Dr. Sören Schulze
Ehemaliger Mitarbeiter der Ehemalige AAG Computational Data Analysis, Research Training Group π3E-Mail: sschulze@uni-bremen.de
Forschungsgebiete
- Audio- und Signalverarbeitung
- Blinde Quellentrennung
- Zeit-Frequenz-Darstellungen
- Maschinelles Lernen
Abschlussarbeiten (Auswahl)
- Klaviertonhöhenerkennung mit Convolutional Neural Networks (Pegah Golchian)
Publikationen (Auswahl)
- S. Schulze.
Blind source separation in single-channel polyphonic music recordings.
Dissertationsschrift, Universität Bremen, 2022.online unter: https://media.suub.uni-bremen.de/handle/elib/5816
- S. Schulze, E. King.
Formulating Beurling LASSO for Source Separation via Proximal Gradient Iteration.
Zur Veröffentlichung eingereicht.online unter: https://doi.org/10.48550/arXiv.2202.08082
- S. Schulze, E. King.
Sparse Pursuit and Dictionary Learning for Blind Source Separation in Polyphonic Music Recordings.
EURASIP Journal on Audio, Speech, and Music Processing, 6:2-25, 2021.DOI: 10.1186/s13636-020-00190-4
online unter: https://rdcu.be/ceo1J - S. Schulze, J. Leuschner, E. King.
Blind Source Separation in Polyphonic Music Recordings Using Deep Neural Networks Trained via Policy Gradients.
MDPI Open Access Journals Signals, 2(4):637-661, 2021.DOI: 10.3390/signals2040039
online unter: https://www.mdpi.com/2624-6120/2/4/39 - S. Schulze, E. King.
A Frequency‐Uniform and Pitch‐Invariant Time‐Frequency Representation.
90th GAMM Annual Meeting of the international Association of Applied Mathematics and Mechanics (GAMM), 18.02.-22.02.2019, Wien, Österreich.
Proc. Appl. Math. Mech., 19(1):e201900374, 2019.