Publikationen von Dr. Daniel Otero Baguer
Zeitschriftenartikel (5)
- P. Jansen, J. Le Clerc Arrastia, D. Otero Baguer, M. Schmidt, J. Landsberg, J. Wenzel, M. Emberger, D. Schadendorf, E. Hadaschik, P. Maaß, K. G. Griewank.
Deep learning based histological classification of adnex tumors.
European Journal of Cancer, 113431 196, 2024. - J. Le Clerc Arrastia, N. Heilenkötter, D. Otero Baguer, L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner , J. Schaller , P. Maaß.
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma.
MDPI Journal of Imaging, 71 7(4), Meisenbach Verlag, Bamberg, 2021. - J. Leuschner, M. Schmidt, D. Otero Baguer, P. Maaß.
LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction.
Scientific Data, 8(109), 2021. - D. Otero Baguer, J. Leuschner, M. Schmidt.
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
Inverse Problems, 36(9), IOPscience, 2020. - S. Dittmer, T. Kluth, P. Maaß, D. Otero Baguer.
Regularization by architecture: A deep prior approach for inverse problems.
Journal of Mathematical Imaging and Vision, 62(3):456-470, Springer Verlag, 2020.DOI: 10.1007/s10851-019-00923-x
online unter: http://link.springer.com/article/10.1007/s10851-019-00923-x
Preprints (1)
- R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
Model Stitching and Visualization How GAN Generators can Invert Networks in Real-Time.
Zur Veröffentlichung eingereicht.online unter: https://arxiv.org/abs/2302.02181
Qualifikationsarbeiten (1)
- D. Otero Baguer.
Neural Networks for solving Inverse Problems. Applications in Materials Science and Medical Imaging. (submitted).
Dissertationsschrift, Universität Bremen, 2020.
Tagungsbeiträge (4)
- R. Herdt, M. Schmidt, D. Otero Baguer, J. Le Clerc Arrastia, P. Maaß.
How GAN Generators can Inverta Networks in Real-Time.
The 15th Asian Conference on Machine Learning - ACML 2023, 11.11.-14.11.2023.
PMLR, 222:422-437, 2023.online unter: https://proceedings.mlr.press/v222/herdt24a.html
- S. Dittmer, T. Kluth, D. Otero Baguer, B. Maass.
A Deep Prior Approach to Magnetic Particle Imaging.
Machine Learning for Medical Image Reconstruction 2020.
Springer International Publishing, F. Deeba, P. Johnson, T. Würfl, J. C. Ye (Hrsg.), S. 113-122, 2020. - T. Czotscher, D. Otero Baguer, F. Vollertsen, I. Piotrowska-Kurczewski, P. Maaß.
Connection Between Shock Wave Induced Indentations And Hardness By Means Of Neural Networks.
22nd International Conference on Material Forming (ESAFORM 2019), 08.05.-10.05.2019.
AIP Conference Proceedings 2113, 100001, Springer Verlag, 2019.DOI: 10.1063/1.5112634
- D. Otero Baguer, P. Maaß.
Inverse Problems in designing new structural materials.
7th International Conference on High Performance Scientific Computing, 19.03-23.03.2018, Hanoi, Vietnam.