
The MUSIC method and the
factorization method in an inverse

scattering problem
Pham Quy Muoi

Slide form – p.1/24



Model of the problem

Slide form – p.2/24



Model of the problem

The func. n : Re n � 0, Im n � 0 and n = 1 in

R
d\Ω, d = 2, 3.
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Model of the problem

The incident wave uinc induce the scaterred wave uS,
and the total wave u := uinc + us :

(I) Δu+ knu = 0 in R
d\∂Ω

and us satifies the Radiation Sommerfeld Condition

(II)
∂u

∂n
− iku = O

(
1

r(d+1)/2

)
, r = |x| → ∞.
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∂n
− iku = O

(
1
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)
, r = |x| → ∞.

Forward problem. Giving n, uinc, we find the solution
of (I), (II).
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Model of the problem

The incident wave uinc induce the scaterred wave uS,
and the total wave u := uinc + us :

(I) Δu+ knu = 0 in R
d\∂Ω

and us satifies the Radiation Sommerfeld Condition

(II)
∂u

∂n
− iku = O

(
1

r(d+1)/2

)
, r = |x| → ∞.

Forward problem. Giving n, uinc, we find the solution
of (I), (II).
Inverse problem. Giving some information of the solu-
tion u (u∞), determine Ω.
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Some well-known results

The forward problem has unique solution and the
solution of the problem is equivalent to the solution
of the Lippmann - Schwinger integral equation:

u(x) − k2
∫

Ω
q(y)u(y)Φ(x, y)dy = uinc(x), x ∈ Ω.
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Some well-known results

The forward problem has unique solution and the
solution of the problem is equivalent to the solution
of the Lippmann - Schwinger integral equation:

u(x) − k2
∫

Ω
q(y)u(y)Φ(x, y)dy = uinc(x), x ∈ Ω.

About inverse problem
In R

3, Giving u∞, Ω is determined uniquely.
There are some algorithms to determine Ω such
as iterative methods, the linear sampling method
and the factorization method.
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Some well-known results

The factorization method (FM)
In 1998, A. Kirsch introduce the FM to
determine Ω in a scattering inverse problem.
In 2002, Grinberg applied this method for some
scattering inverse problems.
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The MUSIC method

Let’sM point scatterers at locations
y1, y2, . . . , yM∈ R

d(d = 2, 3) and

uinc(x, θ̂) = eikx.θ̂, x ∈ R
d. Then the scattered wave

us is given by
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The MUSIC method
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d(d = 2, 3) and

uinc(x, θ̂) = eikx.θ̂, x ∈ R
d. Then the scattered wave

us is given by

us(x, θ̂) =
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i=1

tiu
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The MUSIC method

Let’sM point scatterers at locations
y1, y2, . . . , yM∈ R

d(d = 2, 3) and

uinc(x, θ̂) = eikx.θ̂, x ∈ R
d. Then the scattered wave

us is given by

us(x, θ̂) =
M∑
i=1

tiu
inc(yi, θ̂)Φ(x, yi),

Φ(x, y) = γd
exp(ikx)
|x|(d−1)/2e

−ikx̂.y +O(|x|−(d+1)/2), |x| →
∞
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The MUSIC method

u∞(x̂, θ̂) = γd

∑M
i=1 tiu

inc(yi, θ̂)e
−ikx̂.yi,
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The MUSIC method

u∞(x̂, θ̂) = γd

∑M
i=1 tiu

inc(yi, θ̂)e
−ikx̂.yi,

Inverse problem: to determine the locations of
scatterers y1, . . . , yM from u∞(x̂, θ̂),∀x̂, θ̂ ∈ S

d−1 or
u∞(θ̂i, θ̂j), i, j = 1 . . . N.
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The MUSIC method
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The MUSIC method

u∞(x̂, θ̂) = γd

∑M
i=1 tiu

inc(yi, θ̂)e
−ikx̂.yi,

Inverse problem: to determine the locations of
scatterers y1, . . . , yM from u∞(x̂, θ̂),∀x̂, θ̂ ∈ S

d−1 or
u∞(θ̂i, θ̂j), i, j = 1 . . . N.

In finite case, assuming N � M, we define the
matrix F ∈ CN×N , S ∈ CN×M , and T ∈ CM×M by
Fjl = u∞(θ̂j, θ̂l), Sjm = e−ikθ̂j .ym, T = diag(γdtm).

F = STS∗ and R(S) = R(F ). (1.1)
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The MUSIC method

u∞(x̂, θ̂) = γd

∑M
i=1 tiu

inc(yi, θ̂)e
−ikx̂.yi,

Inverse problem: to determine the locations of
scatterers y1, . . . , yM from u∞(x̂, θ̂),∀x̂, θ̂ ∈ S

d−1 or
u∞(θ̂i, θ̂j), i, j = 1 . . . N.

In finite case, assuming N � M, we define the
matrix F ∈ CN×N , S ∈ CN×M , and T ∈ CM×M by
Fjl = u∞(θ̂j, θ̂l), Sjm = e−ikθ̂j .ym, T = diag(γdtm).

F = STS∗ and R(S) = R(F ). (1.1)

For z ∈ R
d, we define the vector Φz ∈ C

N by
Φz = (e−ikθ̂1.z, e−ikθ̂2.z, . . . , e−ikθ̂N .z)
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The MUSIC method

Theorem 1.1. Let {θ̂n : n ∈ N} ⊂ S
d−1 with the

property that any analytic function which vanishes
in θ̂n,∀n ∈ N vanishes identically. Then there exists
N0 ∈ N such that for any N � N0 the
characterization holds
z ∈ {y1, y2, . . . , yM} ⇔ Φz ∈ R(S).
From (1.1) we have
z ∈ {y1, y2, . . . , yM} ⇔ Φz ∈ R(F ) ⇔ PΦz = 0

with P : C
N → R(F )⊥ is the orthogonal projection.
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The MUSIC method

Therefore, the plot of the function
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The MUSIC method

Therefore, the plot of the function

W (z) =
1

|PΦz|
should result in sharp peaks at y1, . . . , yM .
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The MUSIC method

Therefore, the plot of the function

W (z) =
1

|PΦz|
should result in sharp peaks at y1, . . . , yM .

Example. d = 2,M = 2, N = 10, k = 2π and
θ̂j, j = 1, . . . , 10, are equidistantly chosen
directions. The values of t are 1 + i, 1.5 + i at
(−1, 1), (−1/2,−1),respectively. The plots of
W (z) give by
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The plots ofW (z)

Slide form – p.11/24



Main idea of two methods

Firstly, we factorize operator F in the form
F = SDS∗.
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Main idea of two methods

Firstly, we factorize operator F in the form
F = SDS∗.

Secondly, we define a function Φz such that
z ∈ Ω ⇔ Φz ∈ R(S).

Finally, we find an operator F ′ that only depend on
F such that R(F ′) = R(S).
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The factorization method

Forward Problem. Let Ω ⊂ R
d: bounded, open set and

its complement is connected; n = 1 + q, q ∈ L∞(Ω),

uinc = eikθ̂.x, x ∈ R
d.
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The factorization method
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The factorization method

Forward Problem. Let Ω ⊂ R
d: bounded, open set and

its complement is connected; n = 1 + q, q ∈ L∞(Ω),

uinc = eikθ̂.x, x ∈ R
d.

The forward scattering problem is to detemine
u = us + uinc ∈ C1(Rd) ∩ C2(Rd\∂Ω) satisfies

Δu+ k2nu = 0 in R
d\∂Ω,

and us satisies the Sommerfeld radiation condition
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The factorization method

Forward Problem. Let Ω ⊂ R
d: bounded, open set and

its complement is connected; n = 1 + q, q ∈ L∞(Ω),

uinc = eikθ̂.x, x ∈ R
d.

The forward scattering problem is to detemine
u = us + uinc ∈ C1(Rd) ∩ C2(Rd\∂Ω) satisfies

Δu+ k2nu = 0 in R
d\∂Ω,

and us satisies the Sommerfeld radiation condition

∂us

∂n
− ikus = O(r−(d+1)/2), r = |x| → ∞
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The factorization method

The problem is equivalent to the equation

u(x)−k2
∫

Ω
q(y)u(y)Φ(x, y)dy = uinc(x), x ∈ Ω (2.2

or u− Lu = uinc with

Lu(x) = k2
∫

Ω
q(y)u(y)Φ(x, y)dy, x ∈ Ω.
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or u− Lu = uinc with

Lu(x) = k2
∫

Ω
q(y)u(y)Φ(x, y)dy, x ∈ Ω.

us(x) = k2
∫

Ω q(y)u(y)Φ(x, y)dy, x ∈ R
d.
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The factorization method

The problem is equivalent to the equation

u(x)−k2
∫

Ω
q(y)u(y)Φ(x, y)dy = uinc(x), x ∈ Ω (2.2

or u− Lu = uinc with

Lu(x) = k2
∫

Ω
q(y)u(y)Φ(x, y)dy, x ∈ Ω.

us(x) = k2
∫

Ω q(y)u(y)Φ(x, y)dy, x ∈ R
d.

u∞(x̂, θ̂) = k2
∫

Ω q(y)u(y, θ̂)e
−ikx̂.ydy.
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The factorization method

Inverse problem. to determine Ω from the data set
u∞(x̂, θ̂), x̂, θ̂ ∈ S

d−1.
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The factorization method

Inverse problem. to determine Ω from the data set
u∞(x̂, θ̂), x̂, θ̂ ∈ S

d−1.

We define
F : L2(Sd−1) → L2(Sd−1), S : L2(Ω) → L2(Sd−1)
by
Fψ(x̂) =

∫
Sd−1 u

∞(x̂, θ̂)ψ(θ̂)ds(θ̂), x̂ ∈ S
d−1

Sφ(x̂) =
∫

Ω e
−ikx̂.yφ(y)dy
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The factorization method

Inverse problem. to determine Ω from the data set
u∞(x̂, θ̂), x̂, θ̂ ∈ S

d−1.

We define
F : L2(Sd−1) → L2(Sd−1), S : L2(Ω) → L2(Sd−1)
by
Fψ(x̂) =

∫
Sd−1 u

∞(x̂, θ̂)ψ(θ̂)ds(θ̂), x̂ ∈ S
d−1

Sφ(x̂) =
∫

Ω e
−ikx̂.yφ(y)dy

⇒ S∗ψ(y) =
∫

Sd−1 e
ikx̂.yψ(x̂)ds(x̂).
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The factorization method

Theorem 2.1. We have

F = STS∗

with T : L2(Ω) → L2(Ω), Tφ = k2q(I − L)−1φ.
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The factorization method

Theorem 2.1. We have

F = STS∗

with T : L2(Ω) → L2(Ω), Tφ = k2q(I − L)−1φ.

For z ∈ R
d we define function Φz ∈ L2(Sd−1) by

Φz = e−ikx̂.z, z ∈ R
d.
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The factorization method

Theorem 2.1. We have

F = STS∗

with T : L2(Ω) → L2(Ω), Tφ = k2q(I − L)−1φ.

For z ∈ R
d we define function Φz ∈ L2(Sd−1) by

Φz = e−ikx̂.z, z ∈ R
d.

Theorem 2.2. For any z ∈ R
d, we have

z ∈ Ω ⇔ Φz ∈ R(S).
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Remark

R(S) 
= R(F ).
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Remark

R(S) 
= R(F ).

In this case, we have define an operator F ′ that only
depend on F such that R(S) = R(F ′).
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The factorization method

Theorem 2.3. Let q ∈ L∞(Ω) such that there exist
q0 > 0 with Req(x) � q0 and Imq(x) � 0 for all
most x ∈ Ω. Furthermore, let k2 be not eigenvalue
of interior transmission problem. Then for any
z ∈ R

d :

z ∈ Ω ⇔ Φz ∈ R(F
1/2
� )

and F� = |ReF | + ImF is positive op..
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The factorization method

Theorem 2.4. Let q ∈ L∞(Ω) such that there exists
q0 > 0 with Imq(x) � q0 for all most x ∈ Ω. Then
for any z ∈ R

d

z ∈ Ω ⇔ Φz ∈ R(F
1/2
� )

with F� = ImF .
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Some examples

Ω is unit ball and q = constant in Ω, q = 0 outside
Ω.
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Some examples

Ω is unit ball and q = constant in Ω, q = 0 outside
Ω.

solving the forward problem by the integral
equation method (presented by Vainiko) with
G = [−2,−2] × [−2, 2]. Then computing
u∞(xi, xj), xi ∈ S

d−1, i, j = 1, . . . , 16
corresponding toM = 16 equidistantly chosen
points on unit circle and k = 1.
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Some examples

Ω is unit ball and q = constant in Ω, q = 0 outside
Ω.

solving the forward problem by the integral
equation method (presented by Vainiko) with
G = [−2,−2] × [−2, 2]. Then computing
u∞(xi, xj), xi ∈ S

d−1, i, j = 1, . . . , 16
corresponding toM = 16 equidistantly chosen
points on unit circle and k = 1.

computing F = [u∞(xi, xj)], F� = ImF and
F� = |ReF | + ImF.
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some examples

Computing an eigensystem
{(λi, Ui) : i = 1, . . . ,M} of F�.
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some examples

Computing an eigensystem
{(λi, Ui) : i = 1, . . . ,M} of F�.
Defining the function

W (z) =

( ∑
λi�0.001

| < Φz, Ui > |2
λi

)−1

with Φz = (e−ikx1.z, . . . , e−ikxM .z).
Then we expect that the value ofW (z) is much
greater for z ∈ Ω than for z /∈ Ω.
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Example 1: The graph ofW (z)

Slide form – p.22/24



Example 2: The plots ofW (z)
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