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Model of the problem

The func. n :Ren > 0,Imn > 0Oandn = 11n
Rd\Q,d:2,3.
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Model of the problem

The incident wave ¢ induce the scaterred wave u°,

and the total wave u := u"¢ + u° :

(D) Au + knu = 0in R\
and u® satifies the Radiation Sommerfeld Condition
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Model of the problem

The incident wave u"™¢ induce the scaterred wave u”°,

and the total wave u := u"¢ + u° :

(D) Au + knu = 0in R\
and u® satifies the Radiation Sommerfeld Condition

(ID) a—u—iku:O( 1 ),r:]a:\%oo.
on

r(d+1)/2

Forward problem. Giving n, u"", we find the solution
of (I), (ID).
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Model of the problem

The incident wave u"™¢ induce the scaterred wave u”°,

and the total wave u := u"¢ + u° :

(D) Au + knu = 0in R\
and u® satifies the Radiation Sommerfeld Condition

(ID) a—u—z’ku:0< 1 ),r:]a:\%oo.
on

r(d+1)/2
Forward problem. Giving n, u"", we find the solution
of (I), (II).
Inverse problem. Giving some information of the solu-

tion u (u™), determine ).
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Some well-known results

The forward problem has unique solution and the
solution of the problem 1s equivalent to the solution
of the Lippmann - Schwinger integral equation:

ulx) — K / a)u(y)®(z, y)dy = " (z),x € .
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Some well-known results

The forward problem has unique solution and the
solution of the problem 1s equivalent to the solution
of the Lippmann - Schwinger integral equation:

ulx) — K / a)u(y)®(z, y)dy = " (z),x € .

About inverse problem
- In R?, Giving u*°, € is determined uniquely.
- There are some algorithms to determine {2 such

as 1terative methods, the linear sampling method
and the factorization method.
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Some well-known results

The factorization method (FM)

- In 1998, A. Kirsch introduce the FM to
determine {2 in a scattering inverse problem.

- In 2002, Grinberg applied this method for some
scattering inverse problems.
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Introduction
The MUSIC method

The factorization method
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The MUSIC method

Let’s M point scatterers at locations
Y1, Y2, - -, yu € R%d = 2,3) and

une(z, 0) = e**0 2 ¢ R? Then the scattered wave
u® 1S given by
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The MUSIC method

Let’s M point scatterers at locations
Y1, Y2, - -, yu € R%d = 2,3) and

une(z, 0) = e**0 2 ¢ R? Then the scattered wave
u® 1S given by

M
u’(x,0) = Z tiu'(y;, 0)®(x, y;),
i=1

exp(tkx) —iks. _
(I)($a y) - /Yd‘x‘?d(—n/le REY 4 O("x’ (d+1>/2)7 ‘*/E’ I
O
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The MUSIC method

u(&,0) = va Xoimy i (yi, )e

Inverse problem: to determine the locations of
scatterers 1, . . . , Yy from u™(z, 9) Vi, 0 € S 1o

um(é@-,éj),i,j =1...N.
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The MUSIC method

u(&,0) = va Xoimy i (yi, )e

Inverse problem: to determine the locations of
scatterers ¥, - . . , yas from u™(z, 9) Vi, 0 € S or

uoo(é@-,éj),i,j =1...N.
In finite case, assuming N > M, we define the
matrix F' € CV*V, S € CVM and T € CM*M py
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scatterers 1, . . . , Yy from u™(z, 9) Vi, 0 € S 1o

uoo(é@-,éj),i,j =1.....

In finite case, assuming N > M, we define the
matrix F' € CV*V, S € CVM and T € CM*M py
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The MUSIC method

u(#,0) = va 2oity tu (yi, O)e

Inverse problem: to determine the locations of
scatterers 1, . . . , Yy from u™(z, 9) Vi, 0 € S 1o

uoo(é@-,éj),i,j =1...N.
In finite case, assuming N > M, we define the
matrix F' € CV*V, S € CVM and T € CM*M py

Fjl ' uoo(é\ja él)a Sjm N e_ikéj.yma T = dzag(/Ydtm)
F = STS* and R(S) = R(F).  (1.1)
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The MUSIC method

u(#,0) = va 2oity tu (yi, O)e

Inverse problem: to determine the locations of
scatterers v, . . . , yas from u™ (%, 0),V#,0 € S*1 o

u®(0;,6,),4,j=1...N.

In finite case, assuming N > M, we define the
matrix F' € CV*V, S € CVM and T € CM*M py
I — uoo(éj, 0)), 5l = e_ikéfym, T = diag(vqtm).
F = STS*and R(S) = R(F). (1.1)

For z € R?, we define the vector &, € C" by

(I)z B (e—ik91.z’ 6—2’]{92.2’ . 76—2'/«(9]\7.2)
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The MUSIC method

Theorem 1.1. Let {én :n € N} C S ! with the
property that any analytic function which vanishes

in @,,, Vn € N vanishes identically. Then there exists
Ny € N such that for any N > N the
characterization holds

S {ylay27“° 7yM} A (I)Z S R(S)
From (1.1) we have

7S {yl,yg,...,yM}(:><D2 S R(F) & PO, =0
with P : C — R(F)* is the orthogonal projection.

Slide form — p.9/2:



e function




The MUSIC method

Therefore, the plot of the function

I
[P,

should result in sharp peaks at vy, ..., ya.

W(z)
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The MUSIC method

Therefore, the plot of the function

1

P2,

should result in sharp peaks at vy, ..., ya.
Example. d =2, M =2, N =10,k = 27 and
0;,7 =1,...,10, are equidistantly chosen
directions. The valuesof t are 1 +¢,1.5 + 7 at
(—1,1),(—1/2,—1),respectively. The plots of
W(z) give by

W(z)

Slide form — p.10/2-



The plots of W (2)
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Main 1dea of two methods

Firstly, we factorize operator /' in the form
F=5DGS".
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Main 1dea of two methods

Firstly, we factorize operator /' in the form
F=5DG5"

Secondly, we define a function ®, such that
z€ Qs b, € R(Y).
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Main 1dea of two methods

Firstly, we factorize operator /' in the form
F=5DG5"

Secondly, we define a function ®, such that
z€ Qs b, € R(Y).

Finally, we find an operator [ that only depend on
F such that R(F") = R(S).
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The factorization method

Forward Problem. Let Q C R%: bounded, open set and
its complement is connected; n = 1 4 ¢, ¢ € L*°(12),

uz’nc = 6ik9.x) = Rd.
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The factorization method

Forward Problem. Let Q C R%: bounded, open set and
its complement is connected; n = 1 4 ¢, ¢ € L*°(12),
uz’nc = 62’k9.x) = Rd.

The forward scattering problem is to detemine

u = u® + u € CHR?Y) N C*(RHNIN) satisfies
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The factorization method

Forward Problem. Let Q C R%: bounded, open set and
its complement is connected; n = 1 4 ¢, ¢ € L*°(12),

e — ez'lfé.x7 = Rd.

The forward scattering problem is to detemine

u = u® + u € CHR?Y) N C*(RHNIN) satisfies
Au + k*nu = 0 in R\0Q,

and u° satisies the Sommerfeld radiation condition
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The factorization method

Forward Problem. Let Q C R%: bounded, open set and
its complement is connected; n = 1 4 ¢, ¢ € L*°(12),

uz’nc = ez'lfé.x7 = Rd.
The forward scattering problem is to detemine
u = u® + u € CHR?Y) N C*(RHNIN) satisfies

Au + k*nu = 0 in R\0Q,

and u° satisies the Sommerfeld radiation condition

ou’®
on

iku® = O(r~ @Y/ = 2] - o0
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The factorization method

The problem 1s equivalent to the equation
u@) =~ [ )0y = u" (@) 0 €D (22
or u — Lu = u" with

mmazﬁlg@mwwwwm%xeﬁ
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The factorization method

The problem 1s equivalent to the equation
u@) =~ [ )0y = u" (@) 0 €D (22
or u — Lu = u" with

mmazﬁlg@mwwwwm%xeﬁ

u(z) = k° [ q(y)u(y)®(z, y)dy,z € RY.
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The factorization method

The problem 1s equivalent to the equation
u@) =~ [ )0y = u" (@) 0 €D (22
or u — Lu = u" with

Lu(w) = 1 | a)uly)@(z.p)dy.z € 0

u(z) = k* [ a(y)uly)®(z,y)dy,x € RY.
u™(&,0) = k? Joa(y) u(y, 0)e *vdy.
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The factorization method

Inverse problem to determine {2 from the data set
u>(%,0),,0 e ST
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The factorization method

Inverse problem to determine {2 from the data set
u(%,0), 4,0 e S

We define
F: LA(S*Y — L2(S%1), S: L3(Q) — LS
by ) A

= | 0)(0)ds(0), & e S

fQ —ikz. be )
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The factorization method

Inverse problem to determine {2 from the data set
u(%,0), 4,0 e S

We define
F:L2(ST Y — LS9 Y, S L2(Q) — L2(S%1)
by N .
= | w(ﬁ)dsw) S
fQ —ikz. be

= Sw = fur € w< )ds ().
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The factorization method

Theorem 2.1. We have
F = STS5"
with 71 : LQ(Q) — L2(Q), Ty = k2q(l — L)_lgb.
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The factorization method

Theorem 2.1. We have

F=5TS5"
with T : L2(Q) — LX(Q), To = k2q(I — L)~1¢
For z € R? we define function ®, ¢ L?(S?1) by

(I)z - e—zkx.z’ = Rd.
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The factorization method

Theorem 2.1. We have
F=5TS5"
with T : L*(Q) — L*(Q),T¢ = k*q(I — L) 1¢.
For z € R? we define function ®, ¢ L?(S?1) by
O, — e *2 5 c RY
Theorem 2.2. For any z € R?, we have

2€Q e P, € R(S).

Slide form — p.16/2-






Remark

R(S) # R(F).
In this case, we have define an operator F’ that only
depend on F' such that R(.S) = R(F").
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The factorization method

Theorem 2.3. Let g € L°°((2) such that there exist
qo > 0 with Req(x) > qp and Imqg(z) > 0 for all
most z € €. Furthermore, let £ be not eigenvalue

of interior transmission problem. Then for any
zeR?:
z€el& d, € R(Fl/Q)

and F; = |ReF'| + ImF is positive op..

Slide form — p.18/2-



The factorization method

Theorem 2.4. Let g € L>°(£2) such that there exists
qo > 0 with Imq(x) > qq for all most x € €). Then

for any z € R
:€Q e d, € R(E?

with F;, = ImF.
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Some examples

() 1s unit ball and ¢ = constant in €2, ¢ = 0 outside
().
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Some examples

() 1s unit ball and ¢ = constant in €2, ¢ = 0 outside
Q.

solving the forward problem by the integral
equation method (presented by Vainiko) with
G=|-2 —2] |—2,2|. Then computing

U (zz,xj) c S4 1, i,j=1,...,16
correspondlng to M = 16 equ1dlstantly chosen
points on unit circle and k£ = 1.
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Some examples

() 1s unit ball and ¢ = constant in €2, ¢ = 0 outside
Q.

solving the forward problem by the integral
equation method (presented by Vainiko) with
G=|-2 —2] |—2,2|. Then computing

U (zz,xj) c S4 1, i,j=1,...,16
correspondlng to M = 16 equ1dlstantly chosen
points on unit circle and k£ = 1.

computing F' = [u>(z;, )|, Ft = ImF and
= |ReF'| + ImF.
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some examples

Computing an eigensystem
{()\Z,UZ) = 1,,M} OfFﬂ
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some examples

Computing an eigensystem
{()\@,UZ) i — 1,,M} OfFﬂ

Defining the function

W(z)( > <¢Z&f]i>)

A;=0.001

with ®, = (e~ %12 | emihom-2),
Then we expect that the value of 1/ (z) is much
greater for z € () than for z ¢ ().
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Example 1: The graph of W (z)

The plot of ¥, with ¢=0.8+0.5i in ©

¥ =l F,=|Re F|tIm I

ool
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Example 2: The plots of W (z)

The plot of F,with ¢=0.8 in £2

F,=ImF F,=|Re Fltim I

Frs
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