Arnoldi Algorithm

Nguyễn, Thanh Sơn

Universitaet Bremen Zentrum fuer Technomathematik

25th March 2009

▲ロト ▲舂 ト ▲注 ト ▲注 ト -

■ のへで

イロト イロト イヨト イヨト

æ

Introduction

 Arnoldi algorithm/Arnoldi process is used to produce an orthonormal basis for a Krylov subspace. Given a square matrix *A*, a non-zero vector *x* and an integer number *m*, find a matrix *V* s.t. V^TV = I and

$$colspan(V) = span(x, Ax, A^{2}x, ..., A^{m-1}x).$$

Invented by W. E. Arnoldi in 1951 for eigenvalue problem.Wide-used in approximate solvers.

イロト イポト イヨト イヨト

Arnoldi algorithm/Arnoldi process is used to produce an orthonormal basis for a Krylov subspace. Given a square matrix *A*, a non-zero vector *x* and an integer number *m*, find a matrix *V* s.t. V^TV = I and

$$colspan(V) = span(x, Ax, A^2x, ..., A^{m-1}x).$$

Invented by W. E. Arnoldi in 1951 for eigenvalue problem.Wide-used in approximate solvers.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Arnoldi algorithm/Arnoldi process is used to produce an orthonormal basis for a Krylov subspace. Given a square matrix *A*, a non-zero vector *x* and an integer number *m*, find a matrix *V* s.t. V^TV = I and

$$colspan(V) = span(x, Ax, A^2x, ..., A^{m-1}x).$$

- Invented by W. E. Arnoldi in 1951 for eigenvalue problem.
- Wide-used in approximate solvers.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Arnoldi algorithm/Arnoldi process is used to produce an orthonormal basis for a Krylov subspace. Given a square matrix *A*, a non-zero vector *x* and an integer number *m*, find a matrix *V* s.t. V^TV = I and

$$colspan(V) = span(x, Ax, A^2x, ..., A^{m-1}x).$$

- Invented by W. E. Arnoldi in 1951 for eigenvalue problem.
- Wide-used in approximate solvers.

ヘロマ ヘ動マ ヘロマ

Coding

(日)

Coding

function
$$[V, H] = Arnoldi(A, b, m, tol)$$

 $H = zeros(m + 1, m);$
beta = norm(b);
 $V = b/beta;$
for $j = 1 : m$
 $w = AV(:, j);$
for $i = 1 : j$
 $H(i, j) = w'V(:, i);$
end
for $i = 1 : j$

w = w - H(i,j) * V(:,i);end H(j+1,j) = norm(w);if H(j+1,j) < tolbreak H = H(1: j, 1: j);end V = [V w/H(j + 1, j)];end end ・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ъ

• Three matrices A, V, H satisfy the relations

$$AV_m = V_{m+1}H_{(m+1)xm};$$

$$V_m^T A V_m = H_{mxm}.$$
(1)
(2)

イロト 人間 トイヨト イヨト

= 900

 H_{mxm} is a Hessenberg matrix, $V_m^T V_m = I_m$.

• This structure is useful in many situations in linear algebra.

Linear equations

- GMRES (Generalized Minimum RESidual method): Given a square (usually large, sparse) system Ax = b of order N, intial guess x_0 , $r_0 = b - Ax_0$ called intial residual. One finds the approximate solution in affine subspace $x_0 + \mathcal{K}_m(A, r_0)$.
- Let $x = x_0 + V_m y$, $y \in \mathbb{R}^m$, the minimization problem $||b Ax||_2$ subject to $x \in \mathbb{R}^N$ is converted to minimizing $||||r_0||e_1 H_{(m+1)xm}y||$ subject to $y \in \mathbb{R}^m$.
- If A is nonsingular, GMRES breaks down at m^{th} iff $x_m = x_0 + V_m y$ is the exact solution.
- Some other methods or variations: FOM, GCR, GMRES-DR, c.f [4, 6, 7, 8]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● □ ● ○ ○ ○

Linear equations

- GMRES (Generalized Minimum RESidual method): Given a square (usually large, sparse) system Ax = b of order N, intial guess x_0 , $r_0 = b - Ax_0$ called intial residual. One finds the approximate solution in affine subspace $x_0 + \mathcal{K}_m(A, r_0)$.
- Let $x = x_0 + V_m y$, $y \in \mathbb{R}^m$, the minimization problem $\|b Ax\|_2$ subject to $x \in \mathbb{R}^N$ is converted to minimizing $\|\|r_0\|e_1 H_{(m+1)xm}y\|$ subject to $y \in \mathbb{R}^m$.
- If A is nonsingular, GMRES breaks down at m^{th} iff $x_m = x_0 + V_m y$ is the exact solution.
- Some other methods or variations: FOM, GCR, GMRES-DR, c.f [4, 6, 7, 8]

(日)

Linear equations

- GMRES (Generalized Minimum RESidual method): Given a square (usually large, sparse) system Ax = b of order N, intial guess x_0 , $r_0 = b - Ax_0$ called intial residual. One finds the approximate solution in affine subspace $x_0 + \mathcal{K}_m(A, r_0)$.
- Let $x = x_0 + V_m y$, $y \in \mathbb{R}^m$, the minimization problem $\|b Ax\|_2$ subject to $x \in \mathbb{R}^N$ is converted to minimizing $\|\|r_0\|e_1 H_{(m+1)xm}y\|$ subject to $y \in \mathbb{R}^m$.
- If A is nonsingular, GMRES breaks down at m^{th} iff $x_m = x_0 + V_m y$ is the exact solution.
- Some other methods or variations: FOM, GCR, GMRES-DR, c.f [4, 6, 7, 8]

(日)

Linear equations

- GMRES (Generalized Minimum RESidual method): Given a square (usually large, sparse) system Ax = b of order N, intial guess x_0 , $r_0 = b - Ax_0$ called intial residual. One finds the approximate solution in affine subspace $x_0 + \mathcal{K}_m(A, r_0)$.
- Let $x = x_0 + V_m y$, $y \in \mathbb{R}^m$, the minimization problem $\|b Ax\|_2$ subject to $x \in \mathbb{R}^N$ is converted to minimizing $\|\|r_0\|e_1 H_{(m+1)xm}y\|$ subject to $y \in \mathbb{R}^m$.
- If A is nonsingular, GMRES breaks down at m^{th} iff $x_m = x_0 + V_m y$ is the exact solution.
- Some other methods or variations: FOM, GCR, GMRES-DR, c.f [4, 6, 7, 8]

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Eigenvalues problem

- The original eigenvalue problem $Ax = \lambda x$ is replaced by the "reduced" eigenvalue problem $H_{mxm}z_m = \theta z_m$ where the Arnoldi basis V_m is started with a unit-normed initial eigenvector v_1 . Then, the approximate eigenpairs of A are selected form the Ritz pairs { $(\theta_i, V_m z_{m,i})$ }.
- This approach yields a better result in compare with *Power* method which only uses A^{m-1}v₁ for approximation. c.f.[5]

ヘロト 人間ト 人間ト 人間ト

Eigenvalues problem

- The original eigenvalue problem $Ax = \lambda x$ is replaced by the "reduced" eigenvalue problem $H_{mxm}z_m = \theta z_m$ where the Arnoldi basis V_m is started with a unit-normed initial eigenvector v_1 . Then, the approximate eigenpairs of A are selected form the Ritz pairs { $(\theta_i, V_m z_{m,i})$ }.
- This approach yields a better result in compare with *Power* method which only uses A^{m-1}v₁ for approximation. c.f.[5]

・ロト ・ 一 マ ・ ー マ ・ ー ・

Model reduction

Consider a LTI dynamical system

$$Ex'(t) = Ax(t) + bu(t), \qquad (3)$$

$$y(t) = cx(t) + du(t); \qquad (4)$$

ヘロト 人間 ト ヘヨト ヘヨト

э

The transfer function is $H(s) = c(sE - A)^{-1}b + d$. Moments matching method approximates H(s) near some point, say s_0 , by matching a few leading coefficients of Taylor expansion at s_0 .

$$H(s) = -c \sum_{i=0}^{\infty} ((A - s_0 E)^{-1} E)^i (A - s_0 E)^{-1} b(s - s_0)^i + d$$

Model reduction

This can be done by projecting the system (3)-(4) onto Krylov subspace $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ or both $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ and $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1}E)^T, C^T)$. The reduced systems are then,

One-sided

$$V^{T}EVx' = V^{T}AVx + V^{T}bu,$$

$$y = cVx + du;$$

Two-sided

$$W^{T}EVx' = W^{T}AVx + W^{T}bu,$$

 $y = cVx + du;$

イロト 不得 トイヨト イヨト

Model reduction

This can be done by projecting the system (3)-(4) onto Krylov subspace $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ or both $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ and $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1}E)^T, C^T)$. The reduced systems are then,

One-sided

$$V^{T}EVx' = V^{T}AVx + V^{T}bu,$$

 $y = cVx + du;$

Two-sided

$$W^{T}EVx' = W^{T}AVx + W^{T}bu,$$
$$y = cVx + du;$$

ヘロト 人間 ト ヘヨト ヘヨト

Model reduction

This can be done by projecting the system (3)-(4) onto Krylov subspace $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ or both $V = \mathcal{K}_m((A - s_0 E)^{-1}E, (A - s_0 E)^{-1}b)$ and $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1}E)^T, C^T)$. The reduced systems are then,

One-sided

$$V^{T}EVx' = V^{T}AVx + V^{T}bu,$$

 $y = cVx + du;$

Two-sided

$$W^T E V x' = W^T A V x + W^T b u,$$

 $y = c V x + d u;$

(日) (得) (王) (王) (王)

- Deflation may occur, if the process has not been convergent, restarting is required.
- Restarting is also needed when the order of Krylov subspace is big,(but under-convergent) since this requires much computer memories.
- Multiple starting vectors leads to so called *block Arnoldi* algorithm which requires more efforts in implementation.

ヘロマ ふぼう くほう くしつ

э

- Deflation may occur, if the process has not been convergent, restarting is required.
- Restarting is also needed when the order of Krylov subspace is big,(but under-convergent) since this requires much computer memories.
- Multiple starting vectors leads to so called *block Arnoldi* algorithm which requires more efforts in implementation.

ヘロト 人間 とくほとくほとう

- Deflation may occur, if the process has not been convergent, restarting is required.
- Restarting is also needed when the order of Krylov subspace is big,(but under-convergent) since this requires much computer memories.
- Multiple starting vectors leads to so called *block Arnoldi* algorithm which requires more efforts in implementation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two applications of Arnoldi algorithm in solving linear equations and model reduction are provided.

ヘロト 人間 とくほとく ほとう

.

- [Antoulas05] A. C. Antoulas, Approximation of Large-scale Dynamical Systems, Advances in Design and Control DC-06, SIAM, Philadenphia, 2005.
- [Chahlaoui02] Y. Chahlaoui, P. V. Doreen, "A collection of benchmark examples for model reduction of linear time invariant dynamical systems", *Technical report*, SILICOT Working Note 2002-2, 2002.
- [Freund99] R. W. Freund, "Krylov-subspace methods for reduced-order modeling in circuit simulation", *Numerical Analysis Manuscript*, No. 99-3-17, Bell Laboratories.
- [Morgan02] R. B. Morgan, "GMRES with deflated restarting", SIAM J. Sci. Comput., Vol. 24, No. 1, pp. 20-37, 2002.

ヘロン 人間 とくほ とくほ とう

э

- [Saad92] Y. Saad, Numerical Methods for Eigenvalues Problems, Manchester University Press, 1992.
- [Saad96] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.
- [Sturler96], E. de Sturler, "Nested Krylov methods based on GRC", J. Computational and Applied Mathematics, 67, pp. 15-41, 1996.
- [Sturler99], E. de Sturler, "Truncation strategies for optimal Krylov subspace methods", SIAM J. Numer. Anal., Vol. 36, No. 3, pp. 864-889, 1999.

ヘロト 人間 ト ヘヨト ヘヨト