The MUSIC method and the factorization method in an inverse scattering problem

Pham Quy Muoi

The func. $n : \operatorname{Re} n \ge 0$, $\operatorname{Im} n \ge 0$ and n = 1 in $\mathbb{R}^d \setminus \Omega, d = 2, 3$.

The incident wave u^{inc} induce the scatter wave u^S , and the total wave $u := u^{inc} + u^s$:

The incident wave u^{inc} induce the scatterred wave u^S , and the total wave $u := u^{inc} + u^s$: (I) $\Delta u + knu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$

The incident wave u^{inc} induce the scatterred wave u^S , and the total wave $u := u^{inc} + u^s$: (I) $\Delta u + knu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$

and u^s satifies the Radiation Sommerfeld Condition

The incident wave u^{inc} induce the scatterred wave u^{S} , and the total wave $u := u^{inc} + u^{s}$: (I) $\Delta u + knu = 0$ in $\mathbb{R}^{d} \setminus \partial \Omega$ and u^{s} satifies the Radiation Sommerfeld Condition (II) $\frac{\partial u}{\partial n} - iku = O\left(\frac{1}{r^{(d+1)/2}}\right), r = |x| \to \infty.$

The incident wave u^{inc} induce the scatterred wave u^S , and the total wave $u := u^{inc} + u^s$:

(I) $\Delta u + knu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$ and u^s satifies the Radiation Sommerfeld Condition (II) $\frac{\partial u}{\partial n} - iku = O\left(\frac{1}{r^{(d+1)/2}}\right), r = |x| \to \infty.$

Forward problem. Giving n, u^{inc} , we find the solution of (I), (II).

The incident wave u^{inc} induce the scatterred wave u^S , and the total wave $u := u^{inc} + u^s$:

(I) $\Delta u + knu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$ and u^s satifies the Radiation Sommerfeld Condition (II) $\frac{\partial u}{\partial n} - iku = O\left(\frac{1}{r^{(d+1)/2}}\right), r = |x| \to \infty.$

Forward problem. Giving n, u^{inc} , we find the solution of (I), (II).

Inverse problem. Giving some information of the solution $u(u^{\infty})$, determine Ω .

 The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega}.$$

 The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega}.$$

About inverse problem

The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega}.$$

About inverse problem

- In \mathbb{R}^3 , Giving u^{∞} , Ω is determined uniquely.
- There are some algorithms to determine Ω such as iterative methods, the linear sampling method and the factorization method.

The factorization method (FM)
 In 1998, A. Kirsch introduce the FM to determine Ω in a scattering inverse problem.

In 2002, Grinberg applied this method for some scattering inverse problems.

Introduction

IntroductionThe MUSIC method

Overview

- Introduction
- The MUSIC method
- The factorization method

Let's M point scatterers at locations
 y₁, y₂,..., y_M∈ ℝ^d(d = 2, 3) and
 u^{inc}(x, θ̂) = e^{ikx.θ̂}, x ∈ ℝ^d. Then the scattered wave
 u^s is given by

Let's M point scatterers at locations
 y₁, y₂,..., y_M∈ ℝ^d(d = 2, 3) and
 u^{inc}(x, θ̂) = e^{ikx.θ̂}, x ∈ ℝ^d. Then the scattered wave
 u^s is given by

$$u^s(x,\hat{ heta}) = \sum_{i=1}^M t_i u^{inc}(y_i,\hat{ heta}) \Phi(x,y_i),$$

Let's M point scatterers at locations
 y₁, y₂,..., y_M∈ ℝ^d(d = 2, 3) and
 u^{inc}(x, θ̂) = e^{ikx.θ̂}, x ∈ ℝ^d. Then the scattered wave
 u^s is given by

$$u^{s}(x,\hat{\theta}) = \sum_{i=1}^{M} t_{i} u^{inc}(y_{i},\hat{\theta}) \Phi(x,y_{i}),$$

•
$$\Phi(x,y) = \gamma_d \frac{exp(ikx)}{|x|^{(d-1)/2}} e^{-ik\hat{x}\cdot y} + O(|x|^{-(d+1)/2}), |x| \to \infty$$

•
$$u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$$

•
$$u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$$

Inverse problem: to determine the locations of scatterers y₁,..., y_M from u[∞](x̂, θ̂), ∀x̂, θ̂ ∈ S^{d-1} or u[∞](θ̂_i, θ̂_j), i, j = 1...N.

- $u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$
- Inverse problem: to determine the locations of scatterers y_1, \ldots, y_M from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}(\hat{\theta}_i, \hat{\theta}_j), i, j = 1 \ldots N.$
- In finite case, assuming $N \ge M$, we define the matrix $F \in C^{N \times N}$, $S \in C^{N \times M}$, and $T \in C^{M \times M}$ by

- $u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$
- Inverse problem: to determine the locations of scatterers y₁,..., y_M from u[∞](x̂, θ̂), ∀x̂, θ̂ ∈ S^{d-1} or u[∞](θ̂_i, θ̂_j), i, j = 1...N.
- In finite case, assuming $N \ge M$, we define the matrix $F \in C^{N \times N}$, $S \in C^{N \times M}$, and $T \in C^{M \times M}$ by $F_{jl} = u^{\infty}(\hat{\theta}_j, \hat{\theta}_l), S_{jm} = e^{-ik\hat{\theta}_j.y_m}, T = diag(\gamma_d t_m).$

•
$$u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$$

- Inverse problem: to determine the locations of scatterers y_1, \ldots, y_M from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}(\hat{\theta}_i, \hat{\theta}_j), i, j = 1 \ldots N.$
- In finite case, assuming N ≥ M, we define the matrix F ∈ C^{N×N}, S ∈ C^{N×M}, and T ∈ C^{M×M} by F_{jl} = u[∞](θ̂_j, θ̂_l), S_{jm} = e^{-ikθ̂_j.y_m}, T = diag(γ_dt_m).
 F = STS* and R(S) = R(F). (1.1)

•
$$u^{\infty}(\hat{x},\hat{\theta}) = \gamma_d \sum_{i=1}^M t_i u^{inc}(y_i,\hat{\theta}) e^{-ik\hat{x}\cdot y_i},$$

- Inverse problem: to determine the locations of scatterers y_1, \ldots, y_M from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}(\hat{\theta}_i, \hat{\theta}_j), i, j = 1 \ldots N.$
- In finite case, assuming N ≥ M, we define the matrix F ∈ C^{N×N}, S ∈ C^{N×M}, and T ∈ C^{M×M} by F_{jl} = u[∞](θ̂_j, θ̂_l), S_{jm} = e^{-ikθ̂_j.y_m}, T = diag(γ_dt_m).
 F = STS* and R(S) = R(F). (1.1)
 For z ∈ ℝ^d, we define the vector Φ_z ∈ ℂ^N by Φ_z = (e<sup>-ikθ̂₁.z, e<sup>-ikθ̂₂.z</sub>, ..., e^{-ikθ̂_N.z})
 </sup></sup>

• Theorem 1.1. Let $\{\hat{\theta}_n : n \in \mathbb{N}\} \subset \mathbb{S}^{d-1}$ with the property that any analytic function which vanishes in $\theta_n, \forall n \in \mathbb{N}$ vanishes identically. Then there exists $N_0 \in \mathbb{N}$ such that for any $N \ge N_0$ the characterization holds $z \in \{y_1, y_2, \dots, y_M\} \Leftrightarrow \Phi_z \in R(S).$ From (1.1) we have $z \in \{y_1, y_2, \dots, y_M\} \Leftrightarrow \Phi_z \in R(F) \Leftrightarrow P\Phi_z = 0$ with $P : \mathbb{C}^N \to R(F)^{\perp}$ is the orthogonal projection.

Therefore, the plot of the function

Therefore, the plot of the function

$$W(z) = \frac{1}{|P\Phi_z|}$$

should result in sharp peaks at y_1, \ldots, y_M .

Therefore, the plot of the function

$$W(z) = \frac{1}{|P\Phi_z|}$$

should result in sharp peaks at y_1, \ldots, y_M .

 Example. d = 2, M = 2, N = 10, k = 2π and *θ*_j, j = 1, ..., 10, are equidistantly chosen directions. The values of t are 1 + i, 1.5 + i at (-1, 1), (-1/2, -1), respectively. The plots of W(z) give by

The plots of W(z)

Main idea of two methods

• Firstly, we factorize operator F in the form $F = SDS^*$.

Main idea of two methods

- Firstly, we factorize operator F in the form $F = SDS^*$.
- Secondly, we define a function Φ_z such that $z \in \Omega \Leftrightarrow \Phi_z \in R(S)$.

Main idea of two methods

- Firstly, we factorize operator F in the form $F = SDS^*$.
- Secondly, we define a function Φ_z such that $z \in \Omega \Leftrightarrow \Phi_z \in R(S)$.
- Finally, we find an operator F' that only depend on F such that R(F') = R(S).

Forward Problem. Let $\Omega \subset \mathbb{R}^d$: bounded, open set and its complement is connected; $n = 1 + q, q \in L^{\infty}(\Omega)$, $u^{inc} = e^{ik\hat{\theta}.x}, x \in \mathbb{R}^d$.

Forward Problem. Let $\Omega \subset \mathbb{R}^d$: bounded, open set and its complement is connected; $n = 1 + q, q \in L^{\infty}(\Omega)$, $u^{inc} = e^{ik\hat{\theta}.x}, x \in \mathbb{R}^d$. The forward scattering problem is to detemine $u = u^s + u^{inc} \in C^1(\mathbb{R}^d) \cap C^2(\mathbb{R}^d \setminus \partial \Omega)$ satisfies

Forward Problem. Let $\Omega \subset \mathbb{R}^d$: bounded, open set and its complement is connected; $n = 1 + q, q \in L^{\infty}(\Omega)$, $u^{inc} = e^{ik\hat{\theta}.x}, x \in \mathbb{R}^d$. The forward scattering problem is to detemine $u = u^s + u^{inc} \in C^1(\mathbb{R}^d) \cap C^2(\mathbb{R}^d \setminus \partial \Omega)$ satisfies $\Delta u + k^2 nu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$,

and u^s satisfies the Sommerfeld radiation condition

Forward Problem. Let $\Omega \subset \mathbb{R}^d$: bounded, open set and its complement is connected; $n = 1 + q, q \in L^{\infty}(\Omega)$, $u^{inc} = e^{ik\hat{\theta}.x}, x \in \mathbb{R}^d$. The forward scattering problem is to detemine $u = u^s + u^{inc} \in C^1(\mathbb{R}^d) \cap C^2(\mathbb{R}^d \setminus \partial \Omega)$ satisfies $\Delta u + k^2 nu = 0$ in $\mathbb{R}^d \setminus \partial \Omega$,

and u^s satisfies the Sommerfeld radiation condition

$$\frac{\partial u^s}{\partial n} - iku^s = O(r^{-(d+1)/2}), r = |x| \to \infty$$

The problem is equivalent to the equation

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega} \quad (2.2)$$

or $u - Lu = u^{inc}$ with

$$Lu(x) = k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy, x \in \overline{\Omega}.$$

The problem is equivalent to the equation

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega} \quad (2.2)$$

or $u - Lu = u^{inc}$ with

$$Lu(x) = k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy, x \in \overline{\Omega}.$$

• $u^s(x) = k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy, x \in \mathbb{R}^d.$

The problem is equivalent to the equation

$$u(x) - k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy = u^{inc}(x), x \in \overline{\Omega} \quad (2.2)$$

or $u - Lu = u^{inc}$ with

$$Lu(x) = k^2 \int_{\Omega} q(y)u(y)\Phi(x,y)dy, x \in \overline{\Omega}.$$

•
$$u^{s}(x) = k^{2} \int_{\Omega} q(y)u(y)\Phi(x,y)dy, x \in \mathbb{R}^{d}$$

• $u^{\infty}(\hat{x},\hat{\theta}) = k^{2} \int_{\Omega} q(y)u(y,\hat{\theta})e^{-ik\hat{x}\cdot y}dy.$

• Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.

- Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.
- We define $F: L^{2}(\mathbb{S}^{d-1}) \to L^{2}(\mathbb{S}^{d-1}), S: L^{2}(\Omega) \to L^{2}(\mathbb{S}^{d-1})$ by $F\psi(\hat{x}) = \int_{\mathbb{S}^{d-1}} u^{\infty}(\hat{x}, \hat{\theta})\psi(\hat{\theta})ds(\hat{\theta}), \hat{x} \in \mathbb{S}^{d-1}$ $S\phi(\hat{x}) = \int_{\Omega} e^{-ik\hat{x}\cdot y}\phi(y)dy$

- Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.
- We define $F: L^{2}(\mathbb{S}^{d-1}) \to L^{2}(\mathbb{S}^{d-1}), S: L^{2}(\Omega) \to L^{2}(\mathbb{S}^{d-1})$ by $F\psi(\hat{x}) = \int_{\mathbb{S}^{d-1}} u^{\infty}(\hat{x}, \hat{\theta})\psi(\hat{\theta})ds(\hat{\theta}), \hat{x} \in \mathbb{S}^{d-1}$ $S\phi(\hat{x}) = \int_{\Omega} e^{-ik\hat{x}\cdot y}\phi(y)dy$ $\Rightarrow S^{*}\psi(y) = \int_{\mathbb{S}^{d-1}} e^{ik\hat{x}\cdot y}\psi(\hat{x})ds(\hat{x}).$

• Theorem 2.1. We have

 $F = STS^*$

with $T: L^2(\Omega) \to L^2(\Omega), T\phi = k^2 q (I-L)^{-1} \phi$.

Theorem 2.1. We have
F = STS*
with T : L²(Ω) → L²(Ω), Tφ = k²q(I − L)⁻¹φ.
For z ∈ ℝ^d we define function Φ_z ∈ L²(S^{d-1}) by
Φ_z = e^{-ikx̂.z}, z ∈ ℝ^d.

Theorem 2.1. We have $F = STS^*$ with $T: L^2(\Omega) \to L^2(\Omega), T\phi = k^2 q (I-L)^{-1} \phi$. • For $z \in \mathbb{R}^d$ we define function $\Phi_z \in L^2(\mathbb{S}^{d-1})$ by $\Phi_z = e^{-ik\hat{x}.z}, z \in \mathbb{R}^d.$ **Theorem 2.2.** For any $z \in \mathbb{R}^d$, we have $z \in \Omega \Leftrightarrow \Phi_z \in R(S).$

• $R(S) \neq R(F)$.

Remark

• $R(S) \neq R(F)$.

• In this case, we have define an operator F' that only depend on F such that R(S) = R(F').

Theorem 2.3. Let q ∈ L[∞](Ω) such that there exist q₀ > 0 with Req(x) ≥ q₀ and Imq(x) ≥ 0 for all most x ∈ Ω. Furthermore, let k² be not eigenvalue of interior transmission problem. Then for any z ∈ ℝ^d:

 $z \in \Omega \Leftrightarrow \Phi_z \in R(F_{\sharp}^{1/2})$

and $F_{\sharp} = |ReF| + ImF$ is positive op..

Theorem 2.4. Let q ∈ L[∞](Ω) such that there exists
 q₀ > 0 with Imq(x) ≥ q₀ for all most x ∈ Ω. Then
 for any z ∈ ℝ^d

 $z \in \Omega \Leftrightarrow \Phi_z \in R(F_{\sharp}^{1/2})$

with $F_{\sharp} = ImF$.

Some examples

• Ω is unit ball and q = constant in $\Omega, q = 0$ outside Ω .

Some examples

- Ω is unit ball and q = constant in $\Omega, q = 0$ outside Ω .
- solving the forward problem by the integral equation method (presented by Vainiko) with G = [-2, -2] × [-2, 2]. Then computing u[∞](x_i, x_j), x_i ∈ S^{d-1}, i, j = 1, ..., 16 corresponding to M = 16 equidistantly chosen points on unit circle and k = 1.

Some examples

- Ω is unit ball and q = constant in $\Omega, q = 0$ outside Ω .
- solving the forward problem by the integral equation method (presented by Vainiko) with $G = [-2, -2] \times [-2, 2]$. Then computing $u^{\infty}(x_i, x_j), x_i \in \mathbb{S}^{d-1}, i, j = 1, \dots, 16$ corresponding to M = 16 equidistantly chosen points on unit circle and k = 1.
- computing $F = [u^{\infty}(x_i, x_j)], F_{\sharp} = ImF$ and $F_{\sharp} = |ReF| + ImF.$

some examples

• Computing an eigensystem $\{(\lambda_i, U_i) : i = 1, ..., M\}$ of F_{\sharp} .

some examples

- Computing an eigensystem $\{(\lambda_i, U_i) : i = 1, ..., M\}$ of F_{\sharp} .
- Defining the function

$$W(z) = \left(\sum_{\lambda_i \ge 0.001} \frac{|\langle \Phi_z, U_i \rangle|^2}{\lambda_i}\right)^{-1}$$

with $\Phi_z = (e^{-ikx_1.z}, \dots, e^{-ikx_M.z})$. Then we expect that the value of W(z) is much greater for $z \in \Omega$ than for $z \notin \Omega$.

Example 1: The graph of W(z)

The plot of $F_{\#}$ with q=0.8+0.5i in Ω .

Example 2: The plots of W(z)

Thank you for your attention