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Introduction

Customer Supply chain Manufacturer
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This presentation focuses on manufacturing systems.

Related problems:

• Supply chains

• Parallel calculations

• Multiprocessor embedded systems

• Biological networks
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Background

ẋ = f (x, w)

x(t) ∈ Rn, w(t) ∈ Rm.

Following ideas of Demidovich (1967)

The system is uniformly convergent for a class of inputs W if for every

w(·) ∈ W there is a solution x̄(t, t0, x0) such that

• x̄(t) is bounded on (−∞,+∞)

• x̄(t) is globally uniformly asymptotically stable

Att: x̄(t) is defined on the whole time axis
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Properties of uniformly convergent systems

• x̄(t) is unique (due to uniformity)

• if w(t) is periodic, so is x̄(t)

• a cascade of uniformly convergent systems is uniformly convergent

(due to boundedness assumption); even though each system is quadrat-

ically convergent the cascade is not necessarily quadratically con-

vergent
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A continuous-time model of manufacturing ma-
chines

Customer Supply chain Manufacturer
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Let v(t) be the production speed and y(t) is the cumulative output

ẏ = v

Constraints:

• v(t) ≥ 0

• v(t) ≤ vmax

• in a line: yi−1 ≥ yi, otherwise vi = 0 (the buffer in front of ith ma-

chine should be nonempty)
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Control of manufacturing machines

Problem statement
The output of the system should follow demand yd(t).

• tracking

lim
t→∞

|y(t)− yd(t)| = 0

• approximate tracking

lim sup
t→∞

|y(t)− yd(t)| ≤ ∆

for some “accuracy” ∆ > 0

yd(t) is the current demand

yd(t) = udt + yd0 + r(t)

where 0≤ ud ≤ vmaxand r(t) is the fluctuation on the market
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PI control

v(t) = −kp (y(t)− yd(t))− ki

∫ t

0
(y(s)− yd(s)) ds

If a control contains an integral, there is no static error, i.e. if r(t) ≡ 0

the tracking goal is achieved asymptotically; if r(t) 6= 0 the tracking

properties can be analyzed by linear control theory (Bode plots).

Saturation =⇒ integrator windup
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Problem: more than one “steady state” solutions can co-exist
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Integrator anti-windup
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If the saturation is active, an extra signal prevents from the windup.

What is an anti-windup?

Different problem statements co-exist (finite L2 gain, finite incremental

L2 gain, etc.)

Our focus: the system should be uniformly convergent with (r, w) as an

input.
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Important observation: the original model with constraints on v can be

represented in the form

i
i
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with w = vmax/2− ud and the saturation nonlinearity

u =
vmax

2
sat(yc), sat(yc) := sign(yc) min{1, |yc|}

The control problem: y(t) approximately follows r(t) (market fluctua-

tion).
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If kI , kp, ka > 0, r(t) is uniformly continuous, |w(t)| < 1 and

vmaxkakp > 2

the system is uniformly convergent.

The proof is based on the Lypunov function V = (x1 − x2)>P(x1 − x2)

with positive definite P = P> > 0, and x1(t), x2(t) being two different

solutions (in an appropriate coordinate system)

The derivative ofV satisfies

V̇ ≤ −α(t)V,
∫ t0+T

t0
α(s)ds> 0

α is integrally separated from zero uniformly in t0 and uniformly with

respect to the initial conditions from any given compact set.
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Performance analysis of Lur’e systems

If a system is uniformly convergent it has a unique bounded (on the

whole time axis) GUAS solution x̄(t).

It allows to pose a problem of performance analysis

• transient performance: how fast any x(t) converges to x̄(t)

• steady state performance: properties of x̄(t)

We focus on the steady state performancewith harmonic r(t) = bsin(ωt)

• computer simulation (accurate, numerically inefficient)

• describing functions, Galerkin approximation (numerically efficient,

approximate)
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Lur’e system:  ẋ = Ax− Bφ(y) + Fu

y = Cx+ Du

Incremental sector condition

0≤ φ(y1)− φ(y2)
y1− y2

≤ µ

An approximate system ξ̇ = Aξ − BKζ + Fu

ζ = Cξ + Du
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The gain K is to be chosen to minimize

J :=
1
T

∫ T

0
[φ(ζ̄ (t))− Kζ̄ (t)]2dt,

that is

K∗ =
(∫ T

0
ζ̄

2(t)dt

)−1 ∫ T

0
φ(ζ̄ (t))ζ̄ (t)dt.

If u = bsinωt, ζ̄ (t) = asin(ωt + ψ)

If φ is odd,

K(a) =
2

πa

∫
π

0
φ(asinθ) sinθdθ .
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Approximation:  ξ̇ = Aξ − BK(a)ζ + Fbsinωt

ζ = Cξ + Du

Harmonic balance equation (HBE):

|1 + K(a)G(iω)|2a2 = |C(iωIn− A)−1F + D|2b2,

where G(iω) = C(iωIn− A)−1B.

Question: given b, ω, is the amplitude a determined in a unique way?

Answer: check the FDI for the frequency of excitation:

µReG(iω) > −1.

Idea of the proof: the left hand side of HBE should be a monotonically

increasing function of a.
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FDI should be satisfied for one frequency.
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Accuracy of harmonic linearization

Problem: estimate the difference between

z̄(t) = Hx̄(t) and η̄(t) = Hξ̄ (t)

ρ1 := sup
k=3,5,...

|C(ikωIn− A +
µ

2
BC)−1B|

ρ2 := sup
k=3,5,...

|H(ikωIn− A +
µ

2
BC)−1B|

• (A, B) is controllable, (A,C) is observable.

• HBE has a unique positive real solution a(b, ω)

• ρ1µ < 2

• φ is an odd function
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Then

• x̄(t) is the only 2π/ω periodic solution

• the following estimate is true

ω

2π

∫ 2π/ω

0
[z̄(t)− η̄(t)]2 dt ≤ γ

2v2(a(b, ω)),

where

v2(a) =
1

2π

∫ 2π

0

[
2
π

∫
π

0
φ(asinθ) sinθdθ · sinϑ − φ(asinϑ)

]2

dϑ

and

γ =
2ρ2

2− µρ1
.

Idea of the proof: contraction mapping argument
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Illustrative example
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If the conditions of theorem are not satisfied the describing function

method can be misleading due to possible subharmonic solutioins
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Control of manufacturing lines

The last machine (N) in the line should follow yd(t).

The jth machine should follow

yd(t) + γ j(yd(t)− y j+1(t))

With such a coupling neglecting positivity constraints imposed on the

buffers one gets a cascade system.

Recall that a cascade of uniformly convergent systems is uniformly con-

vergent, hence the analysis of the manufacturing line can be performed

mutatis mutandis .
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Implementation issue

The controller produces a continuous command v j(t) (the speed of pro-

duction, jth machine).

This signal should be converted into on-off form vPWM j(t) (similarly to

pulse-width modulation) so that

∫ T

0
v j(t)dt ≈

∫ T

0
vPWM j(t)dt

A minimal time for an “on”-phase is t0 j- the time required for the jth

machine to process a lot.
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Results of computer simulation (4 machines in
a line)
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Results of computer simulation (4 machines in
a line)
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Results of computer simulation (4 machines in
a line)
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Future research. From manufacturing lines to-
wards manufacturing networks

Assembling, parallel machines:

• To study separately topology of the network and individual machine

dynanics

• Passivity-based approach, similarly to

1. A. Pogromsky, G. Santoboni and H. Nijmeijer, Partial synchro-

nization: from symmetry towards stability, Physica D, 2002

2. A. Pogromsky, A partial synchronization theorem, submitted
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Constraints on communication between the machines:

• Discretization, batching, finite capacity of the information channels,

drops

• Shannon-like theorems for control of networks (See A.Matveev, A. Savkin,

Estimation and Control over Communication Networks, Birkhäuser

Boston, 2008)

Reentrant systems:

• To extend results of J.A.W.M. van Eekelen, A.A.J. Lefeber, J.E. Rooda
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Conclusions

• A simple continuous-time model of a manufacturing machine

• An anti-windup control of systems with saturation

• Performance analysis of systems with saturation in frequency do-

main

• Extension to manufacturing lines

• Computer simulation for a more detailed model
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