurcation diagrams Arnolds tongue

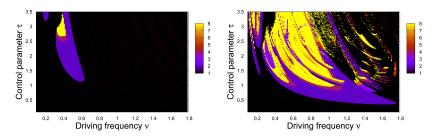
Bifurcation diagram



- All parameters were kept constant. Only driving frquency ν was varied for an amplitude a = 2.0.
- Now, additionally choat-like behaviour and different attractor visible.

Period doubling Bifurcation diagrams Arnolds tongue

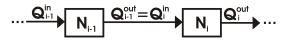
Arnolds tongue



- All parameter were kept constant. Only driving frequency ν and time constant τ were varied for two different values of σ.
- The number of the period relative to the driving frequency is color coded and typical Arnold tongues can be found.

Scenario Dynamics Bullwhip effec

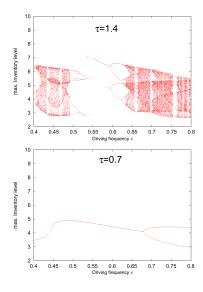
Second scenarion: Supply chain



- Unidirectional coupling: inflow is the outflow of upstream node
- Last node with sinusoidal demand, dynamics do not change
- First node with unlimited resources

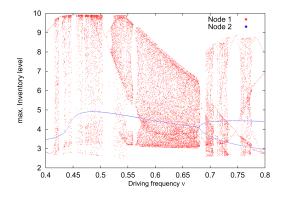
Scenario Dynamics Bullwhip effect

Bifurcation diagrams without coupling



Scenario Dynamics Bullwhip effec

New diagrams after coupling

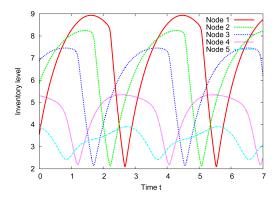


- Node 1: τ = 1.4
- Node 2: τ = 0.7

Dynamics of last node do not change, but of upstream nodes

Scenario Dynamics Bullwhip effect

Bullwhip effect



Amplification of oscillary amplitudes along the supply chain

Summary and outlook

- New approach to model order policies with potential function
- Parameters σ and τ represent flexibility and stability
- Highly nonlinear behaviour
 - Period doublings, up to chaos-like oscillations
 - Multiple resonances
 - Co-existing attractors
- Extension to networks
- Analyis of different topologies, not only chains
- Can also be applied to adaption of production rate
- Bidirectional coupling

Thank you for your attention

Contact

Dipl.-Phys. Jan Topi Tervo

Bremen Institute of Industrial Technology and Applied Work Science (BIBA) at the University of Bremen Prof. Dr.-Ing. Bernd Scholz-Reiter Hochschulring 20 D-28359 Bremen tel: +49 (0)421 218-9792 fax: +49 (0)421 218-5640 email: ter@biba.uni-bremen.de

