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Abstract— This paper considers networks consisting of
integral input-to-state stable (iISS) subsystems and addresses
the problem of verifying iISS property of a given network.
First, we focus on construction of continuously differentiable
Lyapunov functions, and derive a condition ensuring the iISS of
the network comprising n subsystems. Although this approach
referred to as the sum-type construction has not yet been
reduced to an easily computable condition for general n,
the n = 2 case recovers the iISS small-gain condition for
two subsystems developed recently. Next, in the case of n

subsystems, using Lipschitz continuous Lyapunov functions,
this paper derives a small-gain condition. It is shown that this
second approach referred to as the max-type construction fails
to offer a Lyapunov function if there exist subsystems which
are not input-to-state stable (ISS). The relation between the two
formulations is discussed in the case of two ISS subsystems.

I. INTRODUCTION

When we establish stability of an interconnected system,

the notion of input-to-state stability (ISS) is useful for dealing

with the subsystems which do not admit a finite linear

gain[19]. For verifying the ISS property of interconnection of

two ISS subsystems, the ISS small-gain theorem is available

in the literature[16], [22]. Since there are nonlinear systems

which are not finite in the sense of ISS, the notion of integral

input-to-state stability (iISS) has been developed to cover

a class of such systems, [2]. For interconnection of two

subsystems, the philosophy of the ISS small-gain theorem

has been extended to the iISS case, [11], [14]. Needless to

say, many practical systems such as logistic systems, biolog-

ical systems, communication networks and power networks

consist of more than two subsystems. Repeated application

of the two systems argument to such large networks needs

manipulations which cause unnecessary conservativeness.

Recently, the ISS small-gain theorem has been extended to

the case of general networks[7], [17].

The ISS small-gain theorem was originally given in terms

of bounds for trajectories. Having Lyapunov functions is

sometimes advantageous in analysis and design of nonlinear

systems. A Lyapunov formulation of the ISS small-gain

theorem was given in [15] for the first time, and extended to

the general networks in [6], [8], [17]. The ISS Lyapunov
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functions constructed there are defined as the maximum

among ISS Lyapunov functions of the subsystems, which

directly yield Lipschitz continuous Lyapunov functions of

the networks. In contrast, the iISS small-gain theorem de-

veloped in [11], [14] is proved by using the sum of iISS

Lyapunov functions of the subsystems, which directly results

in continuously differentiable Lyapunov functions. For such

sum-type Lyapunov functions, no condition for establishing

the stability of general networks is known. Although it can

be mentioned that a sufficient condition and a corresponding

sum-type Lyapunov function have been derived for intercon-

nection consisting of n ISS subsystems in [10], the result

only deals with networks in a restricted structure defined as

cascades of star products.
For the sake of obtaining smooth Lyapunov functions

for the general networks consisting of ISS subsystems, an

attempt has been made in [5] recently. Although smooth

Lyapunov functions have not been obtained there for the ISS

network, the study has made an important step which derives

the max-type formula of Lyapunov functions from the ISS

property of the subsystems in the dissipative form. Note that

the max-type construction was originally derived from the

ISS in the so-called implication form[15], [6], [8].
The purpose of this paper is to deal with subsystems de-

scribed by dissipative inequalities covering the iISS property,

and to elucidate capabilities, limitations and relations of two

constructions. This paper shows that the max-type construc-

tion provides us with a small-gain condition for general n
subsystems. From the sum-type construction this paper also

derives a sufficient condition for the stability of the network.

Although the condition has not yet been computationally

convenient for general n, it can be reduced to a small-gain

condition in the case of two subsystems. Moreover, this paper

demonstrates that the max-type construction can only deal

with ISS subsystems. while the sum-type construction can

handle iISS as well as ISS subsystems.
We use the following notation. The symbol | · | stands

for the Euclidean norm. A continuous function ω : R+ :=
[0,∞) → R+ is said to be positive definite and denoted

by ω ∈ P if it satisfies ω(0) = 0 and ω(s) > 0 holds

for all s > 0. A function is of class K if it belongs to

P and is strictly increasing; of class K∞ if it is of class

K and is unbounded. The symbol Id denotes the identity

maps. The symbols ∨ and ∧ denote logical sum and logical

product, respectively. Negation is ¬. For f, g : R+ → R+,

we use the simple notation lim f(s) = lim g(s) to describe

{lim f(s) = ∞ ∧ lim g(s) = ∞} ∨ {∞ > lim f(s) =
lim g(s)}. Note that the ∞ case is included. In a similar

manner, lim f(s) ≥ lim g(s) denotes {lim f(s) = ∞ ∨ ∞ >
lim f(s) ≥ lim g(s)}. For vectors a, b ∈ R

n the relation

a ≥ b is defined by ai ≥ bi for all i = 1, . . . , n. The relations
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>,≤, < for vectors are defined in the same manner. The

negation of a ≥ b is denoted by a 6≥ b and this means

that there exists an i ∈ {1, . . . , n} such that ai < bi. For a

function of time t, a dot over its symbol stands for d/dt.

II. PROBLEM STATEMENT

Consider a network Σ whose state vector x(t) =
[x1(t)

T , x2(t)
T , ..., xn(t)T ]T ∈ R

N is governed by ẋ =
f(x, r) and admits the existence of a positive definite and

radially unbounded R+-valued function Vi(xi) satisfying

V̇i(xi) ≤ −αii(Vi(xi)) +
∑

j 6=i

γij(Vj(xj)) + γr,i(|r|) (1)

along the trajectories xi(t) ∈ R
Ni for each i = 1, 2, ..., n.

The vector r(t) ∈ R
M denotes an exogenous signal. The

property (1) is usually called a dissipation inequality of

Σi. It is assumed that αii ∈ K, γij ∈ K ∪ {0} and

γr,i ∈ K ∪ {0} hold. This assumption means that each

subsystem Σi defined with the state xi and the inputs xj ,

j 6= i, r is integral input-to-state stable (iISS), and that Vi is

an iISS Lyapunov function for the individual subsystem Σi

for each i = 1, 2, ..., n. We borrow the notions of ISS and

iISS properties from the references[19], [21], [2]. Under a

stronger assumption αi ∈ K∞, the system Σi is input-to-state

stable (ISS), and the function Vi is an ISS Lyapunov function.

By definition, an ISS system is always iISS. The converse

does not hold. The original definition of iISS and ISS is given

in terms of trajectories, which is equivalent to the existence

of C1 iISS and ISS Lyapunov functions, respectively[2], [21].
Remark 1: The function Vi satisfying (1) is said to be an

iISS Lyapunov function even when αii ∈ P [2]. Neverthe-

less, to allow for feedback loops in the network Σ, this paper

assumes αii ∈ K which is a strict subset of P . It is stressed

that a feedback loop of iISS systems defined with dissipation

inequalities (1) is iISS only if αii ∈ K [12].
The objective of this paper is to derive conditions under

which the network Σ in total is iISS with respect to input r
and state x. We want to cover ISS as a special case. To this

end, we define operators A,Γ: s ∈ R
n
+ 7→ z ∈ R

n
+ by

z = A(s) = [α11(s1), α22(s2), . . . , αnn(sn)]
T

z = Γ(s) =

[

∑

j 6=1

γ1j(sj),
∑

j 6=2

γ2j(sj), . . . ,
∑

j 6=n

γn,j(sj)

]T

The operator Γr: τ ∈ R+ 7→ z ∈ R
n
+ is defined by

z = Γr(τ) = [γr,1(τ), γr,2(τ), . . . , γr,n(τ)]
T

The following vectors are also defined:

V (x) = [ V1(x1), V2(x2), . . . , Vn(xn) ]T

V̇ (x) = [ V̇1(x1), V̇2(x2), . . . , V̇n(xn) ]T

where V̇i = dVi/dt for the trajectories xi(t) ∈ R
Ni . Then,

the dissipation inequalities (1) can be compactly written as

V̇ (x) ≤ (−A + Γ) ◦ V (x) + Γr(|r|) . (2)

Recall that the relation ≤ for vectors used in (2) is interpreted

componentwise. The goal of this paper is to find a function

Vcl : R
N → R+ satisfying the dissipation inequality

V̇cl(x) ≤ −αcl(V (x)) + γcl(|r|) (3)

along the trajectories x(t) of the network Σ for some αcl ∈ P
and γcl ∈ K ∪ {0}. The property (3) guarantees that the

network Σ is iISS with respect to input r and state x.

Furthermore, the network Σ is ISS if αcl ∈ K∞.

III. A TRICK

Consider C1 functions Wi : R
Ni → R+ given by

Wi(xi) =

∫ Vi(xi)

0

λi(τ)dτ, i = 1, 2, ..., n (4)

for continuous functions λi : R+ → R+. We assume that

λi(si) > 0, ∀si ∈ (0,∞), i = 1, 2, ..., n (5)
∫ ∞

1

λi(si)dsi = ∞, i = 1, 2, ..., n (6)

{αii ∈ K \ K∞ ∧ γr,i ∈ K ⇒ lim sup
si→∞

λi(si) < ∞}

, i = 1, 2, ..., n (7)

hold. We consider the operator F : R
n
+ → R

n
+ defined as

F (s) = [ζ1(s1), ζ2(s2), ..., ζn(sn)]T

where we assume that

ζi ∈ K∞, Id − ζi ∈ K∞, i = 1, 2, ..., n (8)

The functions λi and ζi have yet to be determined.

Using these functions, we define the vectors

W (x) = [ W1(x1), W2(x2), . . . , Wn(xn) ]T

Ẇ (x) = [ Ẇ1(x1), Ẇ2(x2), . . . , Ẇn(xn) ]T

along the trajectories xi(t) and the matrices

H(V (x)) =









λ1(V1(x1)) 0 · · · 0

0 λ2(V2(x2))
. . .

...
...

. . .
. . . 0

0 · · · 0 λn(Vn(xn))









G(|r|) =









η1(|r|) 0 · · · 0

0 η2(|r|)
. . .

...
...

. . .
. . . 0

0 · · · 0 ηn(|r|)









where the non-decreasing continuous functions ηi : R+ →
R+, i = 1, 2, ..., n, are given by

λ̄i(τ) = max
w∈[0,τ ]

λi(w) (9)

ηi(τ) =











λ̄i ◦ α−1
ii ◦ ζ−1

i ◦ γr,i(τ)
, if lim

w→∞
ζi◦αii(w)>γr,i(τ)

lim
w→∞

λ̄i(w) , otherwise

(10)

Note that the assumption (7) renders the function ηi : R+ →
R+ given by (10) well-defined. With the help of these

definitions, combining the two cases ζi◦αii(Vi(xi))>γr,i(|r|)
and ζi◦αii(Vi(xi))≤γr,i(|r|) in (2) proves that (2) implies

Ẇ (x) ≤ H(V (x))
{

−(Id − F ) ◦ A + Γ
}

(V (x))

+ G(|r|)Γr(|r|) (11)
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Alternatively, the inequality (11) can be expressed as

Ẇ (x) ≤ H(V (x))
{

−(Id + E)−1 ◦ A + Γ
}

(V (x))

+ G(|r|)Γr(|r|) (12)

where E is defined by

(Id + E)(s) = [s1+ ε1(s1), s2+ ε2(s2), ..., sn+ εn(sn)]T

= (Id − F )−1(s) (13)

Note that εi ∈ K∞ holds since

(Id + εi) ◦ (si − ζi(si)) − si

= −ζi(si) + εi ◦ (si − ζi(si)) = 0

and ζi, Id − ζi ∈ K∞. The relation (13) defines a bijection

between ζi ∈ K∞ and εi ∈ K∞ , i.e., F and E.

The technique applied to the iISS network in this section is

essentially the same as the technique of changing ISS supply

rates proposed in [20].

Remark 2: The choice of ζi(s) ≡ 0, εi(s) ≡ 0 and

ηi(s) ≡ 0 is also valid when γr,i(s) ≡ 0.

IV. SUM-TYPE CONSTRUCTION

This sections presents a condition under which the network

Σ is guaranteed to be iISS. For this purpose, we seek

Lyapunov functions in the form of

Vcl(x) =
n

∑

i=1

Wi(xi) (14)

In order to select functions λi with which the sum-type

Lyapunov function establishes the stability of the network,

we define mappings from s ∈ R
n
+ to R

n
+ by

Λ(s) = [ λ1(s1), λ2(s2), . . . , λn(sn) ]
T

(15)

D(s) = [s1+β1(s1), s2+β2(s2), . . . , sn+βn(sn)]T (16)

and obtain the following theorem.

Theorem 1: Suppose that there exist continuous functions

λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7) and

Λ(s)T Γ(s) ≤ Λ(s)T D−1 ◦ A(s), ∀s ∈ R
n
+ (17)

are satisfied for some β1, β2, ... , βn ∈ K∞. Then the network

Σ is iISS with respect to input r and state x. If

αii ∈ K∞, i = 1, 2, ..., n (18)

lim inf
si→∞

λi(si) > 0, i = 1, 2, ..., n (19)

are satisfied additionally, the network Σ is ISS. Furthermore,

an iISS (ISS) Lyapunov function is given by (14).

Proof: Substituting (17) for (12), we obtain

V̇cl(x)≤−Λ(V )T [((Id+E)−1−D−1)◦A(V )]+
n

∑

i=1

γ̂r,i(|r|)

where γ̂r,i := ηiγr,i ∈ K ∪ {0}. Let θi be defined with

Id − θi = (Id + βi)
−1 (20)

The property θi ∈ K∞ follows from βi ∈ K∞ and

(Id − θi) ◦ (Id + βi)(si) − si

= βi(si) − θi ◦ (Id + βi(si)) = 0

Pick ζi ∈ K∞ satisfying θi − ζi ∈ K∞. Then, from

(Id + εi)
−1 − (Id + βi)

−1 = θi − ζi (21)

we obtain

V̇cl(x) ≤ −
∑n

i=1 λi(Vi(xi))[(θi − ζi) ◦ αii(Vi(xi))]

+
∑n

i=1 γ̂r,i(|r|)

Since αii∈K implies (θi−ζi)◦αii ∈ K, we have

V̇cl(x) ≤ −
n

∑

i=1

α̂i(Vi(xi)) +
n

∑

i=1

γ̂r,i(|r|)

for some α̂i ∈ P , i = 1, 2, .., n, so that we can arrive at (3).

The properties (5) and (6) ensure that the functions Wi are

positive definite and radially unbounded. Thus, Vcl is an iISS

Lyapunov function of the network Σ. If (18) and (19) hold

additionally, we obtain (θi − ζi) ◦ αii ∈ K∞ and α̂i ∈ K∞,

which implies that Vcl is an ISS Lyapunov function.

In the case of n = 2, we can obtain a solution Λ(s)
fulfilling all the requirements in Theorem 1 as explained in

the following.

Theorem 2: Let n = 2. Suppose that

{αii ∈ K\K∞ ⇒ γ3−i,i ∈ K\K∞ ∪ {0}}, i = 1, 2 (22)

holds. If there exist β1, β2 ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ R
2
+ \ {0} (23)

there exists a solution Λ(s) fulfilling all the requirements in

Theorem 1.

Proof: It can be verified that the condition (23) is

equivalent to the logical sum of

(Id + β1) ◦ γ12 ◦ α−1
22 ◦ (Id + β2) ◦ γ21(τ) < α11(τ),

∀τ ∈ (0,∞) (24)

and

(Id + β2) ◦ γ21 ◦ α−1
11 ◦ (Id + β1) ◦ γ12(τ) < α22(τ),

∀τ ∈ (0,∞) (25)

Note that (24) ((25)) implicitly requires limτ→∞ α22(τ) ≥
limτ→∞ γ21(τ) (limτ→∞ α11(τ) ≥ limτ→∞ γ12(τ), respec-

tively). The existence of β1, β2 ∈ K∞ achieving the above

logical sum is the same as the existence of β1, β2 ∈ K∞

achieving ≤ for s ∈ R+ instead of < for s ∈ R+\{0} in the

logical sum of (24) and (25). Indeed, the substitution βi =
βi/2 allows us to change ≤ into <. Hence, the condition

(23) is equivalent to the iISS small-gain condition presented

in [14]. The function Vcl in (14) is identical with the one

employed in [11], [14], and the corresponding inequality (17)

is the same as the one solved in [11], [14]. Moreover, the

property (22) implies that one of the properties

(A1) lim
τ→∞

α11(τ) = ∞ ∧ lim
τ→∞

α22(τ) = ∞,

(A2) lim
τ→∞

α11(τ) = ∞ ∧ lim
τ→∞

γ12(τ) < ∞,

(A3) lim
τ→∞

α22(τ) = ∞ ∧ lim
τ→∞

γ21(τ) < ∞,

(A4) lim
τ→∞

γ12(τ) < ∞ ∧ lim
τ→∞

γ21(τ) < ∞,

is satisfied. It is also verified that

(24) ∧ (A2) ∧ ¬(A1) ⇒ (A4)

(25) ∧ (A3) ∧ ¬(A1) ⇒ (A4)
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hold. Hence, the non-decreasing functions λ1(s1) and λ2(s2)
derived in [14] achieve all the requirements in Theorem 1

for n=2. If γi,j(sj)≡0 holds for some i 6=j, we can always

use sufficiently small γi,j ∈K when we invoke [14].

In the n = 2 case, the components λ1(s1) and λ2(s2)
of Λ(s) are derived explicitly in [11], [14]. For n ≥ 3, no

formula for solutions Λ(s) to the problem posed in Theorem

1 has yet been known.

Remark 3: When we only consider 0-GAS (i.e., global

asymptotic stability of x = 0 for r(t) ≡ 0 or Γr(s) ≡ 0),

The functions βi in Theorem 1 are only required to satisfy

βi ∈ P and Id + βi ∈ K∞ for i = 1, 2, ..., n. Note that

using < in (17) with D = Id cannot always ensure 0-GAS

since it cannot exclude the no-gap case, [1]. It is known

that in the no-gap case information on αii and γij is not

sufficient to conclude 0-GAS. Property (17) with positive

definite βi’s ensures that the no-gap case does not occur.

Likewise, inequality (23) with D = Id cannot guarantee the

0-GAS. In order to avoid the no-gap case, we need to add

an assumption as in [14].

V. MAX-TYPE CONSTRUCTION

Define a locally Lipschitz function Vcl : R
N → R+ by

Vcl(x) = max
i=1,2,...,n

Wi(xi) (26)

Alternatively, we can write the above Vcl as

Vcl(x) = max
i=1,2,...,n

ψ−1
i (Vi(xi)) (27)

where ψi ∈ K∞ is given by

ψ−1
i (si) =

∫ si

0

λi(τ)dτ (28)

Note that the right hand side of the above equation is

guaranteed to be of class K∞ by (5) and (6). An apparent

feature of the max-tye Lyapunov function (26) is its Lipschitz

continuity, while the sum-type Lyapunov function (14) is

continuously differentiable.

For interconnected ISS systems, some studies derive Lya-

punov functions of the form (27), e.g., [15], [6], [18]. The

following theorem demonstrates that the max-type Lyapunov

function is not useful if at least one subsystem is only iISS.

Theorem 3: Let Vcl be defined by (27), and let V ◦
cl(x; ẋ)

denote the Clarke generalized derivative at x in the direction

of ẋ. If there exist continuously differentiable ψi ∈ K∞, i =
1, 2..., n, such that all differentiable trajectories1 x(t) ∈ R

N

fulfilling (1) with αii ∈ K, γij ∈ K∪{0} for r(t) ≡ 0 satisfy

V ◦
cl(x; ẋ) ≤ 0, ∀x ∈ R

N , (29)

then
∑

j 6=i

lim
τ→∞

γij(τ) ≤ lim
τ→∞

αii(τ), i = 1, 2, ..., n (30)

Proof: To prove the claim by contradiction, suppose that
∑

j 6=i

lim
τ→∞

γij(τ) > lim
τ→∞

αii(τ) (31)

1Here, the trajectories are not necessarily associated with differential
equations of the form ẋ = f(x, r). Using the technique developed in [13],
we can also address the existence of a corresponding differential equation
in Theorem 3.

holds for some i = p ∈ {1, 2, ..., n}. Let

Mp := {x ∈ R
N : ψ−1

p (Vp(xp)) > ψ−1
j (Vj(xj)), ∀j 6= p}

Lp :=

{

x ∈ R
N :

∑

j 6=p

γpj(Vj(xj)) > lim
τ→∞

αpp(τ)

}

Since the ψ−1
i ’s are of class K∞, the set Mp is unbounded

in all directions, i.e., Mp contains a sequence {xp,k ∈ R
N},

k = 1, 2, ..., such that Vi(x
p,k
i ) → ∞ for all i = 1, 2, ..., n

when k →∞. This fact and (31) ensure Mp∩Lp 6=∅. Property

(1) with r(t)≡0 yields V̇cl(x) ≤ ξ(x) for x∈Mp, where

ξ(x) := λp(Vp(xp))
{

−αpp(Vp(xp)) +
∑

j 6=p

γpj(Vj(xj))
}

By assumption, in the set Mp, the function ξ(x) is the

smallest upper bound of V̇cl(x) covering all trajectories

x(t) ∈ R
N defined with (1). The definition of Lp implies

ξ(x) > 0, ∀x ∈ Mp ∩ Lp (32)

Although Vcl defined in (27) is only locally Lipschitz, it

is differentiable on Mp ∩ Lp. Since the Clarke generalized

derivative agrees with the directional derivative of Vcl at

differentiable points. the property (32) contradicts (29).

The property (30) means that each subsystem Σi is ISS

with respect to input xj , j 6= i and state xi [21]. Theorem

3 can be interpreted as follows: In the construction of

a Lyapunov function of the form (27), the function ψ−1
i

needs to ensure that if the maximum of (27) is attained

for the i-th subsystem, then the decay of the particular

subsystem appears as the decrease of the function Vcl. Thus,

the max-type construction requires that each subsystem be

contractive when its state is large. However, this property is

not guaranteed when a subsystem is iISS.

If we restrict our attention to networks of ISS subsystems.

we can derive stability based on the max-type Lyapunov

function. Using the mapping from R+ → R
n
+ defined by

Ψ(τ) = [ ψ1(τ), ψ2(τ), . . . , ψn(τ) ]
T

(33)

the following demonstrates this fact.

Theorem 4: Suppose that there exist continuous functions

λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7) and

D ◦ Γ(Ψ(τ)) ≤ A(Ψ(τ)), ∀τ ∈ R+ (34)

are satisfied for some β1, β2, ..., βn∈K∞. Then, the network

Σ is iISS with respect to input r and state x. If (18) and (19)

are satisfied additionally, the network Σ is ISS. Furthermore,

an iISS (ISS) Lyapunov function is given by (26).

Proof: Suppose that ψi ∈ K∞, i = 1, 2, ..., n fulfill

all the requirements in Theorem 4. Assume for the moment

that, for x 6= 0, the maximum in (26) is attained uniquely

by the i = p ∈ {1, 2, ..., n}, i.e.,

ψ−1
p (Vp(xp)) > ψ−1

j (Vj(xj)), ∀j 6= p (35)

Let [Γ(s)]p denote the p-th component of the vector Γ(s).
Then, for Vcl(x) defined in (26), the inequality (12) yields

V̇cl(x) ≤ λp(Vp(xp))
{

−(Id + εp)
−1αpp(Vp)

+ [Γ(V )]p
}

+ ηp(|r|)γr,p(|r|) (36)
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Since the definition of Γ and (35) ensure

[Γ(V )]p = [Γ([ψ1◦ ψ−1
1 (V1(x1)), ..., ψn◦ ψ−1

n (Vn(xn))])]p

≤ [Γ(Ψ ◦ ψ−1
p (Vp(xp)))]p ,

we obtain

V̇cl(x)≤λp(Vp(xp))
{

−(Id+εp)
−1◦αpp(ψp◦ ψ−1

p (Vp(xp)))

+[Γ(Ψ ◦ ψ−1
p (Vp(xp)))]p

}

+ ηp(|r|)γr,p(|r|)

from the definition of A. Now, let θp ∈ K∞ be computed

with (20). Pick ζp ∈ K∞ satisfying θp − ζp ∈ K∞. From the

p-th row of (34), ψp ∈ K∞ and (21) it follows that

V̇cl(x) ≤ −λp(Vp(xp))[(θp−ζp) ◦ αpp(Vp(xp))] + γ̂r,p(|r|)

holds for γ̂r,p := ηpγr,p ∈ K ∪ {0}. Therefore, there exists

α̂i ∈ P such that

V̇cl(x) ≤ −α̂p(Vp(xp)) + γ̂r,p(|r|) (37)

is satisfied. The functions (θp−ζp)◦αpp and α̂p are of class

K∞ if (18) and (19) hold. Repeating (37) for p ∈ {1, 2, ..., n}
and using Vcl(x) = ψ−1

p (Vp(xp)) implied by (35), we have

V̇cl(x) ≤ −max
i

α̂i ◦ ψi(Vcl(x)) + max
i

γ̂r,i(|r|) (38)

for all x ∈ R
N where the maximization in (26) is uniquely

defined. The set of such points is an open and dense in R
N .

For the rest of the proof, we can employ the arguments in [4],

[3], [8]. Since the locally Lipschitz continuous function Vcl is

the maximization of C1 functions Vi, the Clarke subgradient

of Vcl in x ∈ R
n can be computed by the set

∂ClVcl(x) = conv { ▽
(

σ−1
i ◦ αi ◦ Vi

)

(xi) :

σ−1
i ◦ αi(Vi(xi)) = Vcl(x)} ,

where conv {·} denotes the convex hull. As we have (38)

for each of the extremal points of ∂ClVcl(x), the dissipation

inequality (38) holds in terms of the Clarke generalized

derivative for each ζ in the Clarke subgradient. Thus, the

function Vcl given in (26) is a Lipschitz continuous iISS

(ISS) Lyapunov function for the network Σ.

It is stressed that since ψi’s are class K∞ functions, the

condition (34) implies (30). This fact is consistent with

Theorem 3. Theorem 4 does not require the αii’s to be of

class K∞ which are assumed in [15], [8], [18]. Although

both Theorem 4 and the results in [15], [8], [18] deal

with ISS subsystems, Theorem 4 allows us to get rid of

transformation into αii∈K∞ which gives rise to unnecessary

conservativeness in practice. In contrast to Theorem 4 of the

max type, the sum-type construction presented in Section

IV can deal with iISS subsystems which are not ISS. The

limiting value of (17) does not result in a restriction like

(30) since the parameter Λ(s) is “multiplied” on both sides

of (17). In fact, in the case of n=2, the inequality (24) can

be satisfied even if γ12(∞)>α11(∞) as long as γ21(∞)<
α22(∞). In the same way, the inequality (25) can be satisfied

even if γ21(∞) > α22(∞) as long as γ12(∞) < α11(∞).
Note that, to obtain iISS of Σ, some of the subsystems Σi

is necessarily ISS but not all, which is proved in [13].

Now, we address the existence of solutions Ψ to (34).

The following theorem presents a condition guaranteeing the

existence, which is a consequence of the results developed

in [8], [18].

Theorem 5: Assume that αii, i = 1, 2, ..., n, are of class

K∞ and C1, and that Γ is irreducible, [8]. Suppose that there

exist β1, β2, ..., βn ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ R
n
+ \ {0} (39)

Then, there exist continuously differentiable functions ψi ∈
K∞, i = 1, 2, ..., n such that (34) and

d

dτ
ψi(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (40)

lim sup
τ→∞

d

dτ
ψi(τ) < ∞, i = 1, 2, ..., n (41)

are satisfied.

Proof: By virtue of αii ∈ K, (39) is equivalent to

D ◦ Γ ◦ A−1(s) 6≥ s, ∀s ∈ R
n
+ \ {0} (42)

The results in [8], [18], [9] with smoothing guarantees the

existence of C1 functions ψ̂i ∈ K∞, i = 1, 2, ..., n satisfying

D ◦ Γ ◦ A−1(Ψ̂(τ)) < Ψ̂(τ), ∀τ ∈ (0,∞) (43)

d

dτ
ψ̂i(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (44)

lim sup
τ→∞

d

dτ
ψ̂i(τ) < ∞, i = 1, 2, ..., n (45)

where Ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂n]T . Note that if (45) is not

satisfied by a particular Ψ̂, we can always find a continuously

differentiable ρ ∈ K∞ such that replacing Ψ̂ by Ψ̂(ρ)
achieves (43), (44), and (45). Setting Ψ(τ) = A−1 ◦ Ψ̂(τ),
we arrive at (34). The property (44) and the differentiability

of αii ensure (40). The property (41) follows from (45).

Note that the properties ψi ∈ K∞, i = 1, 2, ..., n, and (40)

imply (5) and (6). The property (41) ensures (19). Hence,

the above theorem guarantees the existence of solutions

{λi} to the problem posed by Theorem 4 in the case of

α11, ..., αnn ∈ K∞. Jiang et al.[15] proved Theorem 5 in the

case where the network Σ consists of two ISS subsystems.

The condition (39) is identical to (23) for n = 2.

According to Theorem 3, the gap between (39) and (34)

requiring ψi ∈ K∞ is larger than the one between (39) and

(17) when the subsystems are only iISS.

In the case of linear A, Γ, D, both the problems posed in

Theorem 1 and Theorem 4 can be solved by theorems of the

Perron-Frobenius type. A necessary and sufficient condition

for the solvability is ρ(ΓA−1) < 1, where ρ(·) denotes the

spectral radius[5]. The functions Λ and Ψ are obtained as a

suitable lefteigenvector and a right eigenvector, respectively.

Remark 4: When we only consider 0-GAS, the condition

(34) can be replaced by Γ(Ψ(τ)) < A(Ψ(τ)), ∀τ ∈ R+\{0}.

VI. TWO ISS SUBSYSTEMS CASE

In (14) and (26) two different ways for the construc-

tion of Lyapunov functions for Σ are presented. Because

of the difference in the construction we cannot expect to

have simple relations between conditions under which the

composed functions Vcl computed by (14) and (26) serve as

iISS/ISS Lyapunov functions of the network. Nevertheless, if
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we restrict our attention to networks of two ISS subsystems,

some relations between the sum and the max formulations

can be obtained. The following is a direct consequence of

Theorems 2 and 5.

Proposition 1: Let n = 2. Assume αii ∈ K∞ ∩ C1 for

i = 1, 2. Suppose that there exist β1, β2 ∈ K∞ satisfying

(23). Then, the following hold:

(i) There exist continuous functions λ1, λ2 : R+ → R+

such that (5), (6) (17) and (19) are satisfied.

(ii) There exist continuous functions ψ1, ψ2 ∈ K∞ such

that (34) and (19) are satisfied.

Thus, under the unified condition (23), we can obtain

ISS Lyapunov functions for the network Σ based on the

two approaches. The extension of this fact to the general n
subsystems case has not yet been accomplished. Proposition

1 has been first demonstrated for the linear case in [5].

In the rest of this section, we relate the solution Λ in

the max-type construction to the solution Ψ in the sum-type

construction in the n = 2 case. For simplicity, we consider

βi(τ) = ciτ, i = 1, 2 (46)

The following theorem constructs an C1 iISS Lyapunov

function for Σ by exploiting the solution in the max-type

construction, which results in λi’s different from [11], [14].

Theorem 6: Let n = 2. Assume α11, α22 ∈ K∞. Suppose

that there exist ψ1, ψ2 ∈ K∞ such that (34) is satisfied with

(46) for some c1, c2 > 2. Then, the choice

Λ(s) =

[

λ1(s1)
λ2(s2)

]

=

[

−P2 ◦ ψ ◦ ψ−1
1 (s1)

−P1 ◦ ψ ◦ ψ−1
2 (s2)

]

(47)

P (s)=

[

P1(s)
P2(s)

]

=−D−1
H ◦A(s) + Γ(s), DH(s)=

[

c1

2 s1

c2

2 s2

]

satisfies (5), (6) (17) and (19) with (46) for another pair of

c1, c2 > 1.

Theorem 6 provides a new way to construct {λ1, λ2} for

the iISS Lyapunov function in the sum from (14) for n = 2.

Although different pairs of solutions are available in [11],

[14], making a choice from many Lyapunov functions is

sometimes advantageous in systems analysis and design. The

solutions {λ1, λ2} presented in [11], [14] are better than the

solutions obtained through Theorem 6 in the sense not only

that c1, c2 > 2 is not needed in [11], [14], but also that

the solutions in [11], [14] can establish the stability of the

network even when some subsystems are only iISS.

VII. CONCLUDING REMARKS

This paper has demonstrated that the sum-type construc-

tion not only provides us with continuously differentiable

Lyapunov functions directly, but also covers the class of

iISS subsystems which are not ISS, while the max-type con-

struction based on Lipschitz continuous Lyapunov functions

requires the subsystems to be ISS. Solutions fulfilling the

stability condition derived in the max-type construction are

available in [15] for two subsystems, and [8], [18] for n
subsystems. In contrast, solving the stability condition in the

sum-type construction has been harder, and formulas of solu-

tions are only available in the case of n = 2 [11], [14]. This

situation seems natural since the sum-type construction deals

with the broader class of systems. However, the relationship

between the solutions in the sum-type construction and the

max-type construction had not yet been known even in the

case of ISS systems. This paper has shown several relations

by unifying the solvability conditions and deriving a new

solution to the sum-type construction from the solution to

the max-type one the n = 2 case.

REFERENCES

[1] D. Angeli and A. Astolfi, “A tight small gain theorem for not necessarily
ISS systems,” Syst. Control Lett., Vol. 56, pp. 87-91, 2007.

[2] D. Angeli, E.D. Sontag and Y. Wang, “A characterization of integral
input-to-state stability,” IEEE Trans. Autom. Control, Vol. 45, pp. 1082-
1097, 2000.

[3] F.H. Clarke, “Nonsmooth analysis in control theory: a survey,” Euro-

pean J. Contr., Vol. 7, pp.63-78, 2001.
[4] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth

analysis and control theory, Springer-Verlag, Berlin, 1998.
[5] S. Dashkovskiy, H. Ito and F. Wirth, “On a small-gain theorem for ISS

networks in dissipative Lyapunov form,” Proc. 10th European Contr.

Conf., pp.1077-1082, 2009.
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