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Motivation Problem statement Results Application

Automotive manufacturing network

State of a node

xi =


number of jobs

quality
adherence to delivery dates

reliability
...



State parameters of a node depend on state parameters of other
nodes

Assume: ẋi = fi (xi , u)
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Autonomous Control

I Personnel in factories adapts service rates to parameter states,
queues, etc:

I Service rate is increased if own queue gets longer
I Service rate is decreased if queues at subsequent nodes

become longer

I Quality, adherence to delivery dates, and reliability of a node
depend on parameters of preceding nodes
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State equations

ẋ1 = u − ax1+b
√

x1

1+x2+x3

ẋ2 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b3, c3x3} −min{b2, c2x2}

ẋ3 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2} −min{b3, c3x3}

ẋ4 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2}+ min{b3, c3x3}−min{b4, c4x4}

ẋ5 = 1
2 min{b4, c4x4} − c5x5

ẋ6 = 1
2 min{b4, c4x4} − c6x6

6 6
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Motivation Problem statement Results Application

What does stability give us?

I boundedness of queues

I estimates for queues with respect to inputs

I hints on reliability of discrete event simulation

I predictability of the system

If a system is not stable, then a small disturbance of initial
conditions of the input parameters may cause large fluctuations of
state parameters/queues (see, e.g., Bramson94-Example)
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Comparison functions

Definition

I γ : R≥0 → R≥0 is K-function, if γ is
continuous, strictly increasing with
γ(0) = 0.
γ is called K∞-function, if it is
unbounded.

I β : R≥0 × R≥0 → R≥0 is called
KL-function, if

I β is continuous
I β(·, t) is a K-function ∀t ≥ 0 and
I β(s, t) ↓ 0 for t →∞ and all s ≥ 0.
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Input-to-State Stability (ISS)

Definition (Sontag, 1989)

A system

ẋ(t) = f (x(t), u(t))

is called ISS, if there exist
β ∈ KL and γ ∈ K, such that

||x(t)|| ≤ β(||x(0)||, t) + γ(||u||∞),

for all x(0), t ≥ 0, u ess.
bounded.

- ẋ = f (x , u)u
x

-

-

6
β(||x(0)||, t) + γ(||u||∞)

||x(t)||
γ(||u||∞)
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Large Networks
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Definition: Γ = (γij). Operator: Γ(s)i =
n∑

j=1

γij(sj) for s ∈ Rn
+.

||xi (t)|| ≤ β(||xi (0)||, t) +
∑

j γij(||xij ||∞) + γ(||u||∞)
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ẋn = fn(x1, . . .) . . .

. . .

. . .

. . .

�

-
�

�

-

6

? ?

@
@

@
@

@
@Rγ3n

γ21

γ12

γn?

γ?2

γ13 γn2 γ??γn1

Definition: Γ = (γij). Operator: Γ(s)i =
n∑

j=1

γij(sj) for s ∈ Rn
+.

||xi (t)|| ≤ β(||xi (0)||, t) +
∑

j γij(||xij ||∞) + γ(||u||∞)



Motivation Problem statement Results Application

Large Networks

6
?

. . .

6
?

. . .
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Stability condition

Theorem (DRW 2005)

If ∃ D, D = diagn(id + α) for some α ∈ K∞, such that

Γ ◦ D(s) � s ∀s ≥ 0, s 6= 0
then the network is input/state stable.

Γ(s)i =
∑

j γij(sj) and Γ ◦ D(s)i =
∑

j γij ◦ (id + α)(sj)
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Equivalent formulations

Theorem
The following are equivalent:

I ∃D : Γ ◦ D(s) � s ∀s ≥ 0, s 6= 0

I ∃D : D ◦ Γ(s) � s ∀s ≥ 0, s 6= 0

��
y

x2

x1

There is also a Lyapunov version of this theorem: The small gain
condition is then stated in terms of Lyapunov gains and allows for
an explicit construction of an ISS-Lyapunov function for the
composite system.
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Induced Dynamics

Discrete systems

S : s(k + 1) := Γ(s(k))

and
R : r(k + 1) := Γ ◦ D(r(k)) on Rn

+.

Observation: Stability of S/R has something to do with stability
condition of ISS network.
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Motivation Problem statement Results Application

Linear Case

Γ linear operator, Γ ∈ R+
n×n, D can also taken to be linear,

D = diagn(1 + α), α > 0

I Γ ◦ D � id ⇐⇒ Γ � id

I ⇐⇒ spectral radius ρ(Γ) < 1

I ⇐⇒ S : s(k + 1) := Γ(s(k)) is globally asymptotically
stable (GAS)

I ⇐⇒ R : r(k + 1) := Γ ◦ D(r(k)) is globally
asymptotically stable (GAS)
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D is necessary

Γ =

[
0 γ
γ 0

]
where γ(t) = t · (1− e−t) (clings to id).

Γ � id and S : s(k + 1) = Γ(s(k)) is GAS.

Can’t consider R, since no D = diag(id + α) exists, such that
Γ ◦ D � id.
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Instability for non-matrix operators

Fix some real constants λ ∈]0, 1[ and µ ≥ 0.

I

Γ

([
s1
s2

])
=

[
λs1 + s2

1 s2 + µs2
λs2

]
for all s = (s1, s2)

T ∈ R2
+.

I Γ � id

I D = (1 + 1
2λ) · idRn even gives Γ ◦ D � id

I but neither R nor S are GAS
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Micro and macro dynamics correspond

Theorem
Let Γ ∈ (K∞ ∪ {0})n×n. Then the following are equivalent:

1. There exists a ρ ∈ K∞ such that for D = diagn(id + ρ) we
have Γ ◦ D � id.

2. There exists a δ ∈ K∞ such that for D = diagn(id + δ) the
discrete dynamical system defined by

R : r(0) ∈ Rn
+, r(k + 1) := Γ ◦ D(r(k)), k ∈ N0,

is globally asymptotically stable in 0.
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Some related sets

Ωi =

s ∈ Rn
+ : si >

∑
j 6=i

γij(sj)

 .

Ψi =

s ∈ Rn
+ : si ≥

∑
j 6=i

γij(sj)

 .

Ω =
⋂
i

Ωi

Ψ =
⋂
i

Ψi

Ω3

Ω2

Ω1
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Examples

I Γ =

[
0 1

2(·)2√
· 0

]

I γ(t) = t · (1− e−t)

Γ =

[
γ id
0 γ

]
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Radial unboundedness of Ω

Theorem
Γ : Rn

+ → Rn
+ monotone, continuous, Γ(0) = 0.

Then Γ � id implies Ω ∩ Sr 6= ∅ for all r > 0, Sr denoting sphere
around the origin in Rn

+ of radius r > 0 with respect to the
1-norm, Sr = {s ∈ Rn

+ :
∑n

i=1 si = r}.

Proof.
Based on famous theorem by Knaster-Kuratowski-Mazurkiewicz,
1929.

Ω3

Ω2

Ω1
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Numerical stability test

Question: When does Γ � id hold?

For Γ ∈ (K∞ ∪ {0})n×n, Γ � id, by KKM-Theorem can find x ∈ Ω.

If Γ has no zero rows, then {Γk(x)}∞k=0 ⊂ Ω, also

(1− λ)Γk+1 + λΓk(x) ∈ Ω, k ≥ 0.

This implies Γ � id on [0, x ] ⊂ Rn
+.

Similar for Γ with zero rows.
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State equations

ẋ1 = u − ax1+b
√

x1

1+x2+x3

ẋ2 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b3, c3x3} −min{b2, c2x2}

ẋ3 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2} −min{b3, c3x3}

ẋ4 = 1
3

ax1+b
√

x1

1+x2+x3
+ 1

2 min{b2, c2x2}+ min{b3, c3x3}−min{b4, c4x4}

ẋ5 = 1
2 min{b4, c4x4} − c5x5

ẋ6 = 1
2 min{b4, c4x4} − c6x6
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Gain matrix

Γ = (γij) =



0 γ12 γ13 0 0 0
γ21 0 γ23 0 0 0
γ31 γ32 0 0 0 0
γ41 γ42 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 γ64 0 0


For example:

γ21(x1) = max


√

ax1 + b
√

x1

3c2
,

ax1 + b
√

x1

3 min{b2, c2, b2 − 1
2b3}


Additional constraints: c2 > c3 > b2 > 1

2b3 ≥ 0.
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Numerical stability test

Choose r � 0 and use an efficient algorithm to find s ∈ Ω ∩ Sr

(see, e.g. Scarf, Eaves, . . . ),

Ω = {s ∈ Rn
+ : Γ(D · s) < s}

for some D = (1 + ε) · id or similar.

If such an s can be found, deduce stability on [0, s] ∈ Rn
+ by

monotonicity of Γ.

In our example this yields a condition on the constants
a, b, b2, b3, c2, c3.
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Choose r � 0 and use an efficient algorithm to find s ∈ Ω ∩ Sr

(see, e.g. Scarf, Eaves, . . . ),

Ω = {s ∈ Rn
+ : Γ(D · s) < s}

for some D = (1 + ε) · id or similar.

If such an s can be found, deduce stability on [0, s] ∈ Rn
+ by

monotonicity of Γ.

In our example this yields a condition on the constants
a, b, b2, b3, c2, c3.



Conclusions

I Stability is an important concept for logistic networks

I A stability criterion for arbitrary logistic networks has been
derived

I The criterion is applicable for networks incorporating
autonomous control

I Using an explicit example it was shown how to verify this
condition
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