Dr. Matthias Beckmann
Research Assistant WG Industrial MathematicsCourses (Selection)
- Mathematical Methods in Machine Learning (Wintersemester 2024/2025)
- Advanced Topics in Image Processing – The Beauty of Variational Calculus (Wintersemester 2024/2025)
- Mathematical Foundations of Machine Learning (Sommersemester 2024)
- Mathematical Foundations of Machine Learning (Sommersemester 2023)
- Inverse Problems (Wintersemester 2022/2023)
Theses (Selection)
- Inversion of the Modulo Radon Transform via Laplacian Phase Unwrapping (Carla Dittert)
- The Radon Cumulative Distribution Transform in Image Classification (Lia Pribnow)
- Inversion of the Modulo Radon Transform via direct Fourier Reconstruction Methods (Meira Iske)
- Equivariant Neural Networks for Indirect Measurements (Nick Heilenkötter)
- Approximation nichtlinearer Operatoren durch Neuronale Netze und ihre Implementierung durch DeepONets (Theresa Sauerland)
Publications (Selection)
- M. Beckmann, N. Heilenkötter.
Equivariant Neural Networks for Indirect Measurements.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2306.16506
- M. Beckmann, A. Bhandari, M. Iske.
Fourier-Domain Inversion for the Modulo Radon Transform.
Zur Veröffentlichung eingereicht.online at: https://arxiv.org/abs/2307.13114
- M. Beckmann, A. Bhandari, F. Krahmer.
The Modulo Radon Transform: Theory, Algorithms and Applications.
SIAM Journal on Imaging Sciences, 15(2):455-490, 2022.DOI: 10.1137/21M1424615
- M. Beckmann, A. Bhandari.
MR. TOMP: Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP).
2022 IEEE International Conference on Image Processing (ICIP), 16.10.-19.10.2022.
- M. Beckmann, P. Maaß, J. Nickel.
Error analysis for filtered back projection reconstructions in Besov spaces.
Inverse Problems, 37 014002 37(1), IOPscience, 2020.