Introduction to the Finite Element Method

Sören Boettcher

09.06.2009

Outline

- Motivation
- Partial Differential Equations (PDEs)

■ Finite Difference Method (FDM)

- Finite Element Method (FEM)
- References

Motivation

Figure: cross section of the room (cf. A. Jüngel, Das kleine Finite-Elemente-Skript)

Situation:

- $\Omega \subset \mathbb{R}^{2}$ - room
- D_{1} - window
- D_{2} - heating
- N_{1} - isolated walls, ceiling
- N_{2} - totally isolated floor
- θ - temperature

Motivation

- Conservation of energy:

$$
\int_{0}^{T} \int_{\Omega} \rho_{0} c_{e} \frac{\partial \theta}{\partial t} d x d t=-\int_{0}^{T} \int_{\partial \Omega} \kappa \frac{\partial \theta}{\partial \nu} d \sigma_{x} d t+\int_{0}^{T} \int_{\Omega} f d x d t
$$

- Heat equation:

$$
\rho_{0} c_{e} \frac{\partial \theta}{\partial t}-\operatorname{div}(\kappa \nabla \theta)=f \text { in } \Omega \text { for } t>0
$$

- Assumptions:

■ no time rate of change of the temperature, i.e. $\frac{\partial \theta}{\partial t}=0$
■ no interior heat source/sink, i.e. $f=0$
■ $\kappa=1$

Motivation

Model:

$$
\begin{gathered}
\Delta \theta=0 \text { in } \Omega \\
\theta=\theta_{W} \text { on } D_{1} \\
\theta=\theta_{H} \text { on } D_{2} \\
\nabla \theta \cdot \nu=0 \text { on } N_{2}
\end{gathered}
$$

$\nabla \theta \cdot \nu+\alpha\left(\theta-\theta_{W}\right)=0$ on N_{1}
Example:

- $\theta_{W}=10^{\circ} \mathrm{C}$
- $\theta_{H}=70^{\circ} \mathrm{C}$
- $\alpha=0.05$

Figure: temperature distribution in the heated room
(cf. A. Jüngel, Das kleine Finite-Elemente-Skript)

Partial Differential Equations (PDEs)

Second-order PDEs

- Elliptic PDE (stationary) e.g. Poisson Equation (scalar)

$$
-\Delta u=f \text { in } \Omega
$$

or stationary elasticity (vector-valued)

$$
-\operatorname{div}(\sigma)=\mathbf{f} \text { in } \Omega
$$

- Parabolic PDE e.g. heat equation

$$
\theta^{\prime}-\operatorname{div}(\kappa \nabla \theta)=f \text { in } \Omega \times(0, T)
$$

■ Hyperbolic PDE e.g. instationary elasticity

$$
\mathbf{u}^{\prime \prime}-\operatorname{div}(\boldsymbol{\sigma})=\mathbf{f} \text { in } \Omega \times(0, T)
$$

Classification of PDEs

- Linear PDE

$$
\theta^{\prime}-\Delta \theta=f \text { in } \Omega \times(0, T)
$$

- Semilinear PDE

$$
\theta^{\prime}-\Delta \theta=f(\theta) \text { in } \Omega \times(0, T)
$$

- Quasilinear PDE

$$
\theta^{\prime}-\operatorname{div}(\alpha(\nabla \theta))=f \text { in } \Omega \times(0, T)
$$

- Fully nonlinear PDE

$$
\theta^{\prime}-g(\Delta \theta)=f \text { in } \Omega \times(0, T)
$$

Boundary Conditions (BCs)

- Dirichlet BC (first kind, essential BC)

$$
u=g \text { on } \partial \Omega
$$

- Neumann BC (second kind, natural BC)

$$
\nabla u \cdot \nu=\frac{\partial u}{\partial \nu}=g \text { on } \partial \Omega
$$

- Robin BC (Cauchy BC, third kind)

$$
\frac{\partial u}{\partial \nu}+\sigma u=g \text { on } \partial \Omega
$$

Methods for solving PDEs

- Analytical Methods for PDEs / Existence and Uniqueness
- Method of Separation of Variables
- Method of Eigenfunction Expansion
- Method of Diagonalisation (Fourier Transformation)
- Method of Laplace Transformation
- Method of Green's Functions
- Method of Characteristics
- Method of Semigroups

■ Variational Methods (e.g. Galerkin Approximation)

Methods for solving PDEs

■ Numerical Methods for PDEs
■ Finite Difference Method (FDM)
■ pointwise approximation of the differential equation
■ geometry is divided into an orthogonal grid
■ Finite Element Method (FEM)
■ powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied sciences

- differential equations will be solved with an equivalent variation problem
■ geometry must be divided into small elements
■ problem is solved by choosing basis functions which are supposed to approximate the problem
- Consider

$$
-\Delta u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

- Idea:
- approximate differential quotients by difference quotients
- reduce differential equation to algebraic system
- Assumptions:
- $\Omega=(0,1)^{2}$
- equidistant nodes $\left(x_{i}, y_{j}\right) \in \Omega(i, j=0, \ldots, N)$ with $h=x_{i+1}-x_{i}=y_{i+1}-y_{i}$
- Taylor Expansion

$$
\begin{aligned}
& u\left(x_{i+1}, y_{j}\right)=u\left(x_{i}, y_{j}\right)+\frac{\partial u}{\partial x}\left(x_{i}, y_{j}\right) h+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, y_{j}\right) h^{2}+\mathcal{O}\left(h^{3}\right) \\
& u\left(x_{i-1}, y_{j}\right)=u\left(x_{i}, y_{j}\right)-\frac{\partial u}{\partial x}\left(x_{i}, y_{j}\right) h+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, y_{j}\right) h^{2}+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

- Second-order centered difference

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{h^{2}}\left(u\left(x_{i+1}, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i-1}, y_{j}\right)\right)+\mathcal{O}(h) \\
& \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{h^{2}}\left(u\left(x_{i}, y_{j+1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)\right)+\mathcal{O}(h)
\end{aligned}
$$

- Approximation of Δu

$$
\Delta u\left(x_{i}, y_{j}\right) \approx \frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i j}\right)
$$

■ Find $u_{i j}=u\left(x_{i}, y_{j}\right)$ s.t.

$$
\begin{aligned}
-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+4 u_{i j} & =h^{2} f_{i j},\left(x_{i}, y_{j}\right) \in \Omega \\
u_{i j} & =0, \quad\left(x_{i}, y_{j}\right) \in \partial \Omega
\end{aligned}
$$

whereas $f_{i j}=f\left(x_{i}, y_{j}\right)$

■ Linear system of equations:

$$
U_{k}:=u_{i j}, F_{k}:=f_{i j} \text { with } k=i N+j \text { leads to } A U=F
$$

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
A_{0} & I & & & 0 \\
I & A_{0} & I & & \\
& \ddots & \ddots & \ddots & \\
& & I & A_{0} & I \\
0 & & & I & A_{0}
\end{array}\right), \quad A_{0}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
4 & -1 & & & 0 \\
-1 & 4 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 4 & -1 \\
0 & & & -1 & 4
\end{array}\right)
$$

- Disadvantages of FDM
- complex (or changing) geometries and BCs
- existence of third derivatives
- f not continuous

■ Consider

$$
-\Delta u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

- Trick: transform PDE into equivalent variational form
- Multiplication with arbitrary $v \in X$ and integration over Ω

$$
\begin{aligned}
\int_{\Omega} f v d x & =-\int_{\Omega} \operatorname{div}(\nabla u) v d x \\
& =-\underbrace{\int_{\partial \Omega} v \nabla u \cdot \nu d x}_{=0}+\int_{\Omega} \nabla u \nabla v d x
\end{aligned}
$$

- Find $u \in X: \forall v \in X$

$$
\int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} f v d x
$$

- Approximation: Find solution of a finite dimensional problem
- Let $\left(X_{h}\right)_{h \geq 0}$ a sequence of finite dimensional spaces with $X_{h} \rightarrow X(h \rightarrow 0)$ and elements of X_{h} vanish on $\partial \Omega$
■ Find $u_{h} \in X_{h}$ s.t. $\forall v \in X_{h}$

$$
\int_{\Omega} \nabla u_{h} \nabla v d x=\int_{\Omega} f v d x
$$

- Let $\left\{\varphi_{i}\right\}_{i=1, \ldots, N}$ a basis of X_{h}. The ansatz $u_{h}(x)=\sum_{i=1}^{N} y_{i} \varphi_{i}(x)$ and the choice $v=\varphi_{j}$ lead to

$$
\sum_{i=1}^{N} y_{i} \underbrace{\int_{\Omega} \nabla \varphi_{i} \nabla \varphi_{j} d x}_{=: A_{i j}}=\underbrace{\int_{\Omega} f \varphi_{j} d x}_{=: F_{j}}, j=1, \ldots, N
$$

■ Linear system of equations:

$$
\sum_{i=1}^{N} A_{i j} y_{i}=F_{j}, j=1, \ldots, N
$$

- Notation:
- A - stiffness matrix
- F - force vector

■ $y_{i}=u_{h}\left(x_{i}\right)$ - solution vector
■ Questions: What about $X, X_{h},\left\{\varphi_{i}\right\}_{i=1, \ldots, N}$?
■ Hint: choose basis s.t. as much as possible $A_{i j}=0$!
(A less costly to form, $A y=F$ can be solved more efficiently)

- Idea: discretise the domain into finite elements and define basis functions which vansih on most of these elements
- 1D: interval
- 2D: triangular/quadrilateral shape
- 3D: tetrahedral, hexahedral forms
- Ansatz functions:
- support of basis functions as small as possible and number of basis functions whose supports intersect as small as possible
■ use of piecewise (images of) polynomials
- Example:
- $\Omega \subset \mathbb{R}^{2}$ bounded Lipschitz domain, $f \in L^{2}(\Omega)$
- $X=H_{0}^{1}(\Omega)$
- Triangulation of Ω by subdividing Ω into a set $\mathcal{T}_{h}=\left\{K_{1}, \ldots, K_{n}\right\}$ of non-overlapping triangles K_{i} s.t. no vertex of a triangle lies on the edge of another triangle
- $\Omega=\cup_{K \in \tau_{h}} K$
- Mesh parameter $h=\max _{K \in \mathcal{T}_{h}} \operatorname{diam}(K)$
- $X_{h}:=\left\{u_{h} \in C(\bar{\Omega}, \mathbb{R}): u_{h}\right.$ piecewise linear, $u_{h}=0$ on $\left.\partial \Omega\right\}$
- Linear elements in 1D:

$$
\varphi_{i}(x)=\left\{\begin{aligned}
\frac{x-x_{i-1}}{x_{i}-x_{i-1}} & , \quad x_{i-1} \leq x \leq x_{i} \\
\frac{x_{i+1}-x}{x_{i+1}-x_{i}} & , \\
0, & x_{i-1} \leq x \leq x_{i} \quad, i=1, \ldots, N-1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Figure: basis of 1D linear finite elements (cf. T. M. Wagner, A very short introduction to the FEM)

Figure: linear finite elements in 1D (cf. T. M. Wagner, A very short introduction to the FEM)

Figure: basis function of 2D linear finite elements (cf. T. M. Wagner, A very short introduction to the FEM)

■ Linear or high-order elements?

- Advantages: small error, better approximation, fast error convergence, less computing time for same error
- Disadvantages: larger matrix for same grid, no conservation of algebraic sign

■ Matrix A is large, but sparse: only a few matrix elements are not equal to zero (intersection of the support of basis function is mostly empty)

- A symmetric, positive definit \rightsquigarrow unique solution

■ Linear system of equations: many methods in numerical linear algebra exist to solve linear systems of equations

■ direct solvers (Gaussian elemination, LU decomposition, Cholesky decomposition): for $N \times N$ matrix $\approx N^{3}$ operations
■ iterative solvers (CG, GMRES, \ldots): $\approx N$ operations for each iteration

■ Runge-Kutta methods (ODEs for unsteady problems)

- Standard Error Estimation (\mathbb{P}_{k}-elements, u sufficiently smooth):

$$
\begin{aligned}
\left(\int_{\Omega}\left|u-u_{h}\right|^{2} d x\right)^{\frac{1}{2}} & \leq c h^{k+1}\left(\int_{\Omega}\left|D^{k+1} u\right|^{2} d x\right)^{\frac{1}{2}} \\
\left(\int_{\Omega}\left|\nabla u-\nabla u_{h}\right|^{2} d x\right)^{\frac{1}{2}} & \leq c h^{k}\left(\int_{\Omega}\left|D^{k+1} u\right|^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

- Consistency: exact solution solves approximate problem but for error that vanishes as $h \rightarrow 0$
- Stability: errors remain bounded as $h \rightarrow 0$
- Convergence: approximate solution must converge to a solution of the original problem for $h \rightarrow 0$
- suitable for adaptive method

Model Algorithm of the FEM

1 Transformation of the given PDE via the variational principle
2 Selection of a finite element type
3 Discretization of the domain of interest into elements
4 Derivation of the basis from the discretisation and the chosen ansatz function

5 Calculation of the stiffness matrix and the right-hand side
6 Solution of the linear system of equations
7 Obtainment (and visualisation) of the approximation

- Software: ALBERTA, COMSOL, MATLAB, SYSWELD

References

- K. Atkinson, W. Han; Theoretical Numerical Analysis.
- D. Braess; Finite Elements.
- R. Dautray, J.-L. Lions; Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6: Evolution Problems II.
- C. Grossmann, H.-G. Roos; Numerical Treatment of PDEs.
- K. Knothe, H. Wessels; Finite elements.

■ G. R. Liu, S. S. Quek; The FEM.

- M. Renardy, R. C. Rogers; An Introduction to PDEs.
- E. G. Thompson; Introduction to the FEM.

Thank you for your attention.

