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Supply Networks Stochastic Optimal Control Examples

Problem Setting

Given: Distribution network
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delay
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Plant 1

Plant 2

Nodes: Facilities
Links: Flows

Information flows (orders)
Material flows (shipments)

Goal: Determine optimal shipment policy
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Discrete-time Supply Network Model

Customer Retailer

delay

delay

Distributor

delay

delay

Plant 1

Plant 2

Nodes v ∈ V : Places where material is stored

State variables x (v) for the inventories
Sink node: generate demand d (stochastic)
Source nodes: infinite supply

Edges e ∈ E : Information and material flow

Unit time delay of 1 (auxiliary state variables)
Control: Orders u(e) of facilities
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Finite Horizon Robust Optimal Control

Given
Dynamics xk+1 = Axk + Buk + dk

Linear constraints on state and controls Fx + Gu ≤ g
Linear costs on state (pTx) and control (qTu)

Stochastic disturbances dk ∈ D := {d1,d2, . . . ,d`}
Fixed time horizon N
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Let uk(xk) denote the control input when system is in state x at time
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Fixed time horizon N

Let uk(xk) denote the control input when system is in state x at time
k and π = (u0, . . . ,uN−1). The worst-case cost is

Ĵ(x0, π) := max
(dk)

N−1
k=0

pTxN

N−1∑
i=0

[pTxi + qTui (xi )]

where xk+1 = Axk + Buk(xk) + dk .
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Stochastic Dynamic Programming

Let J∗k : Xk −→ R the optimal value function at time k .

Terminal condition: J∗N(x) = pT
Nx and XN = {x ∈ Rn : HNx ≤ hN}.

J∗k (xk) = min
uk∈Uk

{
pTx + qTu + E{J∗k+1(Axk + Buk + d)}

}
s.t. Fxk + Guk ≤ q
and Uk = {u ∈ Rnu : Axk + Buk + d ∈ Xk+1∀d ∈ D}

with Xk = {x ∈ RN : ∃u ∈ Uk} and u∗k : Xk −→ Uk optimal solution.

Remark: Problem is a parametric LP (with state x as paramter) if
J∗k+1 is piecewise linear and convex
Xk+1 is a polyhedron
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Properties

Theorem

Value function J∗k (xk) is piecewise affine and convex in x.
Optimal solution u∗k(xk) is piecewise affine and continuous in xk .{

J∗k (x) = V(i)
k x + W(i)

k

u∗k(x) = R(i)
k x + S(i)

k

for x ∈ R(i)
k .

where Rk =
{
R(i)

k

}
is a partition of Xk with cl(R(i)

k ) being polyhedra.

Consequence: Solve N pLPs to recursively obtain J∗0 (x0) and u∗0(x0).

Goal: We would like to approximate u∗ = limN→∞ u∗0.
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Example: One Retailer With Two Suppliers

d x (1)

x (3)

x (2)

Plant 1

Plant 2

u(
1)

u (2)

xk+1 =

1 1 0
0 0 1
0 0 0

 xk +

0 0
1 0
0 1

uk + dk

u(1): orders at supplier 1 with lead time 1 and unit cost 4
u(2): orders at supplier 2 with lead time 2 and unit cost 1
u(1), u(2) ≤ 8
dk = (−δ, 0, 0)T where δ ∈ [0, 8]
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Example: One Retailer With Two Suppliers

d x (1)

x (3)

x (2)

Plant 1

Plant 2

u(
1)

u (2)

Resulting optimal control law:
(w.r.t. worst-case cost)

u(1)∗ = min{max{20− x1 − x2 − x3, 0}, 4}
u(2)∗ = max{16− x1 − x2 − x3, 0}
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Example: One Retailer With Two Suppliers

d x (1)

x (3)

x (2)

Plant 1

Plant 2

u(
1)

u (2)

Resulting optimal control law:
(w.r.t. average cost if δ ∼ U{0,1,...,8})

u(1)∗ = min{max{22− x1 − x2 − x3 − x4, 0}, 4}
u(2)∗ = max{16− x1 − x2 − x3 − x4, 0}
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Results for Transshipment Problem
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Conclusions

Able to compute explicit state-feedback control policies for
general networks if

the dynamics of the nodes is linear
cost and constraints are piecewise linear and convex

Use of the model here:
Determine the value function (expected discounted infinite-time
cost when starting at a given state) for different scenarios
(flexibility options)
Valuate flexibility options by cost decrease versus base case

(i) using typical/nominal states (here)
(ii) via Markov chain: cost of stationary distribution (in progress)
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