
Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Solving ODEs and PDEs in MATLAB

Sören Boettcher

16.02.2009

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Introduction

Quick introduction to MATLAB syntax

ODE in the form of Initial Value Problems (IVP)

what equations can MATLAB handle
how to code into MATLAB
how to choose the right MATLAB solver
how to get the solver to do what you want
how to see the result(s)
several examples

Boundary Value Problems (BVP)

Delay Differential Equations (DDE)

Partial Differential Equations (PDE)

NOT todays topic: numerical methods, ODE, BVP, DDE, PDE
or MATLAB

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Problem

DEs are functions of one or several variables that relate the
values of the function itself and of its derivatives of various
orders

An ODE is a DE in which the unknown function is a function of
a single independent variable

y ′ = f (t, y) (1)

In many cases, a solution exists, but the ODE may not
necessarily be directly solvable. Instead, the solution may be
numerically approximated using computers

There are many numerical methods in use to solve (??), but one
has to use the right solver in order to obtain good solutions

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

The MATLAB ODE Solvers

Explicit methods for nonstiff problems:

ode45 - Runge-Kutta pair of Dormand-Prince

ode23 - Runge-Kutta pair of Bogacki-Shampine

ode113 - Adams predictor-corrector pairs of orders 1 to 13

ode15i - BDF

Implicit methods for stiff problems:

ode23s - Runge-Kutta pair of Rosenbrock

ode23t - Trapezoidal rule

ode23tb - TR-BDF2

ode15s - NDF of orders 1 to 5

All these methods have built-in local error estimate to control the

step size; codes are found in the /toolbox/matlab/funfun folder

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Basic usage for MATLAB’s solvers

Apply a solver:
[t,y] = solver(@odefun, time interval, y0, options)

odefun - a function handle that evaluates the right side of the
differential equations.

time interval - a vector specifying the interval of integration.
[t0,tf] - initial and final value
[t0,t1,. . . ,tn] - evaluation of the method at certain points

y0 - a vector of initial conditions.

options - structure of optional parameters that change the
default integration properties.

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Approach

Consider the IVP:

y ′′ + y ′ = 0, y(0) = 2, y ′(0) = 0

Rewrite the problem as a system of first-order ODEs:

y ′1 = y2

y ′2 = −y1

Code the system of first-order ODEs:
function dy dt = odefun(t,y)
dy dt = [y(2); -y(1)];

Apply a solver to the problem:
[t,y] = ode45(@odefun, [0,20], [2,0]);

The algorithm selects a certain partition of the time interval and
returns the value at each point of the partition.

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Solution of harmonic oscillation

View the solver output:
plot(t, y(:,1),’r’,t,y(:,2),’b’)
title(’Solution of van der Pol Equation);
xlabel(’time t’); ylabel(’solution y’);
legend(’y 1’,’y 2’)

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Options

Several options are available for MATLAB solvers.

The odeset function lets you adjust the integration parameters
of the following ODE solvers.

Save options in opts
opts=odeset(’name1’,’value1’,’name2’,’value2’,. . .)

Expand opts
opts=odeset(old opts,’name’,’value’)

If no options are specified, the default values are used.

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

The ODESET Options

name meaning default value
RelTol relative error tolerance 10−3

AbsTol absolute error tolerance 10−6

Refine output refinement factor 1 (4)
MaxStep upper bound on step size
Stats display computational cost statistics off

The estimated error in each integration step satiesfies

ek ≤ max{RelTol · yk ,AbsTol}

whereas yk the approximation of y(xk) at step k

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example of efficiency differences

Van der Pol oscillator as a system of first-order ODEs:

y ′1 = y2

y ′2 = µ(1− y2
1 y2 − y1)

as a function with µ = 1000:
function dy dt = vdp(t,y,mu)
dy dt = [y(2); mu*(1-y(1).^2).*y(2)-y(1)];

Apply a solver (takes 123 seconds)
[t,y]=ode23(@(t,y)vdp(t,y,1000),[0,3000],[2,0]);

Different solver (takes 56 milliseconds)
[t,y]=ode15s(@(t,y)vdp(t,y,1000),[0,3000],[2,0]);

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example of efficiency differences

Although the above function is stiff for large µ, ode23 has almost

achieved the same result as ode15s

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example for false solver

Simple ODE:
y ′ = sin(1000t), y(0) = 1.2

Analytic solution:

y(t) =
− cos(1000t) + 1201

1000

2 different solvers, one for stiff ODEs:
[t,y]=ode23(@(t,y)sin(1000*t),[0,3],1.2);
[t,y]=ode23s(@(t,y)sin(1000*t),[0,3],1.2);

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example for false solver

ode23 is totally wrong, ode23s makes it well

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Solving BVPs with MATLAB

BVPs can have multiple solutions and one purpose of the initial
guess is to indicate which solution you want. The 2nd order DE

y ′′ + |y | = 0

has exactly two solutions that satisfy the boundary conditions

y(0) = 0, y(4) = −2

DE for boundary value
function dy dx = bvpex(x,y)
dy dx = [y(2); -abs(y(1))];

Evaluate residual of boundary condition
function res = bc(ya,yb)
res = [ya(1); yb(1) + 2];

Apply a solver:
solinit = bvpinit(linspace(0,4,5),[-1 0]);
sol = bvp4c(@bvpex,@bc,solinit);

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Solving DDEs with MATLAB

A DDE is a DE in which the derivative of the unknown function
at a certain time is given in terms of the values of the function
at previous times.

Consider the problem

y ′(t) =
2y(t − 2)

1 + y(t − 2)9.65
−y(t), t ∈ [0, 100], y(t) = 0.5 for t < 0

Code the function:
function dy dt = ddes(t,y,z)
dy dt = 2*z/(1+z^9.65)-y;

Apply a solver:
sol=dde23(@ddes,2,0.5,[0,100])
plot(sol.x,sol.y)

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Numerical Solution of PDEs with MATLAB

A PDE is a DE in which the unknown function is a function of
multiple independent variables and their partial derivatives.

solver nonlinear system
1D pdepe X X
2D pdenonlin X ×

(elliptic)
parabolic × ×
hyperbolic × ×

3D × × ×

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Specifying an IVBP

pdepe solves PDEs of the form

µ(x , t, u, ux)ut = x−m(xmf (x , t, u, ux))x + s(x , t, u, ux)

x ∈ (a, b), a > 0, t ∈ [t0, tf], m = 0, 1, 2, µ ≥ 0

The problem has an initial condition of the form

u(x , t0) = Φ(x), x ∈ [a, b]

The boundary conditions are

p(a, t, u(a, t)) + q(a, t)f (a, t, u(a, t), ux(a, t)) = 0, t ≥ t0

p(b, t, u(b, t)) + q(b, t)f (b, t, u(b, t), ux(b, t)) = 0, t ≥ t0

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example

Consider the PDE

π2ut = uxx , x ∈ (0, 1), t ∈ (0, 2]

with boundary conditions

u(0, t) = 0, ux(1, t) = −π exp(−t)

and initial conditions

u(x , 0) = sin(πx)

The exact solution for this problem is

u(x , t) = exp(−t) sin(πx)

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Example

The specification of the problem for solution by pdepe is

m = 0, a = 0, b = 1, t0 = 0, tf = 2,

µ(x , t, u, ux) = π2, f (x , t, u, ux) = ux , s(x , t, u, ux) = 0,

p(a, t, u(a, t)) = u(a, t), q(a, t) = 0,

p(b, t, u(b, t)) = π exp(−t), q(b, t) = 1,

Φ(x) = sin(πx)

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Solving an IBVP

The syntax of the MATLAB PDE solver is
sol=pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

pdefun is a function handle that computes µ, f and s
[mu,f,s]=pdefun(x,t,u,ux)

icfun is a function handle that computes Φ
phi=icfun(x)

bcfun is a function handle that computes the BC
[pa,qa,pb,qb]=bcfun(a,ua,b,ub,t)

xmesh is a vector of points in [a, b] where the solution is
approximated

tspan is a vector of time values where the solution is
approximated

sol is a 3D array where sol(i,j,1) is the solution at
tspan(i) and xmesh(j)

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

References

Books

Coombes et al.; Differential Equations with MATLAB
Cooper; Introduction to PDEs with MATLAB
Fansett; Applied Numerical Analysis using MATLAB
Moler; Numerical Computing with MATLAB
Shampine et al.; Solving ODEs with MATLAB
Stanoyevitch; Introduction to ODEs and PDEs using
MATLAB

Papers

Shampine, Reichelt; The MATLAB ODE Suite
Shampine et al.; Solving BVPs for ODEs in MATLAB with
bvp4c

MATLAB Help

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Exercises

y ′ + 2y = sin(t) + exp(−5t), y(0) = 0

y ′ + y cot(t) = 5 exp(cos(t)), y(0) = 0

y ′′ − 4y ′ + 5y = exp(−2t) tan(t), y(0) = 0, y ′(0) = 0

2y ′′ + y = 2 tan(t), y(0) = 0, y ′(0) = 1

Solving ODEs
and PDEs in
MATLAB

Sören
Boettcher

Thank you for your attention.

