The MUSIC method and the factorization method in an inverse scattering problem

Pham Quy Muoi

Model of the problem

Model of the problem

The func. $n: \operatorname{Re} n \geqslant 0, \operatorname{Im} n \geqslant 0$ and $n=1$ in $\mathbb{R}^{d} \backslash \Omega, d=2,3$.

Model of the problem

The incident wave $u^{\text {inc }}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:

Model of the problem

The incident wave $u^{\text {inc }}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:
(I) $\Delta u+k n u=0$ in $\mathbb{R}^{d} \backslash \partial \Omega$

Model of the problem

The incident wave $u^{i n c}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:
(I) $\Delta u+k n u=0$ in $\mathbb{R}^{d} \backslash \partial \Omega$
and u^{s} satifies the Radiation Sommerfeld Condition

Model of the problem

The incident wave $u^{i n c}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:
(I) $\Delta u+k n u=0$ in $\mathbb{R}^{d} \backslash \partial \Omega$
and u^{s} satifies the Radiation Sommerfeld Condition
(II) $\frac{\partial u}{\partial n}-i k u=O\left(\frac{1}{r^{(d+1) / 2}}\right), r=|x| \rightarrow \infty$.

Model of the problem

The incident wave $u^{i n c}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:
(I) $\Delta u+k n u=0$ in $\mathbb{R}^{d} \backslash \partial \Omega$
and u^{s} satifies the Radiation Sommerfeld Condition
(II) $\frac{\partial u}{\partial n}-i k u=O\left(\frac{1}{r^{(d+1) / 2}}\right), r=|x| \rightarrow \infty$.

Forward problem. Giving $n, u^{i n c}$, we find the solution of (I), (II).

Model of the problem

The incident wave $u^{i n c}$ induce the scaterred wave u^{S}, and the total wave $u:=u^{i n c}+u^{s}$:
(I) $\Delta u+k n u=0$ in $\mathbb{R}^{d} \backslash \partial \Omega$
and u^{s} satifies the Radiation Sommerfeld Condition
(II) $\frac{\partial u}{\partial n}-i k u=O\left(\frac{1}{r^{(d+1) / 2}}\right), r=|x| \rightarrow \infty$.

Forward problem. Giving $n, u^{i n c}$, we find the solution of (I), (II).
Inverse problem. Giving some information of the solution $u\left(u^{\infty}\right)$, determine Ω.

Some well-known results

- The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$
u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega} .
$$

Some well-known results

- The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$
u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega} .
$$

- About inverse problem

Some well-known results

- The forward problem has unique solution and the solution of the problem is equivalent to the solution of the Lippmann - Schwinger integral equation:

$$
u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega} .
$$

- About inverse problem
- In \mathbb{R}^{3}, Giving u^{∞}, Ω is determined uniquely.
- There are some algorithms to determine Ω such as iterative methods, the linear sampling method and the factorization method.

Some well-known results

- The factorization method (FM)
- In 1998, A. Kirsch introduce the FM to determine Ω in a scattering inverse problem.
- In 2002, Grinberg applied this method for some scattering inverse problems.

Overview

- Introduction

Overview

- Introduction
- The MUSIC method

Overview

- Introduction
- The MUSIC method
- The factorization method

The MUSIC method

- Let's M point scatterers at locations
$y_{1}, y_{2}, \ldots, y_{M} \in \mathbb{R}^{d}(d=2,3)$ and
$u^{i n c}(x, \hat{\theta})=e^{i k x . \hat{\theta}}, x \in \mathbb{R}^{d}$. Then the scattered wave u^{s} is given by

The MUSIC method

- Let's M point scatterers at locations
$y_{1}, y_{2}, \ldots, y_{M} \in \mathbb{R}^{d}(d=2,3)$ and $u^{i n c}(x, \hat{\theta})=e^{i k x . \hat{\theta}}, x \in \mathbb{R}^{d}$. Then the scattered wave u^{s} is given by

$$
u^{s}(x, \hat{\theta})=\sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) \Phi\left(x, y_{i}\right)
$$

The MUSIC method

- Let's M point scatterers at locations
$y_{1}, y_{2}, \ldots, y_{M} \in \mathbb{R}^{d}(d=2,3)$ and $u^{i n c}(x, \hat{\theta})=e^{i k x . \hat{\theta}}, x \in \mathbb{R}^{d}$. Then the scattered wave u^{s} is given by

$$
u^{s}(x, \hat{\theta})=\sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) \Phi\left(x, y_{i}\right),
$$

- $\Phi(x, y)=\gamma_{d} \frac{\exp (i k x)}{|x|^{(d-1) / 2}} e^{-i k \hat{x} \cdot y}+O\left(|x|^{-(d+1) / 2}\right),|x| \rightarrow$ ∞

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x}, y_{i}}$,

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x}, y_{i}}$,
- Inverse problem: to determine the locations of scatterers y_{1}, \ldots, y_{M} from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right), i, j=1 \ldots N$.

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x} \cdot y_{i}}$,
- Inverse problem: to determine the locations of scatterers y_{1}, \ldots, y_{M} from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right), i, j=1 \ldots N$.
- In finite case, assuming $N \geqslant M$, we define the matrix $F \in C^{N \times N}, S \in C^{N \times M}$, and $T \in C^{M \times M}$ by

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x} \cdot y_{i}}$,
- Inverse problem: to determine the locations of scatterers y_{1}, \ldots, y_{M} from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right), i, j=1 \ldots N$.
- In finite case, assuming $N \geqslant M$, we define the matrix $F \in C^{N \times N}, S \in C^{N \times M}$, and $T \in C^{M \times M}$ by
$F_{j l}=u^{\infty}\left(\hat{\theta}_{j}, \hat{\theta}_{l}\right), S_{j m}=e^{-i k \hat{\theta}_{j} \cdot y_{m}}, T=\operatorname{diag}\left(\gamma_{d} t_{m}\right)$.

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x} \cdot y_{i}}$,
- Inverse problem: to determine the locations of scatterers y_{1}, \ldots, y_{M} from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right), i, j=1 \ldots N$.
- In finite case, assuming $N \geqslant M$, we define the matrix $F \in C^{N \times N}, S \in C^{N \times M}$, and $T \in C^{M \times M}$ by
$F_{j l}=u^{\infty}\left(\hat{\theta}_{j}, \hat{\theta}_{l}\right), S_{j m}=e^{-i k \hat{\theta}_{j} \cdot y_{m}}, T=\operatorname{diag}\left(\gamma_{d} t_{m}\right)$.
- $F=S T S^{*}$ and $R(S)=R(F)$.

The MUSIC method

- $u^{\infty}(\hat{x}, \hat{\theta})=\gamma_{d} \sum_{i=1}^{M} t_{i} u^{i n c}\left(y_{i}, \hat{\theta}\right) e^{-i k \hat{x} \cdot y_{i}}$,
- Inverse problem: to determine the locations of scatterers y_{1}, \ldots, y_{M} from $u^{\infty}(\hat{x}, \hat{\theta}), \forall \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$ or $u^{\infty}\left(\hat{\theta}_{i}, \hat{\theta}_{j}\right), i, j=1 \ldots N$.
- In finite case, assuming $N \geqslant M$, we define the matrix $F \in C^{N \times N}, S \in C^{N \times M}$, and $T \in C^{M \times M}$ by $F_{j l}=u^{\infty}\left(\hat{\theta}_{j}, \hat{\theta}_{l}\right), S_{j m}=e^{-i k \hat{\theta}_{j} \cdot y_{m}}, T=\operatorname{diag}\left(\gamma_{d} t_{m}\right)$.
- $F=S T S^{*}$ and $R(S)=R(F)$.
- For $z \in \mathbb{R}^{d}$, we define the vector $\Phi_{z} \in \mathbb{C}^{N}$ by

$$
\Phi_{z}=\left(e^{-i k \hat{\theta}_{1}, z}, e^{-i k \hat{\theta}_{2}, z}, \ldots, e^{-i k \hat{\theta}_{N} \cdot z}\right)
$$

The MUSIC method

Theorem 1.1. Let $\left\{\hat{\theta}_{n}: n \in \mathbb{N}\right\} \subset \mathbb{S}^{d-1}$ with the property that any analytic function which vanishes in $\theta_{n}, \forall n \in \mathbb{N}$ vanishes identically. Then there exists $N_{0} \in \mathbb{N}$ such that for any $N \geqslant N_{0}$ the characterization holds
$z \in\left\{y_{1}, y_{2}, \ldots, y_{M}\right\} \Leftrightarrow \Phi_{z} \in R(S)$.
From (1.1) we have
$z \in\left\{y_{1}, y_{2}, \ldots, y_{M}\right\} \Leftrightarrow \Phi_{z} \in R(F) \Leftrightarrow P \Phi_{z}=0$ with $P: \mathbb{C}^{N} \rightarrow R(F)^{\perp}$ is the orthogonal projection.

The MUSIC method

Therefore, the plot of the function

The MUSIC method

- Therefore, the plot of the function

$$
W(z)=\frac{1}{\left|P \Phi_{z}\right|}
$$

should result in sharp peaks at y_{1}, \ldots, y_{M}.

The MUSIC method

- Therefore, the plot of the function

$$
W(z)=\frac{1}{\left|P \Phi_{z}\right|}
$$

should result in sharp peaks at y_{1}, \ldots, y_{M}.

- Example. $d=2, M=2, N=10, k=2 \pi$ and $\hat{\theta}_{j}, j=1, \ldots, 10$, are equidistantly chosen directions. The values of t are $1+i, 1.5+i$ at $(-1,1),(-1 / 2,-1)$,respectively. The plots of $W(z)$ give by

The plots of $W(z)$

Main idea of two methods

- Firstly, we factorize operator F in the form $F=S D S^{*}$.

Main idea of two methods

- Firstly, we factorize operator F in the form $F=S D S^{*}$.
- Secondly, we define a function Φ_{z} such that $z \in \Omega \Leftrightarrow \Phi_{z} \in R(S)$.

Main idea of two methods

- Firstly, we factorize operator F in the form $F=S D S^{*}$.
- Secondly, we define a function Φ_{z} such that $z \in \Omega \Leftrightarrow \Phi_{z} \in R(S)$.
- Finally, we find an operator F^{\prime} that only depend on F such that $R\left(F^{\prime}\right)=R(S)$.

The factorization method

Forward Problem. Let $\Omega \subset \mathbb{R}^{d}$: bounded, open set and its complement is connected; $n=1+q, q \in L^{\infty}(\Omega)$, $u^{i n c}=e^{i k \hat{\theta} \cdot x}, x \in \mathbb{R}^{d}$.

The factorization method

Forward Problem. Let $\Omega \subset \mathbb{R}^{d}$: bounded, open set and its complement is connected; $n=1+q, q \in L^{\infty}(\Omega)$,
$u^{i n c}=e^{i k \hat{\theta} \cdot x}, x \in \mathbb{R}^{d}$.
The forward scattering problem is to detemine $u=u^{s}+u^{i n c} \in C^{1}\left(\mathbb{R}^{d}\right) \cap C^{2}\left(\mathbb{R}^{d} \backslash \partial \Omega\right)$ satisfies

The factorization method

Forward Problem. Let $\Omega \subset \mathbb{R}^{d}$: bounded, open set and its complement is connected; $n=1+q, q \in L^{\infty}(\Omega)$,
$u^{i n c}=e^{i k \hat{\theta} \cdot x}, x \in \mathbb{R}^{d}$.
The forward scattering problem is to detemine $u=u^{s}+u^{i n c} \in C^{1}\left(\mathbb{R}^{d}\right) \cap C^{2}\left(\mathbb{R}^{d} \backslash \partial \Omega\right)$ satisfies

$$
\Delta u+k^{2} n u=0 \text { in } \mathbb{R}^{d} \backslash \partial \Omega,
$$

and u^{s} satisies the Sommerfeld radiation condition

The factorization method

Forward Problem. Let $\Omega \subset \mathbb{R}^{d}$: bounded, open set and its complement is connected; $n=1+q, q \in L^{\infty}(\Omega)$,
$u^{i n c}=e^{i k \hat{\theta} \cdot x}, x \in \mathbb{R}^{d}$.
The forward scattering problem is to detemine $u=u^{s}+u^{i n c} \in C^{1}\left(\mathbb{R}^{d}\right) \cap C^{2}\left(\mathbb{R}^{d} \backslash \partial \Omega\right)$ satisfies

$$
\Delta u+k^{2} n u=0 \text { in } \mathbb{R}^{d} \backslash \partial \Omega,
$$

and u^{s} satisies the Sommerfeld radiation condition

$$
\frac{\partial u^{s}}{\partial n}-i k u^{s}=O\left(r^{-(d+1) / 2}\right), r=|x| \rightarrow \infty
$$

The factorization method

- The problem is equivalent to the equation

$$
\begin{align*}
& u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega} \\
& \text { or } u-L u=u^{i n c} \text { with } \\
& \qquad L u(x)=k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y, x \in \bar{\Omega} .
\end{align*}
$$

The factorization method

- The problem is equivalent to the equation

$$
\begin{gather*}
u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega} \\
\text { or } u-L u=u^{i n c} \text { with } \\
L u(x)=k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y, x \in \bar{\Omega} . \\
u^{s}(x)=k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y, x \in \mathbb{R}^{d} .
\end{gather*}
$$

The factorization method

- The problem is equivalent to the equation

$$
u(x)-k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y=u^{i n c}(x), x \in \bar{\Omega}
$$

or $u-L u=u^{i n c}$ with

$$
L u(x)=k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y, x \in \bar{\Omega} .
$$

- $u^{s}(x)=k^{2} \int_{\Omega} q(y) u(y) \Phi(x, y) d y, x \in \mathbb{R}^{d}$.
- $u^{\infty}(\hat{x}, \hat{\theta})=k^{2} \int_{\Omega} q(y) u(y, \hat{\theta}) e^{-i k \hat{x} . y} d y$.

The factorization method

- Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.

The factorization method

- Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.
- We define
$F: L^{2}\left(\mathbb{S}^{d-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right), S: L^{2}(\Omega) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right)$ by
$F \psi(\hat{x})=\int_{\mathbb{S}^{d}-1} u^{\infty}(\hat{x}, \hat{\theta}) \psi(\hat{\theta}) d s(\hat{\theta}), \hat{x} \in \mathbb{S}^{d-1}$
$S \phi(\hat{x})=\int_{\Omega} e^{-i k \hat{x} . y} \phi(y) d y$

The factorization method

- Inverse problem. to determine Ω from the data set $u^{\infty}(\hat{x}, \hat{\theta}), \hat{x}, \hat{\theta} \in \mathbb{S}^{d-1}$.
- We define

$$
F: L^{2}\left(\mathbb{S}^{d-1}\right) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right), S: L^{2}(\Omega) \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right)
$$

by

$$
F \psi(\hat{x})=\int_{\mathbb{S}^{d}-1} u^{\infty}(\hat{x}, \hat{\theta}) \psi(\hat{\theta}) d s(\hat{\theta}), \hat{x} \in \mathbb{S}^{d-1}
$$

$$
S \phi(\hat{x})=\int_{\Omega} e^{-i k \hat{x} . y} \phi(y) d y
$$

$$
\Rightarrow S^{*} \psi(y)=\int_{\mathbb{S}^{d-1}} e^{i k \hat{x} \cdot y} \psi(\hat{x}) d s(\hat{x}) .
$$

The factorization method

Theorem 2.1. We have

$$
F=S T S^{*}
$$

with $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega), T \phi=k^{2} q(I-L)^{-1} \phi$.

The factorization method

- Theorem 2.1. We have

$$
F=S T S^{*}
$$

with $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega), T \phi=k^{2} q(I-L)^{-1} \phi$.

- For $z \in \mathbb{R}^{d}$ we define function $\Phi_{z} \in L^{2}\left(\mathbb{S}^{d-1}\right)$ by

$$
\Phi_{z}=e^{-i k \hat{x} . z}, z \in \mathbb{R}^{d} .
$$

The factorization method

- Theorem 2.1. We have

$$
F=S T S^{*}
$$

with $T: L^{2}(\Omega) \rightarrow L^{2}(\Omega), T \phi=k^{2} q(I-L)^{-1} \phi$.

- For $z \in \mathbb{R}^{d}$ we define function $\Phi_{z} \in L^{2}\left(\mathbb{S}^{d-1}\right)$ by

$$
\Phi_{z}=e^{-i k \hat{x} . z}, z \in \mathbb{R}^{d} .
$$

- Theorem 2.2. For any $z \in \mathbb{R}^{d}$, we have

$$
z \in \Omega \Leftrightarrow \Phi_{z} \in R(S) .
$$

Remark

$$
\text { , } R(S) \neq R(F) \text {. }
$$

Remark

- $R(S) \neq R(F)$.
- In this case, we have define an operator F^{\prime} that only depend on F such that $R(S)=R\left(F^{\prime}\right)$.

The factorization method

- Theorem 2.3. Let $q \in L^{\infty}(\Omega)$ such that there exist $q_{0}>0$ with $\operatorname{Req}(x) \geqslant q_{0}$ and $\operatorname{Imq}(x) \geqslant 0$ for all most $x \in \Omega$. Furthermore, let k^{2} be not eigenvalue of interior transmission problem. Then for any $z \in \mathbb{R}^{d}$:

$$
z \in \Omega \Leftrightarrow \Phi_{z} \in R\left(F_{\sharp}^{1 / 2}\right)
$$

and $F_{\sharp}=|R e F|+I m F$ is positive op..

The factorization method

- Theorem 2.4. Let $q \in L^{\infty}(\Omega)$ such that there exists $q_{0}>0$ with $\operatorname{Imq}(x) \geqslant q_{0}$ for all most $x \in \Omega$. Then for any $z \in \mathbb{R}^{d}$

$$
z \in \Omega \Leftrightarrow \Phi_{z} \in R\left(F_{\sharp}^{1 / 2}\right)
$$

with $F_{\sharp}=\operatorname{Im} F$.

Some examples

- Ω is unit ball and $q=$ constant in $\Omega, q=0$ outside Ω.

Some examples

- Ω is unit ball and $q=$ constant in $\Omega, q=0$ outside Ω.
- solving the forward problem by the integral equation method (presented by Vainiko) with $G=[-2,-2] \times[-2,2]$. Then computing $u^{\infty}\left(x_{i}, x_{j}\right), x_{i} \in \mathbb{S}^{d-1}, i, j=1, \ldots, 16$ corresponding to $M=16$ equidistantly chosen points on unit circle and $k=1$.

Some examples

- Ω is unit ball and $q=$ constant in $\Omega, q=0$ outside Ω.
- solving the forward problem by the integral equation method (presented by Vainiko) with $G=[-2,-2] \times[-2,2]$. Then computing $u^{\infty}\left(x_{i}, x_{j}\right), x_{i} \in \mathbb{S}^{d-1}, i, j=1, \ldots, 16$ corresponding to $M=16$ equidistantly chosen points on unit circle and $k=1$.
- computing $F=\left[u^{\infty}\left(x_{i}, x_{j}\right)\right], F_{\sharp}=\operatorname{Im} F$ and $F_{\sharp}=|R e F|+I m F$.

some examples

- Computing an eigensystem $\left\{\left(\lambda_{i}, U_{i}\right): i=1, \ldots, M\right\}$ of F_{\sharp}.

some examples

- Computing an eigensystem
$\left\{\left(\lambda_{i}, U_{i}\right): i=1, \ldots, M\right\}$ of F_{\sharp}.
- Defining the function

$$
W(z)=\left(\sum_{\lambda_{i} \geqslant 0.001} \frac{\left|<\Phi_{z}, U_{i}>\right|^{2}}{\lambda_{i}}\right)^{-1}
$$

with $\Phi_{z}=\left(e^{-i k x_{1} \cdot z}, \ldots, e^{-i k x_{M} \cdot z}\right)$.
Then we expect that the value of $W(z)$ is much greater for $z \in \Omega$ than for $z \notin \Omega$.

Example 1: The graph of $W(z)$

The plot of $F_{\#}$ with $q=0.8+0.5 i$ in Ω.

$F_{\#}=\operatorname{Im} F$

$F_{\#}=|\operatorname{Re} F|+\operatorname{Im} F$

Example 2: The plots of $W(z)$

The plot of F_{\nexists} with $q=0.8$ in Ω.

$F_{\not \#}=\operatorname{Im} F$

$F_{\neq \#}=|\operatorname{Re} F|+\operatorname{Im} F$

