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Introduction

Arnoldi algorithm/Arnoldi process is used to produce an
orthonormal basis for a Krylov subspace. Given a square
matrix A, a non-zero vector x and an integer number m,
find a matrix V s.t. VTV = I and

colspan(V) = span(x,Ax,A2x, ...,Am−1x).

Invented by W. E. Arnoldi in 1951 for eigenvalue problem.

Wide-used in approximate solvers.
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Coding

function [V,H] = Arnoldi(A,b,m, tol)

H = zeros(m + 1,m);

beta = norm(b);

V = b/beta;

for j = 1 : m

w = AV(:, j);

for i = 1 : j

H(i, j) = w′V(:, i);

end

for i = 1 : j

w = w− H(i, j) ∗ V(:, i);

end

H(j + 1, j) = norm(w);

if H(j + 1, j) < tol

break

H = H(1 : j,1 : j);

end

V = [V w/H(j + 1, j)];

end

end
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Three matrices A,V,H satisfy the relations

AVm = Vm+1H(m+1)xm; (1)

VT
mAVm = Hmxm. (2)

Hmxm is a Hessenberg matrix, VT
mVm = Im.

This structure is useful in many situations in linear algebra.
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Linear equations

GMRES ( Generalized Minimum RESidual method ): Given
a square (usually large, sparse) system Ax = b of order N,
intial guess x0, r0 = b−Ax0 called intial residual. One finds
the approximate solution in affine subspace x0 +Km(A, r0).

Let x = x0 + Vmy, y ∈ Rm, the minimization problem
‖b− Ax‖2 subject to x ∈ RN is converted to minimizing
‖‖r0‖e1 − H(m+1)xmy‖ subject to y ∈ Rm.

If A is nonsingular, GMRES breaks down at mth iff
xm = x0 + Vmy is the exact solution.

Some other methods or variations: FOM, GCR,
GMRES-DR, c.f [4, 6, 7, 8]
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Eigenvalues problem

The original eigenvalue problem Ax = λx is replaced by
the "reduced" eigenvalue problem Hmxmzm = θzm where
the Arnoldi basis Vm is started with a unit-normed initial
eigenvector v1. Then, the approximate eigenpairs of A are
selected form the Ritz pairs {(θi,Vmzm,i)}.
This approach yields a better result in compare with Power

method which only uses Am−1v1 for approximation. c.f.[5]
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Model reduction

Consider a LTI dynamical system

Ex′(t) = Ax(t) + bu(t), (3)

y(t) = cx(t) + du(t); (4)

The transfer function is H(s) = c(sE− A)−1b + d. Moments
matching method approximates H(s) near some point, say s0,
by matching a few leading coefficients of Taylor expansion at
s0.

H(s) = −c
∞∑
i=0

((A− s0E)−1E)i(A− s0E)−1b(s− s0)
i + d

NguyÔn, Thanh S¬n Arnoldi Algorithm



Introduction
Applications

Remarks
Examples

References

Model reduction

This can be done by projecting the system (3)-(4) onto Krylov
subspace V = Km((A− s0E)−1E, (A− s0E)−1b) or both
V = Km((A− s0E)−1E, (A− s0E)−1b) and
W = Ki+1(((A− s0E)−1E)T,CT). The reduced systems are
then,

One-sided

VTEVx′ = VTAVx + VTbu,

y = cVx + du;

Two-sided

WTEVx′ = WTAVx + WTbu,

y = cVx + du;
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Deflation may occur, if the process has not been
convergent, restarting is required.

Restarting is also needed when the order of Krylov
subspace is big,( but under-convergent ) since this
requires much computer memories.

Multiple starting vectors leads to so called block Arnoldi

algorithm which requires more efforts in implementation.
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Examples

Two applications of Arnoldi algorithm in solving linear
equations and model reduction are provided.
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