Application of Model Reduction to Modelling and Simulation of Microfluidic Systems

Nguyễn, Thanh Sơn

Universitaet Bremen Zentrum fuer Technomathematik

16th December 2008

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

(日)

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Microfluidic devices

- First microfluidic devices appeared in the late of 1980s and rapid progress in microfluidics was made in 1990s.
- The majority of its applications in life science and medical treatment were medical diagnostic, genetic sequencing, drug discovery and proteomics.
- To analyse liquids, one forces them to flow through microchannels.

Microfluidic devices

- First microfluidic devices appeared in the late of 1980s and rapid progress in microfluidics was made in 1990s.
- The majority of its applications in life science and medical treatment were medical diagnostic, genetic sequencing, drug discovery and proteomics.
- To analyse liquids, one forces them to flow through microchannels.

Microfluidic devices

- First microfluidic devices appeared in the late of 1980s and rapid progress in microfluidics was made in 1990s.
- The majority of its applications in life science and medical treatment were medical diagnostic, genetic sequencing, drug discovery and proteomics.
- To analyse liquids, one forces them to flow through microchannels.

イロト イポト イヨト イヨト

Microfluidic devices

- First microfluidic devices appeared in the late of 1980s and rapid progress in microfluidics was made in 1990s.
- The majority of its applications in life science and medical treatment were medical diagnostic, genetic sequencing, drug discovery and proteomics.
- To analyse liquids, one forces them to flow through microchannels.

(四) (日) (日)

Treating fluids in small-scale

Molecules

Treating fluid as a collection of individual, interactive molecules.

Continuum

Considering fluid as matter that is defined everywhere (continuum).

The latter is chosen.

- Simpler since using existing results for the "medium-scale" flows.
- Some flows can be computed analytically.

イロト イポト イヨト イヨト

Treating fluids in small-scale

Molecules

Treating fluid as a collection of individual, interactive molecules.

Continuum

Considering fluid as matter that is defined everywhere (continuum).

The latter is chosen.

- Simpler since using existing results for the "medium-scale" flows.
- Some flows can be computed analytically.

(日)

Treating fluids in small-scale

Molecules

Treating fluid as a collection of individual, interactive molecules.

Continuum

Considering fluid as matter that is defined everywhere (continuum).

The latter is chosen.

- Simpler since using existing results for the "medium-scale" flows.
- Some flows can be computed analytically.

(日)

Treating fluids in small-scale

Molecules

Treating fluid as a collection of individual, interactive molecules.

Continuum

Considering fluid as matter that is defined everywhere (continuum).

The latter is chosen.

- Simpler since using existing results for the "medium-scale" flows.
- Some flows can be computed analytically.

イロト イ押ト イヨト イヨト

Treating fluids in small-scale

Molecules

Treating fluid as a collection of individual, interactive molecules.

Continuum

Considering fluid as matter that is defined everywhere (continuum).

The latter is chosen.

- Simpler since using existing results for the "medium-scale" flows.
- Some flows can be computed analytically.

・ロット (雪) (目) (日)

Mathematical Model of Flows

Navier-Stokes equations are utilized [12]. Spatial discretization of such equations leads to

First-order system

$$Ex'(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t);$$

Second-order system

$$Mx''(t) + Dx'(t) + Kx(t) = Qu(t),$$

$$y(t) = Lx(t).$$

(日)

Definition

The dimension of *x*(*t*) is called the size of the system

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

Mathematical Model of Flows

Navier-Stokes equations are utilized [12]. Spatial discretization of such equations leads to

First-order system

$$Ex'(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t);$$

Second-order system Mx''(t) + Dx'(t) + Kx(t) = Qu(t),y(t) = Lx(t).

Definition

The dimension of *x*(*t*) is called the size of the system

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

イロト イ理ト イヨト イヨト

э

Mathematical Model of Flows

Navier-Stokes equations are utilized [12]. Spatial discretization of such equations leads to

First-order system

$$Ex'(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t);$$

Second-order system

$$Mx''(t) + Dx'(t) + Kx(t) = Qu(t),$$

 $y(t) = Lx(t).$

Definition

The dimension of x(t) is called the size of the system

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

イロト 不得 トイヨト イヨト

э

Mathematical Model of Flows

Navier-Stokes equations are utilized [12]. Spatial discretization of such equations leads to

First-order system

$$Ex'(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t);$$

Second-order system Mx''(t) + Dx'(t) + Kx(t) = Qu(t),y(t) = Lx(t).

イロト イポト イヨト イヨト

E nar

Definition

The dimension of x(t) is called the size of the system

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

Mathematical Model of Flows

Navier-Stokes equations are utilized [12]. Spatial discretization of such equations leads to

First-order system

$$Ex'(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t);$$

Second-order system Mx''(t) + Dx'(t) + Kx(t) = Qu(t),y(t) = Lx(t).

ヘロト 人間 ト ヘヨト ヘヨト

Definition

The dimension of x(t) is called the size of the system.

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO 10⁵, 10⁶

- Computers can not handle such large data;
- Take much time to compute.

-roblem

How to replace a large system by a much smaller system which retains the essential properties?

イロト イ理ト イヨト イヨト

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO 10⁵, 10⁶

- Computers can not handle such large data;
- Take much time to compute.

roblem

How to replace a large system by a much smaller system which retains the essential properties?

イロト イ理ト イヨト イヨト

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO $10^5, 10^6$

- Computers can not handle such large data;
- Take much time to compute.

-roblem

How to replace a large system by a much smaller system which retains the essential properties?

イロト イ理ト イヨト イヨ

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO $10^5, 10^6$

- Computers can not handle such large data;
- Take much time to compute.

-roblem

How to replace a large system by a much smaller system which retains the essential properties?

イロト イ理ト イヨト イヨト

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO $10^5, 10^6$

- Computers can not handle such large data;
- Take much time to compute.

-roblem

How to replace a large system by a much smaller system which retains the essential properties?

イロト イ理ト イヨト イヨト

Why MR has to be utilized?

Size of system is typically very large, depends on

- Required accuracy;
- Geometric complexity.

UP TO $10^5, 10^6$

- Computers can not handle such large data;
- Take much time to compute.

Problem

How to replace a large system by a much smaller system which retains the essential properties?

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Balanced Truncation

details

æ

- First proposed by B. C. Moore (1981) for first-order systems [17];
- Only for small, medium systems
- Giving global error bound and preserving stability;
- Developed for second-order systems by , e.g. Y. Chahlaoui (2006) et al [4], C. Hartmann (2008) et al [13].....

(日)

Balanced Truncation

э.

First proposed by B. C. Moore (1981) for first-order systems [17];

- Only for small, medium systems
- Giving global error bound and preserving stability;
- Developed for second-order systems by , e.g. Y. Chahlaoui (2006) et al [4], C. Hartmann (2008) et al [13].....

イロト 不得 トイヨト イヨト

Balanced Truncation

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー のくや

- First proposed by B. C. Moore (1981) for first-order systems [17];
- Only for small, medium systems
- Giving global error bound and preserving stability;
- Developed for second-order systems by , e.g. Y. Chahlaoui (2006) et al [4], C. Hartmann (2008) et al [13].....

Balanced Truncation

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー のくや

- First proposed by B. C. Moore (1981) for first-order systems [17];
- Only for small, medium systems
- Giving global error bound and preserving stability;
- Developed for second-order systems by , e.g. Y. Chahlaoui (2006) et al [4], C. Hartmann (2008) et al [13].....

Moments matching

▶ details

- Interpolating the transfer function around some point s₀ by matching some first coefficients of Taylor's expansion about s₀;
- Suitable for large systems;
- No global error bound [1, 2];
- Z. Bai (2005) *et al* [3] improved the result by T. J. Su and R. R. Craig (1991) for second-order systems.

イロト イポト イヨト イヨト

Moments matching

æ

- Interpolating the transfer function around some point s₀ by matching some first coefficients of Taylor's expansion about s₀;
- Suitable for large systems;
- No global error bound [1, 2];
- Z. Bai (2005) *et al* [3] improved the result by T. J. Su and R. R. Craig (1991) for second-order systems.

ヘロト 人間 ト ヘヨト ヘヨト

Moments matching

æ

- Interpolating the transfer function around some point s₀ by matching some first coefficients of Taylor's expansion about s₀;
- Suitable for large systems;
- No global error bound [1, 2];
- Z. Bai (2005) *et al* [3] improved the result by T. J. Su and R. R. Craig (1991) for second-order systems.

イロト 不得 トイヨト イヨト

Moments matching

æ

- Interpolating the transfer function around some point s₀ by matching some first coefficients of Taylor's expansion about s₀;
- Suitable for large systems;
- No global error bound [1, 2];
- Z. Bai (2005) *et al* [3] improved the result by T. J. Su and R. R. Craig (1991) for second-order systems.

ヘロト 人間 ト ヘヨト ヘヨト

Moments matching

æ

- Interpolating the transfer function around some point s₀ by matching some first coefficients of Taylor's expansion about s₀;
- Suitable for large systems;
- No global error bound [1, 2];
- Z. Bai (2005) *et al* [3] improved the result by T. J. Su and R. R. Craig (1991) for second-order systems.

ヘロト 人間 ト ヘヨト ヘヨト

\mathcal{H}_2 -Optimal based model reduction

• Optimizing the \mathcal{H}_2 -norm error functional between the original transfer function and the reduced one:

 $min \|H - H_r\|_{\mathcal{H}_2}^2$

- D. A. Wilson (1974), D. C. Hyland *et al* (1985), P. V.
 Dooren *et al* (2008) [6], S. Gurgecin *et al* (2008) [11], D.
 Kubalinska (2008) [14]....;
- First-order necessary condition for the optimization are constructed.

ヘロト 人間 ト ヘヨト ヘヨト

æ

\mathcal{H}_2 -Optimal based model reduction

• Optimizing the \mathcal{H}_2 -norm error functional between the original transfer function and the reduced one:

$$min \|H - H_r\|_{\mathcal{H}_2}^2$$

- D. A. Wilson (1974), D. C. Hyland *et al* (1985), P. V.
 Dooren *et al* (2008) [6], S. Gurgecin *et al* (2008) [11], D.
 Kubalinska (2008) [14]....;
- First-order necessary condition for the optimization are constructed.

イロト 不得 トイヨト イヨト

æ

 \mathcal{H}_2 -Optimal based model reduction

• Optimizing the \mathcal{H}_2 -norm error functional between the original transfer function and the reduced one:

$$min \|H - H_r\|_{\mathcal{H}_2}^2$$

- D. A. Wilson (1974), D. C. Hyland *et al* (1985), P. V.
 Dooren *et al* (2008) [6], S. Gurgecin *et al* (2008) [11], D.
 Kubalinska (2008) [14]....;
- First-order necessary condition for the optimization are constructed.

イロト イポト イヨト イヨト

э.

\mathcal{H}_2 -Optimal based model reduction

• Optimizing the \mathcal{H}_2 -norm error functional between the original transfer function and the reduced one:

$$min \|H - H_r\|_{\mathcal{H}_2}^2$$

- D. A. Wilson (1974), D. C. Hyland *et al* (1985), P. V.
 Dooren *et al* (2008) [6], S. Gurgecin *et al* (2008) [11], D.
 Kubalinska (2008) [14]....;
- First-order necessary condition for the optimization are constructed.

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー のくや

Some other methods

- Multipoint moments matching;
- Tangential interpolation;
- Quasi-convex optimization;
- Hybrid method...

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Heat equation $\rho C_{\rho} \frac{\partial T}{\partial t} - \nabla (\kappa \nabla T) = Q$, on Ω ; boundary condition $(\frac{\partial T}{\partial n} + k_i T)|_{\partial \Omega_i} = 0, \cup_{i=1}^N \partial \Omega_i = \partial \Omega$. Spatial discretization leads to the system

$$Ex'(t) + (A_0 + \sum_{i=1}^{N} k_i A_i)x(t) = Bu(t),$$

 $y(t) = Cx(t).$

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

Why Parametric Model Reduction???

Facts

- Conventional method only applied when the values of k_i are fixed;
- *k_i* change, model reduction must be performed from the beginning;
- Simulation the same model but different values of parameters;

Demand

Reducing the model and symbolically preserving the parameters

イロト 不得 トイヨト イヨト

э

Why Parametric Model Reduction???

Facts

- Conventional method only applied when the values of k_i are fixed;
- *k_i* change, model reduction must be performed from the beginning;
- Simulation the same model but different values of parameters;

Demand

Reducing the model and symbolically preserving the parameters

ヘロト 人間 ト イヨト イヨト

э

Why Parametric Model Reduction???

Facts

- Conventional method only applied when the values of k_i are fixed;
- *k_i* change, model reduction must be performed from the beginning;
- Simulation the same model but different values of parameters;

Demand

Reducing the model and symbolically preserving the parameters

イロト 不得 トイヨト イヨト

э

Why Parametric Model Reduction???

Facts

- Conventional method only applied when the values of k_i are fixed;
- *k_i* change, model reduction must be performed from the beginning;
- Simulation the same model but different values of parameters;

Demand

Reducing the model and symbolically preserving the parameters

イロト イポト イヨト イヨト

Situation in Modelling Microfluidic Systems

Example

When reducing the systems formed by discretization of dimensionless version of Navier-Stokes equations, one also has to take into consideration some parameters

- Reynolds number;
- Other parameters.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Situation in Modelling Microfluidic Systems

Example

When reducing the systems formed by discretization of dimensionless version of Navier-Stokes equations, one also has to take into consideration some parameters

- Reynolds number;
- Other parameters.

(日)

Situation in Modelling Microfluidic Systems

Example

When reducing the systems formed by discretization of dimensionless version of Navier-Stokes equations, one also has to take into consideration some parameters

- Reynolds number;
- Other parameters.

イロト イポト イヨト イヨト

Problem Statement

Given a parameters-dependent systems of size N

$$M(p)x''(t) + D(p)x'(t) + K(p)x(t) = Qu(t),$$

$$y(t) = Lx(t), p = (p_1, ..., p_k).$$

Replace it with a parameters-dependent systems of size *n*, *n* << *N*

 $M_n(p)x''(t) + D_n(p)x'(t) + K_n(p)x(t) = Q_nu(t),$ $y(t) = L_nx(t), p = (p_1, ..., p_k)$

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

Problem Statement

Given a parameters-dependent systems of size N

$$M(p)x''(t) + D(p)x'(t) + K(p)x(t) = Qu(t),$$

$$y(t) = Lx(t), p = (p_1, ..., p_k).$$

Replace it with a parameters-dependent systems of size $n, n \ll N$

$$M_n(p)x''(t) + D_n(p)x'(t) + K_n(p)x(t) = Q_nu(t),$$

 $y(t) = L_nx(t), p = (p_1, ..., p_k).$

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

- Some authors: L. Daniel *et al*(2004) [5], L. H. Feng *et al* (2005) [7, 8], C. Moosmann (2007) [19];
- All approaches are based on multivariable expansion of transfer function and matching the "generalized moments";
- Projecting matrices are constructed via Krylov subspace;
- Rapid increase of mixed moments and storage of huge data need further investigation;

イロト イポト イヨト イヨト

- Some authors: L. Daniel *et al*(2004) [5], L. H. Feng *et al* (2005) [7, 8], C. Moosmann (2007) [19];
- All approaches are based on multivariable expansion of transfer function and matching the "generalized moments";
- Projecting matrices are constructed via Krylov subspace;
- Rapid increase of mixed moments and storage of huge data need further investigation;

ヘロト 人間 ト ヘヨト ヘヨト

ъ

- Some authors: L. Daniel *et al*(2004) [5], L. H. Feng *et al* (2005) [7, 8], C. Moosmann (2007) [19];
- All approaches are based on multivariable expansion of transfer function and matching the "generalized moments";
- Projecting matrices are constructed via Krylov subspace;
- Rapid increase of mixed moments and storage of huge data need further investigation;

イロト 不得 トイヨト イヨト

- Some authors: L. Daniel *et al*(2004) [5], L. H. Feng *et al* (2005) [7, 8], C. Moosmann (2007) [19];
- All approaches are based on multivariable expansion of transfer function and matching the "generalized moments";
- Projecting matrices are constructed via Krylov subspace;
- Rapid increase of mixed moments and storage of huge data need further investigation;

ヘロト 人間 ト ヘヨト ヘヨト

æ

Goal of Thesis

Goal

Goal of thesis is to develop parametric model reduction method and apply the result to modelling and simulation of microfluidic systems.

Outline

- Improvement of the existing approaches: construction of projecting matrices, implementation algorithms,...
- Parametric model reduction for second-order systems;
- Novel methods.

イロト イロト イヨト イヨト

Goal of Thesis

Goal

Goal of thesis is to develop parametric model reduction method and apply the result to modelling and simulation of microfluidic systems.

Outline

- Improvement of the existing approaches: construction of projecting matrices, implementation algorithms,...
- Parametric model reduction for second-order systems;
- Novel methods.

イロト イロト イヨト イヨト

Goal of Thesis

Goal

Goal of thesis is to develop parametric model reduction method and apply the result to modelling and simulation of microfluidic systems.

Outline

- Improvement of the existing approaches: construction of projecting matrices, implementation algorithms,...
- Parametric model reduction for second-order systems;
- Novel methods.

(日)

ъ

Goal of Thesis

Goal

Goal of thesis is to develop parametric model reduction method and apply the result to modelling and simulation of microfluidic systems.

Outline

- Improvement of the existing approaches: construction of projecting matrices, implementation algorithms,...
- Parametric model reduction for second-order systems;
- Novel methods.

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

THANK YOU!

Nguyễn, Thanh Sơn Application of Model Reduction to Modelling and Simulation of M

▲ロト ▲圖ト ▲国ト ▲国ト

For an observable, reachable and stable system with E = I, infinite gramians:

$$\mathcal{P} = \int_{0}^{\infty} e^{A\tau} B B^{T} e^{A^{T}\tau} d\tau, \quad \mathcal{Q} = \int_{0}^{\infty} e^{A^{T}\tau} C^{T} C e^{A\tau} d\tau$$

 $A\mathcal{P} + \mathcal{P}A^{T} + BB^{T} = 0,$ $A^{T}\mathcal{Q} + \mathcal{Q}A + C^{T}C = 0.$

▲□▶▲□▶▲□▶▲□▶ □ のので

For an observable, reachable and stable system with E = I, infinite gramians:

$$\mathcal{P} = \int_{0}^{\infty} e^{A\tau} B B^{T} e^{A^{T}\tau} d\tau, \quad \mathcal{Q} = \int_{0}^{\infty} e^{A^{T}\tau} C^{T} C e^{A\tau} d\tau$$

$$A\mathcal{P} + \mathcal{P}A^{T} + BB^{T} = 0,$$

$$A^{T}\mathcal{Q} + \mathcal{Q}A + C^{T}C = 0.$$

▲ロト ▲圖ト ▲国ト ▲国ト

= nar

The balancing transformation T:

$$ilde{\mathcal{P}} = ilde{\mathcal{Q}} = \mathbf{\Sigma} = \textit{diag}(\sigma_1, ..., \sigma_k, ..., \sigma_n)$$

Does it exist?

Theorem

For an observable, reachable and stable system, there exists a balancing transformation

$$T = \Sigma^{1/2} K^T U^{-1}, T^{-1} = U K \Sigma^{-1/2},$$

where $\tilde{\mathcal{P}} = UU^T, U^T \tilde{\mathcal{Q}} U = K \Sigma^2 K^T$.

(日)

The balancing transformation *T*:

$$ilde{\mathcal{P}} = ilde{\mathcal{Q}} = \Sigma = \textit{diag}(\sigma_1, ..., \sigma_k, ..., \sigma_n)$$

Does it exist?

Theorem

For an observable, reachable and stable system, there exists a balancing transformation

$$T = \Sigma^{1/2} K^T U^{-1}, T^{-1} = U K \Sigma^{-1/2},$$

where $\tilde{\mathcal{P}} = UU^T, U^T \tilde{\mathcal{Q}} U = K \Sigma^2 K^T$.

(日)

ъ

The balancing transformation *T*:

$$ilde{\mathcal{P}} = ilde{\mathcal{Q}} = \Sigma = \textit{diag}(\sigma_1, ..., \sigma_k, ..., \sigma_n)$$

Does it exist?

Theorem

For an observable, reachable and stable system, there exists a balancing transformation

$$T = \Sigma^{1/2} K^T U^{-1}, T^{-1} = U K \Sigma^{-1/2},$$

where $\tilde{\mathcal{P}} = UU^T, U^T \tilde{\mathcal{Q}} U = K \Sigma^2 K^T$.

(日)

ъ

Transfer function

$$\begin{aligned} H(s) &= C(sE - A)^{-1}B \\ &= -C((s - s_0)E - (A - s_0E))^{-1}B \\ &= -C(I - (s - s_0)(A - s_0E)^{-1}E)^{-1}(A - s_0E)^{-1}B \\ &= -C\sum_{i=0}^{\infty}((A - s_0E)^{-1}E)^i(A - s_0E)^{-1}B(s - s_0)^i \\ &= \sum_{i=0}^{\infty}M_i(s - s_0)^i. \end{aligned}$$

where

 $M_{2i} = -C((A - s_0 E)^{-1} E)^i ((A - s_0 E)^{-1} E)^i (A - s_0 E)^{-1} B,$ $M_{2i+1} = -C((A - s_0 E)^{-1} E)^i ((A - s_0 E)^{-1} E)^{i+1} (A - s_0 E)^{-1} B.$

(日本) (日本) (日本)

Transfer function

$$\begin{aligned} H(s) &= C(sE - A)^{-1}B \\ &= -C((s - s_0)E - (A - s_0E))^{-1}B \\ &= -C(I - (s - s_0)(A - s_0E)^{-1}E)^{-1}(A - s_0E)^{-1}B \\ &= -C\sum_{i=0}^{\infty}((A - s_0E)^{-1}E)^i(A - s_0E)^{-1}B(s - s_0)^i \\ &= \sum_{i=0}^{\infty}M_i(s - s_0)^i. \end{aligned}$$

where

$$M_{2i} = -C((A - s_0 E)^{-1} E)^i ((A - s_0 E)^{-1} E)^i (A - s_0 E)^{-1} B,$$

$$M_{2i+1} = -C((A - s_0 E)^{-1} E)^i ((A - s_0 E)^{-1} E)^{i+1} (A - s_0 E)^{-1} B.$$

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Definition (Krylov subspace)

 $\mathcal{K}_m(A,B) = \operatorname{span}\{B \ AB \ A^2B \ \dots A^{m-1}B\}.$

$\mathcal{K}_{i+1}(((A-s_0E)^{-1}E)^T, C^T), \mathcal{K}_{i+1}(((A-s_0E)^{-1}E), (A-s_0E)^{-1}B).$

span $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E)^T, C^T)$ span $V = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E), (A - s_0 E)^{-1} B)$ dim W = dim V = r.

$$W^{T}EVx_{r}'(t) = W^{T}AVx_{r}(t) + W^{T}Bu(t),$$

$$y_{r}(t) = CVx_{r}(t);$$

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト り の ()

Definition (Krylov subspace)

 $\mathcal{K}_m(A,B) = \operatorname{span}\{B \ AB \ A^2B \ ...A^{m-1}B\}.$

$\mathcal{K}_{i+1}(((A - s_0 E)^{-1} E)^T, C^T), \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E), (A - s_0 E)^{-1} B).$

span $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E)^T, C^T)$ span $V = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E), (A - s_0 E)^{-1} B)$ dimW = dimV = r.

$$W^{T}EVx_{r}'(t) = W^{T}AVx_{r}(t) + W^{T}Bu(t),$$

$$y_{r}(t) = CVx_{r}(t);$$

▲ロト ▲ 同 ト ▲ 目 ト ▲ 目 ト り の ()

Definition (Krylov subspace)

 $\mathcal{K}_m(A,B) = \operatorname{span}\{B \ AB \ A^2B \ \dots A^{m-1}B\}.$

$$\mathcal{K}_{i+1}(((A-s_0E)^{-1}E)^T, C^T), \mathcal{K}_{i+1}(((A-s_0E)^{-1}E), (A-s_0E)^{-1}B).$$

span $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E)^T, C^T)$ span $V = \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E), (A - s_0 E)^{-1} B)$ dim W = dim V = r.

$$W^{T}EVx_{r}'(t) = W^{T}AVx_{r}(t) + W^{T}Bu(t),$$

$$y_{r}(t) = CVx_{r}(t);$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Definition (Krylov subspace)

 $\mathcal{K}_m(A,B) = \operatorname{span}\{B \ AB \ A^2B \ \dots A^{m-1}B\}.$

$$\mathcal{K}_{i+1}(((A - s_0 E)^{-1} E)^T, C^T), \mathcal{K}_{i+1}(((A - s_0 E)^{-1} E), (A - s_0 E)^{-1} B).$$

span $W = \mathcal{K}_{i+1}(((A - s_0 E)^{-1}E)^{r}, C^{r})$ span $V = \mathcal{K}_{i+1}(((A - s_0 E)^{-1}E), (A - s_0 E)^{-1}B)$ dim W = dim V = r.

$$W^{T}EVx_{r}'(t) = W^{T}AVx_{r}(t) + W^{T}Bu(t),$$

$$y_{r}(t) = CVx_{r}(t);$$

▲□▶▲□▶▲□▶▲□▶ □ のので

- [1] A. C. Antoulas, Approximation of Large-scale Dynamical Systems, Advances in Design and Control DC-06, SIAM, Philadenphia, 2005.
- [2] Z. J. Bai, "Krylov subspaces techniques for reduced-order modelling of large-scale dynamical systems", *Applied Numerical Mathematics* 43, pp. 9-44, 2002.
- [3] Z. Bai, Y. Su, "Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method", SIAM J. Sci. Comput., Vol. 26, No. 5, pp. 1692-1709, 2005.
- [4] Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, P. V. Dooren, "Second-order balanced truncation", *Linear Algebra Appl.* 415, pp. 373-384, 2006.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

- [5] L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, J. White, "A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models", *IEEE Tran. computer-aided design of integrated circuits and systems*, Vol. 23, No. 5, pp. 678-693 2004.
- [6] P. V. Dooren, K. A. Gallivan, P. A. Absil, "*H*₂-optimal approximation of MIMO linear dynamical systems", submitted on 30 Jul 2008.
- [7] L. H. Feng, E. B. Rudnyi, J. G. Korvink, "Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation", *IEEE Tran. computer-aided design of integrated circuits and systems*, Vol. 24, No. 12, pp. 1838-1847, 2005.

- [8] L. H. Feng, D. Koziol, E. B. Rudnyi, J. G. Korvink,
 "Parametric model order reduction for scanning electrochemical microscopy: Fast simulation of cyclic voltammogram", Proceedings of 6th International conference on thermal and mechanical simulation and experiments in microelectronics and microsystems, Berlin, 2005.
- [9] K. Gallivan, A. Vandendorpe, P. V. Dooren, "Model reduction of MIMO systems via tangential interpolation", *SIAM J. Matrix Anal. Appl.*, Vol. 26, No. 2, pp. 328-349, 2004.
- [10] E. J. Grimme, Krylov Projection Methods for Model Reduction, PhD Thesis, ECE Department, University of Illinois, Urbana-Champaign, 1997.

ヘロト 人間 ト ヘヨト ヘヨト

- [11] S. Gugecin, A. C. Antoulas, C. Beattie, "*H*₂ model reduction for large-scale linear dynamical systems", *SIAM J. Mat. Ana. Appli.*, Vol. 30, Issue 2, pp. 609-638, 2008.
- [12] M. G. Hak(Editor), MEMS Introduction and Fundamentals, The MEMS Handbook, 2nd edition, CRC Press, 2006.
- [13] C. Hartmann, V. M. Vulcanov, C. Schuette, "Balanced truncation of linear second-order systems: a Hamiltonial approach", submitted 2008.
- [14] D. Kubalinska, Optimal Interpolation-based Model Reduction, PhD Thesis, Fac. Informatics-Mathematics, University of Bremen, 2008.

- [15] R. C. Li, Z. Bai, "Structure-preserving model reduction using a Krylov subspace projection formulation", *Comm. Math. Sci.*, Vol. 3, No. 2, pp. 179-199, 2005.
- [16] W. W. Liou, Y. Fang, *Microfluid Mechanics Principles and Modeling*, Nanoscience and Technology Series, McGraw-Hill, 2006.
- [17] B. C. Moore, "Principal component analysis in linear systems: controllability, observability, and model reduction", *IEEE Trans. Auto. Control, Vol. AC-26, No. 1, pp. 17-32,* 1981.
- [18] C. Moosmann, E. B. Rudnyi, A. Greiner, J. G. Korvink, M. Hornung, "Parameter preserving model order reduction of a flow meter", 2005 NSTI Nanotech, Nanotechnology Conference and Trade Show, 2005.

ヘロト 人間 ト ヘヨト ヘヨト

- [19] C. Moosmann, ParaMOR- Model Order Reduction for Parameterized MEMS applications, PhD Thesis, IMTEK, Albert-Ludwigs-University of Freiburg, 2007.
- [20] N. T. Nguyen, S. T. Wereley, Fundamentals and Applications of Microfluidics, 2nd edition, Integrated Microsystems Series, Artech House, 2006.
- [21] D. S. Weile, E. Michielssen, E. J. Grimme, K. Gallivan, "A method for generating rational interpolant reduced order models of two-parameter linear systems", *Appl. Math. Lett.*, Vol. 12, pp. 93-102, 1999.

< ロ > < 同 > < 回 > < 回 > < 回 > <