Dr. Sören Dittmer
Ehemaliger Mitarbeiter der WG Industrial Mathematics, Research Training Group π3Projects
- Design-KIT: Artificial Intelligence in mechanical component development; TP: Deep Learning for geometry generation of mechanical components (01.10.2020 - 31.03.2022)
- Magnetic Particle Imaging (since 01.03.2016)
Courses (Selection)
- Mathematical Methods in Machine Learning (Wintersemester 2023/2024)
- Mathematical Foundations of AI (Sommersemester 2023)
- Mathematical Foundations of Deep Learning (Wintersemester 2022/2023)
- Mathematical Foundations of AI (Wintersemester 2022/2023)
- Mathematical Foundations of AI (Sommersemester 2022)
Theses (Selection)
- Contrasting and motivating augmented contrastive learning (Jule Pätzold)
- Inverse Problems Learning data specific regularizations using projections (Julius Arkenberg)
- Unsupervised Denoising von Magnetic-Particle-Imaging-Messungen durch Neuronale Netze (Nikolas Dreverhoff)
- Differentiable architecture search - Fractional Kernel sizes in convolutional neural networks (Daniel Klosa)
Publications (Selection)
- D. Erzmann, S. Dittmer.
Equivariant Neural Operators for gradient-Consistent Topology Optimization .
Journal of Computational Design and Engineering, 11(3):91-100, 2024.DOI: 10.1093/jcde/qwae039
- M. Roberts, A. Hazan, S. Dittmer, J. H. F. Rudd, C. Schönlieb.
The curious case of the test set AUROC.
Zur Veröffentlichung eingereicht. - D. Erzmann, S. Dittmer, H. Harms, P. Maaß.
DL4TO: A Deep Learning Library for Sample-Efficient Topology Optimization.
Lecture Notes in Computer Science, Geometric Science of Information. GSI 2023 14071, Springer Verlag, 2023. - C. Arndt, A. Denker, S. Dittmer, J. Leuschner, J. Nickel, M. Schmidt.
Model-based deep learning approaches to the Helsinki Tomography Challenge 2022.
Applied Mathematics for Modern Challenges, 1(2), 2023.DOI: 10.3934/ammc.2023007
- S. Dittmer, M. Roberts, J. Gilbey, A. Biguri, .. AIX-COVNET Collaboration, J. Preller, J. H. F. Rudd, J. A. D. Aston, C. Schönlieb.
Navigating the development challenges in creating complex data systems.
nature machine intelligence, 5:681-686, Springer Verlag, 2023.DOI: 10.1038/s42256-023-00665-x
online at: https://www.nature.com/articles/s42256-023-00665-x#citeas