Recent Approaches for PMOR

Nguyễn, Thanh Sơn

Universitaet Bremen
Zentrum fuer Technomathematik
27th May 2009

Outline

(1) Statement of the problem
(2) Approaches

- Moment matching based methods
- Balanced Truncation based method
(3) Concluding remarks
(3) References

Statement of the problem

Given a parameters-dependent systems of size N

$$
\begin{aligned}
E(p) x^{\prime}(t) & =A(p) x(t)+B(p) u(t), \\
y(t) & =C(p) x(t), p=\left(p_{1}, \ldots, p_{k}\right) .
\end{aligned}
$$

Replace it with a parameters-dependent systems of size

 $n, n \ll N$$$
\begin{aligned}
\hat{E}(p) x^{\prime}(t) & =\hat{A}(p) x(t)+\hat{B}(p) u(t), \\
y(t) & =\hat{C}(p) x(t), p=\left(p_{1}, \ldots, p_{k}\right) .
\end{aligned}
$$

Statement of the problem

Given a parameters-dependent systems of size N

$$
\begin{aligned}
E(p) x^{\prime}(t) & =A(p) x(t)+B(p) u(t) \\
y(t) & =C(p) x(t), p=\left(p_{1}, \ldots, p_{k}\right)
\end{aligned}
$$

Replace it with a parameters-dependent systems of size
$n, n \ll N$

$$
\begin{align*}
\hat{E}(p) x^{\prime}(t) & =\hat{A}(p) x(t)+\hat{B}(p) u(t) \tag{2}\\
y(t) & =\hat{C}(p) x(t), p=\left(p_{1}, \ldots, p_{k}\right)
\end{align*}
$$

Requirements

- Reduction process independent of variation of parameter on a fixed range Ω.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Requirements

- Reduction process independent of variation of parameter on a fixed range Ω.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Requirements

- Reduction process independent of variation of parameter on a fixed range Ω.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Requirements

- Reduction process independent of variation of parameter on a fixed range Ω.
- System (2) approximates system (1) in some sense.
- The reduction procedure should not cost so high.

Recall the method

$$
\begin{align*}
& E x^{\prime}(t)=A x(t)+B u(t), \tag{3}\\
& y(t)=C x(t) . \\
& H(s)=C(s E-A)^{-1} B=-C\left(\left(A-s_{0} E\right)-\left(s-s_{0}\right) E\right)^{-1} B \\
&=-C \sum_{i=0}^{\infty}\left(\left(A-s_{0} E\right)^{-1} E\right)^{i}\left(A-s_{0} E\right)^{-1} B\left(s-s_{0}\right)^{i} \\
&= \sum_{i=0}^{\infty} M_{i}\left(s-s_{0}\right)^{i} .
\end{align*}
$$

- Construct span $V_{s_{0}}=\mathcal{K}_{n_{0}}\left(\left(A-s_{0} E\right)^{-1} E,\left(A-s_{0} E\right)^{-1} B\right)$,

Recall the method

$$
\begin{align*}
& E x^{\prime}(t)=A x(t)+B u(t), \tag{3}\\
& y(t)=C x(t) . \\
& H(s)=C(s E-A)^{-1} B=-C\left(\left(A-s_{0} E\right)-\left(s-s_{0}\right) E\right)^{-1} B \\
&=-C \sum_{i=0}^{\infty}\left(\left(A-s_{0} E\right)^{-1} E\right)^{i}\left(A-s_{0} E\right)^{-1} B\left(s-s_{0}\right)^{i} \\
&= \sum_{i=0}^{\infty} M_{i}\left(s-s_{0}\right)^{i} .
\end{align*}
$$

- Construct span $V_{s_{0}}=\mathcal{K}_{n_{0}}\left(\left(A-s_{0} E\right)^{-1} E,\left(A-s_{0} E\right)^{-1} B\right)$, $V_{s_{0}}^{T} V_{s_{0}}=I$.

Recall the method

$$
\begin{align*}
& E x^{\prime}(t)=A x(t)+B u(t), \tag{3}\\
& y(t)=C x(t) . \\
& H(s)=C(s E-A)^{-1} B=-C\left(\left(A-s_{0} E\right)-\left(s-s_{0}\right) E\right)^{-1} B \\
&=-C \sum_{i=0}^{\infty}\left(\left(A-s_{0} E\right)^{-1} E\right)^{i}\left(A-s_{0} E\right)^{-1} B\left(s-s_{0}\right)^{i} \\
&= \sum_{i=0}^{\infty} M_{i}\left(s-s_{0}\right)^{i} .
\end{align*}
$$

- Construct span $V_{s_{0}}=\mathcal{K}_{n_{0}}\left(\left(A-s_{0} E\right)^{-1} E,\left(A-s_{0} E\right)^{-1} B\right)$, $V_{s_{0}}^{T} V_{s_{0}}=I$.
- Also, $V=\left\{V_{s_{1}}, \ldots, V_{s_{k}}\right\}$.

Reduced system

$$
\begin{aligned}
V^{T} E V x_{r}^{\prime}(t) & =V^{\top} A V x_{r}(t)+V^{\top} B u(t), \\
y_{r}(t) & =C V x_{r}(t)
\end{aligned}
$$

- n_{0} moments of TF at s_{0} matched,
- Easy to implement by Arnoldi algorithm,
- No guarantee of stability,
- Hard to derive error bound.

Reduced system

$$
\begin{aligned}
V^{\top} E V x_{r}^{\prime}(t) & =V^{\top} A V x_{r}(t)+V^{\top} B u(t) \\
y_{r}(t) & =C V x_{r}(t)
\end{aligned}
$$

- n_{0} moments of TF at s_{0} matched,
- Easy to implement by Arnoldi algorithm,
- No guarantee of stability,
- Hard to derive error bound.

Multiparameter moment matching [4, 9]

Treat system parameters, frequency one in the same way

$$
\begin{align*}
E x^{\prime}(t) & =\left(A+p A_{1}\right) x(t)+B u(t) \\
y(t) & =C x(t) \tag{4}
\end{align*}
$$

Denoting $s_{1}=s, s_{2}=p, E_{1}=E, E_{2}=-A_{1}$, expanding TF at
$\left(\sigma_{1}, \sigma_{2}\right)$ and denoting $S=A-\sigma_{1} E_{1}-\sigma_{2} E_{2}$

Multiparameter moment matching [4, 9]

Treat system parameters, frequency one in the same way

$$
\begin{align*}
E x^{\prime}(t) & =\left(A+p A_{1}\right) x(t)+B u(t), \tag{4}\\
y(t) & =C x(t) .
\end{align*}
$$

Denoting $s_{1}=s, s_{2}=p, E_{1}=E, E_{2}=-A_{1}$, expanding TF at (σ_{1}, σ_{2}) and denoting $S=A-\sigma_{1} E_{1}-\sigma_{2} E_{2}$

$$
\begin{aligned}
& H\left(s_{1}, s_{2}\right)=-C \sum_{i=0}^{\infty}\left(\left(s_{1}-\sigma_{1}\right) S^{-1} E_{1}+\left(s_{2}-\sigma_{2}\right) S^{-1} E_{2}\right)^{i} S^{-1} B \\
& =-C \sum_{i=0}^{\infty} \sum_{j=0}^{i} F_{j}^{i}\left(S^{-1} E_{1}, S^{-1} E_{2}\right) S^{-1} B\left(s_{1}-\sigma_{1}\right)^{i-j}\left(s_{2}-\sigma_{2}\right)^{j} .
\end{aligned}
$$

- Defining the generalized Krylov subspace

$$
\mathcal{G}_{k}\left(M_{1}, M_{2}, m\right)=\operatorname{span} \cup_{i=0}^{k} \cup_{j=0}^{i} F_{j}^{i}\left(M_{1}, M_{2}\right) m
$$

- Construct $\operatorname{span} V=\mathcal{G}_{n}\left(S^{-1} E_{1}, S^{-1} E_{2}, S^{-1} B\right)$,
- Reduced system

$$
\begin{align*}
V^{\top} E V x^{\prime}(t) & =\left(V^{\top} A V+p V^{\top} A_{1} V\right) x(t)+V^{\top} B u(t) \tag{5}\\
y(t) & =C V x(t)
\end{align*}
$$

- The first n "coefficients" of reduced system match ones of original one.
- Disadvantage: Difficult to implement stably since one cannot use Arnoldi algorithm.
- Defining the generalized Krylov subspace

$$
\mathcal{G}_{k}\left(M_{1}, M_{2}, m\right)=\operatorname{span} \cup_{i=0}^{k} \cup_{j=0}^{i} F_{j}^{i}\left(M_{1}, M_{2}\right) m
$$

- Construct $\operatorname{span} V=\mathcal{G}_{n}\left(S^{-1} E_{1}, S^{-1} E_{2}, S^{-1} B\right)$,
- Reduced system

$$
\begin{align*}
V^{\top} E V x^{\prime}(t) & =\left(V^{\top} A V+p V^{\top} A_{1} V\right) x(t)+V^{\top} B u(t), \tag{5}\\
y(t) & =C V x(t) .
\end{align*}
$$

- The first n "coefficients" of reduced system match ones of original one.
- Disadvantage: Difficult to implement stably since one cannot use Arnoldi algorithm.

Combining with Arnoldi algorithm [5]

The TF of system (4) can be expanded at $(0,0)$ as

$$
\begin{gathered}
H(s, p)=-C\left(A+p A_{1}-s E\right)^{-1} B \\
=-C \sum_{i=0}^{\infty}\left(\left(A+p A_{1}\right)^{-1} E\right)^{i}\left(A+p A_{1}\right)^{-1} B s^{i}=-C \sum_{i=0}^{\infty} M_{i} s^{i} . \\
M_{0}=\left(A+p A_{1}\right)^{-1} B=\sum_{i_{0}=0}^{\infty}\left(-A^{-1} A_{1}\right)^{i_{0}} A^{-1} B p^{i_{0}} . \\
M_{1}=\left(A+p A_{1}\right)^{-1} E M_{0}=\sum_{i_{0}, i_{1}=0}^{\infty}\left(-A^{-1} A_{1}\right)^{i_{1}} A^{-1} E\left(-A^{-1} A_{1}\right)^{i_{0}} A^{-1} B p^{i_{1}} p^{i_{0}}, \\
M_{j}=\sum_{i_{0}, \ldots, i_{j}=0}^{\infty}\left(-A^{-1} A_{1}\right)^{i_{j}} A^{-1} E \ldots\left(-A^{-1} A_{1}\right)^{i_{0}} A^{-1} B p^{i_{j}} \ldots p^{i_{0}}
\end{gathered}
$$

- Constructing

$$
\begin{aligned}
& \operatorname{span}\left\{V_{0}\right\}=\mathcal{K}_{i_{0}}\left(A^{-1} A_{1}, A^{-1} B\right), B_{1}=E \mathcal{K}_{i_{0}}, \\
& \operatorname{span}\left\{V_{1}\right\}=\mathcal{K}_{i_{1}}\left(A^{-1} A_{1}, A^{-1} B_{1}\right), B_{2}=E \mathcal{K}_{i_{1}}, \ldots \\
& \operatorname{span}\{V\}=\operatorname{span}\left\{V_{0}, V-1, \ldots, V_{j}\right\}, V^{\top} V=I
\end{aligned}
$$

- The reduced system is like (5)
- The first i_{0}, \ldots, i_{j} elements in the moments M_{0}, \ldots, M_{j} are matched.
- Disavantage: order of reduced system is large due to mixed moments.
- Another approach is Two-directional Arnoldi process [8].
- Constructing

$$
\begin{aligned}
& \operatorname{span}\left\{V_{0}\right\}=\mathcal{K}_{i_{0}}\left(A^{-1} A_{1}, A^{-1} B\right), B_{1}=E \mathcal{K}_{i_{0}}, \\
& \operatorname{span}\left\{V_{1}\right\}=\mathcal{K}_{i_{1}}\left(A^{-1} A_{1}, A^{-1} B_{1}\right), B_{2}=E \mathcal{K}_{i_{1}}, \ldots \\
& \operatorname{span}\{V\}=\operatorname{span}\left\{V_{0}, V-1, \ldots, V_{j}\right\}, V^{\top} V=I
\end{aligned}
$$

- The reduced system is like (5)
- The first i_{0}, \ldots, i_{j} elements in the moments M_{0}, \ldots, M_{j} are matched.
- Disavantage: order of reduced system is large due to mixed moments.
- Another approach is Two-directional Arnoldi process [8].

Cutting off mixed moments [6]

Denoting TF as function of frequence and system parameters and then expading at $(0, \ldots, 0)$

$$
\begin{aligned}
H\left(s_{1}, \ldots, s_{k}\right) & =-C\left(I-\sum_{j=0}^{k} s_{j} E_{j}\right)^{-1} A^{-1} B \\
& =-C \sum_{i=0}^{\infty}\left(\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{i} A^{-1} B
\end{aligned}
$$

- Only keep pure moments $C\left(A^{-1} E_{j}\right)^{i} S^{-1} B$,
- Decreasing the size of reduced system significantly,
- No estimation of the loss of information due to discarding.

Cutting off mixed moments [6]

Denoting TF as function of frequence and system parameters and then expading at $(0, \ldots, 0)$

$$
\begin{aligned}
H\left(s_{1}, \ldots, s_{k}\right) & =-C\left(I-\sum_{j=0}^{k} s_{j} E_{j}\right)^{-1} A^{-1} B \\
& =-C \sum_{i=0}^{\infty}\left(\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{i} A^{-1} B
\end{aligned}
$$

- Only keep pure moments $C\left(A^{-1} E_{j}\right)^{i} S^{-1} B$,
- Decreasing the size of reduced system significantly,
- No estimation of the loss of information due to discarding.

Enlarging the range of interpolation [7]

- Transfer function

$$
\begin{aligned}
H\left(s_{1}, \ldots, s_{k}\right) & =-C\left(I-\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{-1} A^{-1} B \\
& =-C \sum_{i=0}^{\infty}\left(\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{i} A^{-1} B \\
& =-C\left(I+\sum A^{-1} E_{j} s_{j}+\sum A^{-1} E_{j} A^{-1} E_{k} s_{j} s_{k}+\cdots\right) A^{-}
\end{aligned}
$$

- Instead of matching high order moments, matching the first order moments at different points.
- Decrease the size of reduced system considerably,
- Capture the behavior of original system on wide range.

Enlarging the range of interpolation [7]

- Transfer function

$$
\begin{aligned}
H\left(s_{1}, \ldots, s_{k}\right) & =-C\left(I-\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{-1} A^{-1} B \\
& =-C \sum_{i=0}^{\infty}\left(\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{i} A^{-1} B \\
& =-C\left(I+\sum A^{-1} E_{j} s_{j}+\sum A^{-1} E_{j} A^{-1} E_{k} s_{j} s_{k}+\cdots\right) A^{-}
\end{aligned}
$$

- Instead of matching high order moments, matching the first order moments at different points.
- Decrease the size of reduced system considerably,
- Capture the behavior of originall system on wide range.

Enlarging the range of interpolation [7]

- Transfer function

$$
\begin{aligned}
H\left(s_{1}, \ldots, s_{k}\right) & =-C\left(I-\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{-1} A^{-1} B \\
& =-C \sum_{i=0}^{\infty}\left(\sum_{j=0}^{k} s_{j} A^{-1} E_{j}\right)^{i} A^{-1} B \\
& =-C\left(I+\sum A^{-1} E_{j} s_{j}+\sum A^{-1} E_{j} A^{-1} E_{k} s_{j} s_{k}+\cdots\right) A^{-}
\end{aligned}
$$

- Instead of matching high order moments, matching the first order moments at different points.
- Decrease the size of reduced system considerably,
- Capture the behavior of original system on wide range.

Recall the method

For the system (3) with $E=I$, first solve Lyapunov equations

$$
A \mathcal{P}+\mathcal{P} A^{T}+B B^{T}=0, A^{T} \mathcal{Q}+\mathcal{Q} A+C^{T} C=0
$$

The balancing transformation:

$$
\tilde{\mathcal{P}}=\tilde{\mathcal{Q}}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, \ldots, \sigma_{n}\right)
$$

For an observable, reachable and stable system, there exists

$$
T=\Sigma^{1 / 2} K^{T} U^{-1}, T^{-1}=U K \Sigma^{-1 / 2}
$$

where $\tilde{\mathcal{P}}=U U^{T}, U^{T} \tilde{\mathcal{Q}} U=K \Sigma^{2} K^{T}$.

Recall the method

For the system (3) with $E=I$, first solve Lyapunov equations

$$
A \mathcal{P}+\mathcal{P} A^{T}+B B^{T}=0, A^{T} \mathcal{Q}+\mathcal{Q A}+C^{T} C=0
$$

The balancing transformation:

$$
\tilde{\mathcal{P}}=\tilde{\mathcal{Q}}=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, \ldots, \sigma_{n}\right)
$$

For an observable, reachable and stable system, there exists

$$
T=\Sigma^{1 / 2} K^{T} U^{-1}, T^{-1}=U K \Sigma^{-1 / 2}
$$

where $\tilde{\mathcal{P}}=U U^{T}, U^{\top} \tilde{\mathcal{Q}} U=K \Sigma^{2} K^{T}$.
Very difficult to extend directly to parametric systems

Combining with interpolation [2]

$$
\begin{align*}
x^{\prime}(t) & =A(p) x(t)+B(p) u(t) \\
y(t) & =C(p) x(t), p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega \subset \mathbb{R}^{d} \tag{6}
\end{align*}
$$

- Suppose (6) stable, observable, reachable and choosing interpolation points $p^{(1)}, \ldots, p^{(k)}$ and reducing (6) at $p^{(i)}$ by $B T$, yielding $T F H_{r}\left(p^{(i)}, s\right)$.
- Interpolating TF w.r.t parameter

- Constructing a realization for TF $\overline{H(p, s)}$.

Combining with interpolation [2]

$$
\begin{align*}
x^{\prime}(t) & =A(p) x(t)+B(p) u(t) \\
y(t) & =C(p) x(t), p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega \subset \mathbb{R}^{d} \tag{6}
\end{align*}
$$

- Suppose (6) stable, observable, reachable and choosing interpolation points $p^{(1)}, \ldots, p^{(k)}$ and reducing (6) at $p^{(i)}$ by BT, yielding TF $H_{r}\left(p^{(i)}, s\right)$.
- Interpolating TF w.r.t parameter

$$
\widehat{H(p, s)}=\sum_{i=0}^{k} f_{i}(p) H_{r}\left(p^{(i)}, s\right)
$$

- Constructing a realization for TF $\widehat{H(p, s)}$.

More on theoretical aspects [3]

Problems

- Stability preservation: Is the reduced system is stable for all $p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega$?
- Does there exist an error bound?
- Order of reduced system remains high $\sum n_{i}$

More on theoretical aspects [3]

Problems

- Stability preservation: Is the reduced system is stable for all $p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega$?
- Does there exist an error bound?
- Order of reduced system remains high $\sum n_{i}$

More on theoretical aspects [3]

Problems

- Stability preservation: Is the reduced system is stable for all $p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega$?
- Does there exist an error bound?
- Order of reduced system remains high $\sum n_{i}$

More on theoretical aspects [3]

Problems

- Stability preservation: Is the reduced system is stable for all $p=\left(p_{1}, \ldots, p_{d}\right) \in \Omega$?
- Does there exist an error bound?
- Order of reduced system remains high $\sum n_{i}$

More on theoretical aspects [3]

- Preserving stability,
- Existing an error bound w.r.t. supnorm,

$$
\|H(p, s)\|_{\infty}=\sup _{p \in \Omega}\|H(p, s)\|_{\mathcal{H}_{\infty}} .
$$

- Preserving stability,
- Existing an error bound w.r.t. supnorm,

$$
\|H(p, s)\|_{\infty}=\sup _{p \in \Omega}\|H(p, s)\|_{\mathcal{H}_{\infty}}
$$

Remarks

- Moment matching based are preferable,
- Linearize the nonlinear-depentdence before using;
- Despite of high cost of computation, BT based suitable for estimating an error bound,
- Problem of a priori error bound.

End

Thank you!

[Antoulas05] A. C. Antoulas, Approximation of Large-scale Dynamical Systems, Advances in Design and Control DC-06, SIAM, Philadenphia, 2005.
围 [BB08] U. Baur, P. Benner, "Parametric model reduction with sparse grids", GMA FA Workshop, 2008.
囲 [BS09] A. Bunse-Gerstner, N.T. Son, "On theoretical aspects of parametric model order reduction with balanced truncation", to appear.
R-iDaniel04] L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, J. White, "A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models", IEEE Tran. computer-aided design of integrated circuits and systems, Vol. 23, No. 5, pp. 678-693 2004.

围 [Feng05] L. H. Feng, E. B. Rudnyi, J. G. Korvink, "Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation", IEEE Tran. computer-aided design of integrated circuits and systems, Vol. 24, No. 12, pp. 1838-1847, 2005.
囯 [Moosman07] C. Moosmann, ParaMOR- Model Order Reduction for Parameterized MEMS applications, PhD Thesis, IMTEK, Albert-Ludwigs-University of Freiburg, 2007.
[[Li05] P. Li, F. Liu, X. Li, L. T. Pileggi, S. R. Nassif, "Modeling interconnect using efficient parametric model order reduction", Proc. Desi. Auto. Test Euro. Conf. Exhi, 2005.
[10 [Li08] Y. T. Li, Z. Bai, Y. Su, X. Zeng, "Model order reduction of parameterized interconnect networks via a
two-directional Arnoldi process", IEEE Trans. Com.-Aid Des. Int. Cir. Sys., Vol. 27, No. 9, pp. 1571-1582, 2008.[Weile99] D. S. Weile, E. Michielssen, E. J. Grimme, K. Gallivan, "A method for generating rational interpolant reduced order models of two-parameter linear systems", Appl. Math. Lett., Vol. 12, pp. 93-102, 1999.

