Logo Uni Bremen

Center for Industrial Mathematics

ZeTeM > About ZeTeM > Staff > Dr. Sören Schulze

Contact Sitemap Impressum [ English | Deutsch ]
Bild Dr. Sören Schulze

Dr. Sören Schulze

Ehemaliger Mitarbeiter der Former AWG Computational Data Analysis, Research Training Group π3


Research Areas

Theses (Selection)complete list

  1. Klaviertonhöhenerkennung mit Convolutional Neural Networks (Pegah Golchian)

Publications (Selection)complete list

  1. S. Schulze.
    Blind source separation in single-channel polyphonic music recordings.
    Dissertationsschrift, Universität Bremen, 2022.

    online at: https://media.suub.uni-bremen.de/handle/elib/5816

  2. S. Schulze, E. King.
    Formulating Beurling LASSO for Source Separation via Proximal Gradient Iteration.
    Zur Veröffentlichung eingereicht.

    online at: https://doi.org/10.48550/arXiv.2202.08082

  3. S. Schulze, E. King.
    Sparse Pursuit and Dictionary Learning for Blind Source Separation in Polyphonic Music Recordings.
    EURASIP Journal on Audio, Speech, and Music Processing, 6:2-25, 2021.

    DOI: 10.1186/s13636-020-00190-4
    online at: https://rdcu.be/ceo1J

  4. S. Schulze, J. Leuschner, E. King.
    Blind Source Separation in Polyphonic Music Recordings Using Deep Neural Networks Trained via Policy Gradients.
    MDPI Open Access Journals Signals, 2(4):637-661, 2021.

    DOI: 10.3390/signals2040039
    online at: https://www.mdpi.com/2624-6120/2/4/39

  5. S. Schulze, E. King.
    A Frequency‐Uniform and Pitch‐Invariant Time‐Frequency Representation.
    90th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM), 18.02.-22.02.2019, Vienna, Austria.
    Proc. Appl. Math. Mech., 19(1):e201900374, 2019.

    DOI: 10.1002/pamm.201900374