Spline Interpolation Based PMOR

Nguyen Thanh Son

Universitaet Bremen
Zentrum fuer Technomathematik
December 14, 2009

Outline

(1) Preliminaries

- Statement of the problem: Parametric Model Order Reduction
- Interpolation with B-Splines
(2) Spline Interpolation Based PMOR
- Approach
- Linear Spline
- Cubic Spline
(3) Conclusion

Statement of the problem

Given a parameter-dependent systems of size N

$$
\begin{align*}
& \dot{x}(t)=A(p) x(t)+B(p) u(t), \\
& y(t)=C(p) x(t), p \in[0,1] \subset \mathbb{R} . \tag{1}
\end{align*}
$$

Replace it with a parameter-dependent systems of size $n, n \ll N$

$$
\begin{align*}
& \dot{x}(t)=\hat{A}(p) x(t)+\hat{B}(p) u(t), \tag{2}\\
& y(t)=\hat{C}(p) x(t), p \in[0,1] \subset \mathbb{R} .
\end{align*}
$$

Statement of the problem

Given a parameter-dependent systems of size N

$$
\begin{align*}
& \dot{x}(t)=A(p) x(t)+B(p) u(t), \\
& y(t)=C(p) x(t), p \in[0,1] \subset \mathbb{R} . \tag{1}
\end{align*}
$$

Replace it with a parameter-dependent systems of size $n, n \ll N$

$$
\begin{align*}
\dot{x}(t) & =\hat{A}(p) x(t)+\hat{B}(p) u(t), \\
y(t) & =\hat{C}(p) x(t), p \in[0,1] \subset \mathbb{R} . \tag{2}
\end{align*}
$$

Requirements

- Reduction process independent the change of parameter on a fixed interval.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Requirements

- Reduction process independent the change of parameter on a fixed interval.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Requirements

- Reduction process independent the change of parameter on a fixed interval.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high

Requirements

- Reduction process independent the change of parameter on a fixed interval.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Interpolation is the process of constructing a function which takes a given value-set, e.g. $\left\{y_{1}, \cdots, y_{n}\right\}$ at given data points, e.g. $\left\{x_{1}, \cdots, x_{n}\right\}$. This function is a linear combination of basis functions and Basic Spline Curves or B-Splines are especially suitable for computation. Let $\left\{f_{i}(x), i=1, \cdots, n\right\}$ denote the basis functions, the interpolator $F(x)$ takes the form

$$
F(x)=\sum_{i=1}^{n} c_{i} f_{i}(x)
$$

and satisfies the interpolation conditions

$$
F\left(x_{i}\right)=y_{i}, i=1, \cdots, n
$$

Consider system (1) whose transfer function(TF) is denoted by $H(p, s)$. What do we interpolate?

Consider system (1) whose transfer function(TF) is denoted by $H(p, s)$. What do we interpolate?
We can't reduce the system with the change of p, but we can do it at each point $p_{i} \in[0,1] \subset \mathbb{R}$.

- What we interpolate is the reduced TF $H(p, s)$
- The data points is the set $0=p_{0}, \cdots, p_{k}=1$.
- The given values are the reduced TFs $H^{r}\left(p_{j}, s\right)$ of $H\left(p_{j}, s\right)$.

Consider system (1) whose transfer function(TF) is denoted by $H(p, s)$. What do we interpolate?
We can't reduce the system with the change of p, but we can do it at each point $p_{i} \in[0,1] \subset \mathbb{R}$.

- What we interpolate is the reduced TF $\widehat{H(p, s)}$.
- The data points is the set $0=p_{0}, \cdots, p_{k}=1$.
- The given values are the reduced TFs $H^{r}\left(p_{j}, s\right)$ of $H\left(p_{j}, s\right)$.

PMOR process

Original svstem

Difficulty

- TF depends also on frequency parameter s;
- The state space representation must be easily and properly recovered.

Hypothesis

We consider the LTI system

$$
\Sigma(p)=\left\{\begin{array}{l}
\dot{x}=A(p) x+B(p) u, x(0)=0 \tag{3}\\
y=C(p) x
\end{array}\right.
$$

where $p \in[0,1]$ and $A \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{p \times n}$.
We assume that for each $p, \Sigma(p)$ is reachable, observable and stable with transfer function $H(p, s)=C(p)(s l-A(p))^{-1} B(p)$.

Steps

- Discretize $[0,1]$ as $0=p_{0}<p_{1}<\cdots<p_{k}=1$ and denote $h=\max \left\{p_{j}-p_{j-1}, j=1, \cdots, k\right\}$.
- For each $\Sigma\left(p_{j}\right), j=0, \cdots, k$ compute a reduced order LTI system $\sum^{r_{j}}\left(p_{j}\right)=\left(A_{j}, B_{j}, C_{j}\right)$ of dimension r_{j} with transfer function $H^{r}\left(p_{j}, s\right)$ by balanced truncation.
- Use linear B-splines $f_{0}, f_{1}, \cdots, f_{k}$ for the given grid.

Linear spline basis

Reduced system

- The transfer function

$$
\begin{equation*}
\widehat{H(p, s)}=\sum_{j=0}^{k} f_{j}(p) H^{r}\left(p_{j}, s\right) \tag{4}
\end{equation*}
$$

- State space representation of $\widehat{\Sigma(p)}$ is $(\widehat{A}, \widehat{B}, \widehat{C})$, where $\widehat{A}:=\operatorname{diag}\left(A_{0}, \cdots, A_{k}\right), \widehat{B}=\left[B_{0}^{T}, \cdots, B_{k}^{T}\right]^{T}$ and $\widehat{C}=\left[f_{0}(p) C_{0}, \cdots, f_{k}(p) C_{k}\right]$.
It is of the order $\sum_{j=0}^{k} r_{j}$.

Results

- Stability preservation

- Global error bound.
- Norm for parameter-dependent systems

$$
\|\Sigma(p)\|_{\infty}=\|H(p, s)\|_{\infty}:=\sup _{p \in[0,1]}\|H(p, s)\|_{\mathcal{H}_{\infty}}
$$

- Lipschitz condition for $\Sigma(p)$

$$
\begin{equation*}
\forall p_{1}, p_{2} \in[0,1]\left\|H\left(p_{1}, s\right)-H\left(p_{2}, s\right)\right\|_{H_{\infty}} \leq L\left|p_{1}-p_{2}\right| . \tag{5}
\end{equation*}
$$

Theorem

```
I et }\sum(n)\mathrm{ satisfy the Lipschitz condition (5) and let the reduced order
system \sum(p) be constructed as above. Then
```


where $\mathcal{S}=\max \left\{\left\|H\left(p_{i}, s\right)-H^{r}\left(p_{i}, s\right)\right\|_{\mathcal{H}_{\infty}}, i:=0, \ldots, k\right\}$.

Results

- Stability preservation
- Global error bound.
- Norm for parameter-dependent systems

$$
\|\Sigma(p)\|_{\infty}=\|H(p, s)\|_{\infty}:=\sup _{p \in[0,1]}\|H(p, s)\|_{\mathcal{H}_{\infty}} .
$$

- Lipschitz condition for $\Sigma(p)$:

$$
\begin{equation*}
\forall p_{1}, p_{2} \in[0,1],\left\|H\left(p_{1}, s\right)-H\left(p_{2}, s\right)\right\|_{\mathcal{H}_{\infty}} \leq L\left|p_{1}-p_{2}\right| . \tag{5}
\end{equation*}
$$

Theorem
Let $\Sigma(p)$ satisfy the Lipschitz condition (5) and let the reduced order
system $\sum(p)$ be constructed as above. Then

Results

- Stability preservation
- Global error bound.
- Norm for parameter-dependent systems

$$
\|\Sigma(p)\|_{\infty}=\|H(p, s)\|_{\infty}:=\sup _{p \in[0,1]}\|H(p, s)\|_{\mathcal{H}_{\infty}} .
$$

- Lipschitz condition for $\Sigma(p)$:

$$
\begin{equation*}
\forall p_{1}, p_{2} \in[0,1],\left\|H\left(p_{1}, s\right)-H\left(p_{2}, s\right)\right\|_{\mathcal{H}_{\infty}} \leq L\left|p_{1}-p_{2}\right| . \tag{5}
\end{equation*}
$$

Theorem

Let $\Sigma(p)$ satisfy the Lipschitz condition (5) and let the reduced order system $\widehat{\Sigma(p)}$ be constructed as above. Then

$$
\|\Sigma(p)-\widehat{\Sigma(p)}\|_{\infty} \leq L h+\mathcal{S}
$$

where $\mathcal{S}=\max \left\{\left\|H\left(p_{i}, s\right)-H^{r}\left(p_{i}, s\right)\right\|_{\mathcal{H}_{\infty}}, i:=0, \ldots, k\right\}$.

Some remarks

- The interpolation process is quite easy thank to the simple structure of linear B-splines;
- The error bound is received by combining the error of MOR at each point and error of interpolation process;
- In the MIMO case, the proof has to resort to a Gerschgorin-type theorem, c.f Qi84.

Cubic spline basis

Cubic spline $=$ More efforts

- Wider support of basis function \Rightarrow Instead of (4), solving a linear system
- Solving system + getting error bound \Rightarrow Bounding norm of inverse matrices
- State space representation \Rightarrow How to choose the end conditions
- LTI SISO system

$$
\begin{align*}
& \dot{x}=A(p) x+b(p) u, \\
& y=c(p) x, A \in \mathbb{R}^{n \times n} \tag{6}
\end{align*}
$$

- Let the reduced TF take the form

$$
\begin{equation*}
\widehat{H(p, s)}=\sum_{i=-1}^{k+1} c_{i}^{r} f_{i}(p) \tag{7}
\end{equation*}
$$

- Interpolation conditions, using reduced TF at knots

$$
\sum_{i=j-1}^{j+1} c_{i}^{r} f_{i}\left(p_{j}\right)=H^{r}\left(p_{j}, s\right), j=0, \ldots, k
$$

- Natural end conditions

$$
\frac{\partial^{2} \widehat{H\left(p_{0}, s\right)}}{\partial p^{2}}=\frac{\partial^{2} \widehat{H\left(p_{k}, s\right)}}{\partial p^{2}}=0
$$

The system determines c_{i}^{r} in (7): $F C^{r}=H^{r}$. The collocation matrix

$$
F=\frac{1}{6}\left[\begin{array}{ccccccc}
\frac{6}{h^{2}} & -\frac{12}{h^{2}} & \frac{6}{h^{2}} & \cdots & 0 & 0 & 0 \\
1 & 4 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 4 & \cdots & 0 & 0 & 0 \\
\cdots & \cdots & \ddots & \ddots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & 4 & 1 \\
0 & 0 & 0 & \cdots & \frac{6}{h^{2}} & -\frac{12}{h^{2}} & \frac{6}{h^{2}}
\end{array}\right] .
$$

A short deviation: Bound for norm of matrix inverse

- Strictly diagonally dominant(SDD) matrices, S-SDD matrices, Varah75, Varga76, Moraca07/08,...
- PM-matrices, PH-matrices, Kolotilina95/08/09,...

Combining scaling technique mentioned in Moraca07 Kolotilina09

A short deviation: Bound for norm of matrix inverse

- Strictly diagonally dominant(SDD) matrices, S-SDD matrices, Varah75, Varga76, Moraca07/08,...
- PM-matrices, PH-matrices, Kolotilina95/08/09,...
- Problem: Matrix F is neither SDD, S-SDD nor PH-matrix.

Combining scaling technique mentioned in Moraca07 Kolotilina09

A short deviation: Bound for norm of matrix inverse

- Strictly diagonally dominant(SDD) matrices, S-SDD matrices, Varah75, Varga76, Moraca07/08,...
- PM-matrices, PH-matrices, Kolotilina95/08/09,...
- Problem: Matrix F is neither SDD, S-SDD nor PH-matrix.
- Idea: Combining scaling technique mentioned in Moraca07 + Kolotilina09

Procedure

- Scale F by $D_{1}=\operatorname{diag}\left(1, \frac{1}{3}, \cdots, \frac{1}{3}, 1\right)$, turns F into S-SDD/PH-matrix.
- Scale $F_{1}=F D$ by $D_{2}=\operatorname{diag}(1,1, \gamma, \cdots, \gamma, 1,1)$ where $\gamma \in\left(\frac{1}{3}, 1\right)$
- Repeat discretize + choose the smallest interval until the step size quite small.

Theorem

The inverse of collocation satisfies

Procedure

- Scale F by $D_{1}=\operatorname{diag}\left(1, \frac{1}{3}, \cdots, \frac{1}{3}, 1\right)$, turns F into S-SDD/PH-matrix.
- Scale $F_{1}=F D$ by $D_{2}=\operatorname{diag}(1,1, \gamma, \cdots, \gamma, 1,1)$ where $\gamma \in\left(\frac{1}{3}, 1\right)$
- Repeat discretize + choose the smallest interval until the step size quite small.

Procedure

- Scale F by $D_{1}=\operatorname{diag}\left(1, \frac{1}{3}, \cdots, \frac{1}{3}, 1\right)$, turns F into S-SDD/PH-matrix.
- Scale $F_{1}=F D$ by $D_{2}=\operatorname{diag}(1,1, \gamma, \cdots, \gamma, 1,1)$ where $\gamma \in\left(\frac{1}{3}, 1\right)$
- Repeat discretize + choose the smallest interval until the step size quite small.

Theorem

The inverse of collocation satisfies

$$
\left\|F^{-1}\right\|_{\infty} \leq 6 \max \left\{\frac{64}{17}, \frac{288+48 h^{2}}{77}\right\}
$$

Remark

The above bound is not the best but good enough. Our verification: compute the real infinity norm of the inverse of the comparision matrix $\mathcal{M}(F)^{-1}$:

- the size $7 \times 7: 6\left(\frac{31}{10}+\frac{13}{30} h^{2}\right)$
- the size 10×10 : $6\left(\frac{61}{20}+\frac{17}{40} h^{2}\right)$

Remark

If we use Hermite end condition, the collocation matrix

$$
F=\frac{1}{6}\left[\begin{array}{ccccccc}
-\frac{3}{h} & 0 & \frac{3}{h} & \cdots & 0 & 0 & 0 \\
1 & 4 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 4 & \cdots & 0 & 0 & 0 \\
& & & & & & \\
\cdots & \cdots & \ddots & \ddots & \ddots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1 & 4 & 1 \\
0 & 0 & 0 & \cdots & -\frac{3}{h} & 0 & \frac{3}{h}
\end{array}\right]
$$

and $\left\|F^{-1}\right\| \leq 6 \frac{1+h}{2}$ but no state space representation.

Results with cubic spline interpolation

- Stability preservation.
- State space representation: Denote $[f(p)]$ the column of cubic B-spline, and $\mathcal{F}(p)=\left[\mathcal{F}_{i}(p)\right]^{T}=[f(p)]^{T} F^{-1}$. Then, the reduced system $\widehat{\Sigma(p)}$ is $(\widehat{A}, \widehat{b}, \widehat{c})$, where $\widehat{A}=\operatorname{diag}\left(A_{0}, \cdots, A_{k}\right), \widehat{b}=\left[\mathcal{F}_{0}(p) b_{0}^{T}, \cdots, \mathcal{F}_{k}(p) b_{k}^{T}\right]^{T}$ and $\widehat{c}=\left[c_{0}, \cdots, c_{k}\right]$, of the order $(k+1) r$.

Results with cubic spline interpolation

Theorem

Assume system (6) be observable, controllable, stable and moreover, $\forall s \in \mathbb{C}^{+}, A(p), b(p), c(p)$ are C^{4} over $[0,1]$, then

$$
\|\Sigma(p)-\widehat{\Sigma(p)}\|_{\infty} \leq \frac{5}{384}\left\|\frac{\partial^{4} H}{\partial p^{4}}\right\|_{\infty} h^{4}+6 \max \left\{\frac{64}{17}, \frac{288+48 h^{2}}{77}\right\} \mathcal{S}
$$

where $\mathcal{S}=\max \left\{\left\|H\left(p_{i}, s\right)-H^{r}\left(p_{i}, s\right)\right\|_{\mathcal{H}_{\infty}}, i:=0, \ldots, k\right\}$.

Numerical Experiment

UPCOMING TIME!

- Combining Spline interpolation and Balanced truncation to PMOR
- Results for both linear and cubic spline interpolation:
- Formally preserve parameter
- Preserve stability
- Proper state space representation
- Error bound

End

THANK YOU!

